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Abstract 
 

In system dynamics methodology, a formal mathematical model of a dynamic system 

consists of a stock-flow diagram and a set of equations. It is possible to simplify and 

express a system dynamics model as a set of differential equations, which can then be used 

to obtain the corresponding block diagram for that system dynamics model. In the paper, 

we obtain simplified differential equations for two system dynamics models and based on 

the differential equations, we construct two block diagrams. Differential equations serve as 

a bridge between the two systems modeling perspectives, system dynamics and control 

theory. In addition, we also show other mathematical forms that can be used to express a 

dynamic model such as approximate integral equations, difference equations, and integral 

equations. In Appendix A, a summary of Laplace transforms, transfer functions, and block 

diagrams are provided as a quick reference. In Appendix B, 18 generic system dynamics 

models, their simplified differential equations, and their corresponding block diagrams are 

presented. We carefully formulated SD models and their corresponding block diagrams 

and verified their behavior by simulating them and by observing the same exact behavior 

from the SD model and its block diagram. Similar to “differential equations”, this paper 

aims to construct a bridge between control theory and system dynamics. 

 

Keywords: approximate integral equations; block diagram; control theory; differential 

equations; frequency domain; Laplace transform; stock-flow diagram; system dynamics 

model. 
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Introduction 
 

Laplace transform is widely used in control theory, which is a method of converting 

a set of ordinary differential equations to a set of algebraic equations that can be easily 

solved. A transfer function is the ratio of a system’s output to its input in the Laplace 

domain, which is also known as the frequency domain (Olivi, 2006). Block diagrams are 

often used to represent dynamic systems in control theory. Each block in a block diagram 

has at least two Laplace domain signals connected to it, one input signal and an output 

signal, and an associated transfer function that transforms the input signal into the output 

signal. Blocks are connected via their signals (i.e. the output signal generated by a block 

can be the input to another block). Thus, a complete block diagram represents the dynamic 

relationship between one input or many inputs to a system and one output or many outputs 

of that same system (Bequette, 2007; Seborg, 2004). 

 

In system dynamics (SD) methodology, a formal mathematical model of a dynamic 

system consists of a stock-flow diagram and a set of equations, which together correspond 

to a set of approximate integral equations. It is also possible to express these models as a 

set of differential equations (Barlas, 2002; Forrester, 1961 and 1971; IE 533, Unpublished 

Lecture Notes; IE 550, Unpublished Lecture Notes; Sterman, 2000). As mentioned before, 

a block diagram represents a set of differential equations in frequency domain. Therefore, 

it is natural that a block diagram of an SD model can be obtained. Jay Wright Forrester, the 

founder of SD, developed the field adapting servomechanistic ideas (Forrester, 2007; Lane, 

2007). Today, servomechanism theory is known as classical control theory. This paper 

aims to build a bridge between SD and its roots (i.e. control theory). For this purpose, we 

constructed block diagrams of well known generic SD models providing details about SD 

modeling concepts. Such a link between the two fields of dynamic systems will help 

control theorists to understand SD models and will assist system dynamicists in 

representing their models using block diagrams, which will hopefully enable them use the 

analysis methods of control theory. Another aim of this paper is to show different 

mathematical representations of an SD model. Therefore, after giving the stock-flow 

diagram and equations of two example models, we also provide their approximate integral 

equations, difference equations, differential equations, and integral equations. 
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The first example given in the paper is a basic population model and the second 

example is a stock management model with three different delay structures; a supply line 

delay, a decision delay, and a perception delay. In Appendix B, we give SD model, 

corresponding differential equation(s), and block diagrams of 18 commonly used 

structures: compounding, draining, first-order linear, production, goal seeking (stock 

adjustment), capacitated growth, growth with overshoot, a first order and a third order 

continuous material delay, a first order and a third order continuous information delay, 

discrete material delay, discrete information delay, oscillating, simple goal setting, 

epidemic, stock management with a first order and a third supply line delay. Block 

diagrams that we present are not only exact replicas of their corresponding SD models, but 

they also include all the details present in the SD models. In addition, we present a 

summary of Laplace transforms, transfer functions, and block diagrams as a quick 

reference. We carefully formulated SD models and their corresponding block diagrams and 

verified their behavior by simulating them and by observing the same exact behavior from 

the SD model and its block diagram. 

 

 

A basic population model 
 

Stock-flow diagram of a basic population model is given in Figure 1. 

 

Population
Births Deaths

Birth fraction Death fraction
 

Figure 1.  Stock-flow diagram of a basic population model 

 

In the stock-flow diagram given in Figure 1, “Population” is a stock variable, which 

is an accumulation formed over time. “Population” (p) can only change via “Births” and 

“Deaths”, which are flow variables. There can be one, two, or more than two flows 
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attached to a stock variable. In this simple example, there are only two flows attached to p, 

where “Births” is the inflow and “Deaths” is the outflow. Therefore, “Births” fill in and 

“Deaths” drain out p. “Birth fraction” (bf) and “Death fraction” (df) are the parameters of 

the population model, which consists of the stock-flow diagram given in Figure 1 and the 

equations 1 and 2. 

 

 pbfBirths   (1) 

 

 pdfDeaths   (2) 

 

To be able to simulate the model, numerical values must be assigned to bf, df, and 

simulation-time-step (DT). bf and df can assume non-negative values and DT can assume a 

value between zero and one. If the value of DT is strictly between zero and one, the model 

corresponds to an approximate integral equation. If the value of DT is one, the model 

corresponds to a difference equation. DT cannot be equal to zero. 

 

 

The approximate integral equation of the basic population model 

 

The relationship between the stock variable, which is p, and the flow variables 

attached to it, which are “Births” and “Deaths”, imply Equation 3 (see Figure 1). 

 

   DTDeathsBirthspp tDTt   (3) 

 

Inserting equations 1 and 2 into Equation 3 and simplifying the equation result in 

Equation 4, which is the corresponding approximate integral equation of the model (IE 

533, Unpublished Lecture Notes). 

 

   DTpdfbfpp ttDTt   (4) 

 

In continuous time simulation, an approximate integral equation or a set of 

approximate integral equations are used; the value assigned to DT must strictly be less than 
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one and greater than zero (IE 533, Unpublished Lecture Notes; IE 550, Unpublished 

Lecture Notes). 

 

 

The difference equation of the basic population model 

 

In discrete time simulation, a difference equation or a set of difference equations are 

used. Assigning one to DT in Equation 4 and simplifying the equation result in Equation 5, 

which is the corresponding difference equation of the model (IE 533, Unpublished Lecture 

Notes). 

 

   tDTt pdfbfp  1  (5) 

 

 

The differential equation of the basic population model 

 

Equation 4 can be re-written as Equation 6. 

 

   pdfbf
DT

pp tDTt 
  (6) 

 

Equation 7, which is the corresponding differential equation of the model, is obtained 

from Equation 6 by taking the limit of DT to zero (IE 533, Unpublished Lecture Notes). 

 

   pdfbf
DT

pp
dt
dp tDTt

DT







 

 

 0
lim  (7) 
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The integral equation of the basic population model 

 

Equation 7 can be re-written as Equation 8. 

 

   
tp

p

dtpdfbfdp
t

00

 (8) 

 

Equation 9, which is the corresponding integral equation of the model, is obtained 

from Equation 8 (IE 533, Unpublished Lecture Notes). 

 

   
t

t dtpdfbfpp
0

0  (9) 

 

 

Block diagram of the basic population model 

 

Block diagram of the basic population model is given in Figure 2. More information 

on Laplace transforms and block diagrams is provided in Appendix A. 

 

 

Figure 2.  Block diagram of a basic population model 
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Stock management with three different delay structures: a supply line 

delay, a decision delay, and perception delay 
 

Stock-flow diagram of a stock management structure with a three different delay 

structures is given in Figure 3. 

 

Supply Line Stock

Control
Flow

Perceived
Stock

< Control Flow > Acquisition Flow Loss Flow

Decision
Formation

Decision Making
Delay Time

Indicated Control
Flow

Acquisition Delay
Time

Perception
Formation

Perception Delay
Time

Desired Supply
Line

Supply Line
Adjustment

Weight of Supply
Line

Stock Adjustment
Time

Stock Adjustment

Desired Stock

 

Figure 3.  Stock-flow diagram of a stock management structure with three different delay 

structures 

 

In the stock-flow diagram given in Figure 3, “Supply Line” (SL), “Stock” (S), 

“Perceived Stock” (PS) and “Control Flow” (CF) are stock variables, which are 

accumulations formed over time. CF is, at the same time, a flow variable. The other flow 

variables are “Acquisition Flow” (AF), “Loss Flow” (LF), “Perception Formation” (PF), 

and “Decision Formation” (DF). SL can only change via CF and AF, S can only change via 

AF and LF, PS can only change via PF, CF can only change via DF. CF is the inflow of 

SL, AF is the outflow of SL, simultaneously, AF is the inflow of S, LF is the outflow of S, 

PF is the inflow of PS, DF is the inflow of CF. Therefore, CF fill in and AF drain out SL, 

AF fill in and LF drain out S, PF fill in PS and DF fill in CF. “Indicated Control Flow” 

(ICF), Desired Supply Line (SL*), “Supply Line Adjustment” (SLA), and “Stock 

Adjustment” (SA) are intermediate calculation variables (i.e. auxiliary variables) of the 

model. “Decision Making Delay Time” (dmdt), “Weight of Supply Line” (wsl), 
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“Acquisition Delay Time” (adt), “Stock Adjustment Time” (sat), “Desired Stock” (S*) and 

“Perception Delay Time” (pdt) are the parameters of the stock management model that 

consists of the stock-flow diagram given in Figure 3 and the equations 10-16. 

 

 SLASALFICF   (10) 

 

 
sat

PSSSA 


*  (11) 

 

 
sat

SLSLwslSLA 


*  (12) 

 

 
adt
SLAF   (13) 

 

 LFadtSL *  (14) 

 

 
dmdt

CFICFDF 
  (15) 

 

 
pdt

PSSPF 
  (16) 

 

To be able to simulate the model, numerical values must be assigned to dmdt, wsl, 

adt, sat, S*, pdt, and simulation-time-step (DT). dmdt, wsl, adt, sat, S*, and pdt can assume 

non-negative values and DT can assume a value between zero and one. If the value of DT 

is strictly between zero and one, the model corresponds to a set of approximate integral 

equations. If the value of DT is one, the model corresponds to a set of difference equations. 

DT cannot be equal to zero. 
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The set of approximate integral equations of the stock management model with three 

different delay structures 

 

The relationship between the stock variable, which are S, SL, CF, PS, and the flow 

variables attached to it, which are AF, LF, CF, DF, and PF, imply equations 17-20 (see 

Figure 3). 

 

   DTLFAFSS tDTt   (17) 

 

   DTAFCFSLSL tDTt   (18) 

 

   DTDFCFCF tDTt   (19) 

 

   DTPFPSPS tDTt   (20) 

 

Inserting equations 10-16 into equations 17-20 and simplifying the equations result 

in equations 21-24, which are the corresponding set of approximate integral equations of 

the model (IE 533, Unpublished Lecture Notes). 

 

 DTLF
adt
SLSS tDTt 






   (21) 

 

 DT
adt
SLCFSLSL tDTt 






   (22) 

 

 

 
DT

dmdt

CF
sat

SLLFadtwsl
sat

PSSLF
CFCF tDTt 

















 








*

 (23) 

 

 DT
pdt

PSSPSPS tDTt 






 
  (24) 



 

Block Diagrams of Generic System Dynamics Models 
Sema Mehmet and Hakan Yasarcan 

- 10 - 

The set of difference equations of the stock management model with three different 

delay structures 

 

Assigning one to DT in equations 21-24 and simplifying the equations result in 

equations 25-28, which are the corresponding set of difference equations of the model (IE 

533, Unpublished Lecture Notes). 

 

 





  LF

adt
SLSS tDTt  (25) 

 

 





  adt

SLCFSLSL tDTt  (26) 

 

 

 

















 






 dmdt

CF
sat

SLLFadtwsl
sat

PSSLF
CFCF tDTt

*

 (27) 

 

 






 
 pdt

PSSPSPS tDTt  (28) 

 

 

The set of differential equations of the stock management model with three different 

delay structures 

 

Equations 21-24 can be re-written as equations 29-32. 

 

 





 

 LF
adt
SL

DT
SS tDTt  (29) 

 

 





 



adt
SLCF

DT
SLSL tDTt  (30) 
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 

















 










dmdt

CF
sat

SLLFadtwsl
sat

PSSLF

DT
CFCF tDTt

*

 (31) 

 

 






 




pdt
PSS

DT
PSPS tDTt  (32) 

 

Equations 33-36, which are the corresponding set of differential equations of the 

model, are obtained from equations 29-32 by taking the limit of DT to zero (IE 533, 

Unpublished Lecture Notes). 

 

 





 






 

 

 
LF

adt
SL

DT
SS

dt
dS tDTt

DT 0
lim  (33) 

 

 





 






 

 

  adt
SLCF

DT
SLSL

dt
dSL tDTt

DT 0
lim  (34) 

 

 

 

















 













 

 

  dmdt

CF
sat

SLLFadtwsl
sat

PSSLF

DT
CFCF

dt
dCF tDTt

DT

*

lim
0

 (35) 

 

 






 







 

 

  pdt
PSS

DT
PSPS

dt
dPS tDTt

DT 0
lim  (36) 

 

 

The set of integral equations of the stock management model with three different delay 

structures 

 

Equations 33-36 can be re-written as equations 37-40 

 

  





 

tS

S

dtLF
adt
SLdS

t

00

 (37) 
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  





 

tSL

SL

dt
adt
SLCFdSL

t

00

 (38) 

 

 

 

 
















 








tCF

CF

dt
dmdt

CF
sat

SLLFadtwsl
sat

PSSLF
dCF

t

0

*

0

 (39) 

 

  






 


tPS

PS

dt
pdt

PSSdPS
t

00

 (40) 

 

Equations 41-44, which are the corresponding set of integral equations of the model, 

are obtained from equations 37-40 (IE 533, Unpublished Lecture Notes). 

 

  





 

t

t dtLF
adt
SLSS

0
0  (41) 

 

  





 

t

t dt
adt
SLCFSLSL

0
0  (42) 

 

 

 

 
















 








t

t dt
dmdt

CF
sat

SLLFadtwsl
sat

PSSLF
CFCF

0
0

*

 (43) 

 

  






 


t

t dt
pdt

PSSPSPS
0

0  (44) 
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Block diagram of the stock management model with three different delay structures 

 

Block diagram of the stock management structure with third order delay is given in 

Figure 4. More information on Laplace transforms and block diagrams is provided in 

Appendix A. 

 

 

Figure 4.  Block diagram of the stock management structure with third order delay 

 

 

Conclusion 
 

In this paper, block diagrams of well known generic SD models are constructed. 

Such a link between system dynamics and control theory will help control theorists to 

understand SD models and will assist system dynamicists in representing their models 

using block diagrams. This paper presents the preliminary work of an ongoing master 

thesis, which mainly focuses on modeling and analyzing inventory control systems. The 

plan is to use both system dynamics and control theory as methodological approaches. 

 

In the paper including its Appendix B, we present twenty different SD models and 

their corresponding block diagrams. Block diagrams that we present are not only the exact 

replicas of their corresponding SD models, but they also include all the details present in 

the SD models. We carefully formulated SD models and their corresponding block 
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diagrams. We simulated the SD models using Vensim and their corresponding block 

diagrams by using Matlab’s Simulink and observe the same exact behavior from each one 

of the SD models and their corresponding block diagrams. 
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Appendix A: Laplace transforms, transfer functions, and block diagrams 
 

In this appendix, we present a summary of Laplace transforms, transfer functions, 

and block diagrams. 

 

 

Laplace transform method 

 

Laplace transform of a time domain function, f(t), is given in Equation A.1 

(Bequette, 2007). 

 

   dtetftfLsF st


 
0

)()()(  (A.1) 

 

where s is a complex variable. 

 

 

An example of Laplace transformation: exponential function 

 

In this section, the Laplace transform of an exponential function is obtained as an 

example (Equation A.6). 

   dteeeL statat  


 
0

 (A.2) 

 

where a is a constant. Equation A.2 can be re-written as Equation A.3. 

 

     dteeL
b

tas

b

at   





0

lim  (A.3) 

 

  
 

 

btas

b

at

as
eeL

0

lim 














  (A.4) 
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  
 

  



















asas
eeL

bas

b

at 1lim  (A.5) 

 

Finally, Equation A.6, which is the Laplace transform of an exponential function, is 

obtained from Equation A.5. 

 

  
as

eL at


 1  (A.6) 

 

 

The Generic form of the Laplace transform of a time delayed function (pure delay) 

 

If f(t) represents the value of a particular function at time t, its time delayed version, 

f(t – θ), represents the value of that function at time t – θ, where θ, which is a positive 

constant, is the duration of the delay. In this section, the generic Laplace transform of a 

delayed function is derived (Equation A.12). 

 

   dtetftfL st  




0

)()(   (A.7) 

 

Equation A.7 can be re-written as Equation A.8. 

 

   dtetftfL ts


 
0

)()()(   (A.8) 

 

   dteetftfL sts  


 
0

)()()(  (A.9) 

 

   )()()(
0

)(    


 tdetfetfL tss  (A.10) 
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If a change of variables, t* = t – θ is used to integrate the function (Equation A.10), 

Equation A.11 is obtained. 

 

   


 
0

*** )()( dtetfetfL sts  (A.11) 

 

Finally, Equation A.12, which is the generic form of the Laplace transform of a time-

delayed function, is obtained from Equation A.11. 

 

   )()( sFetfL s     (A.12) 

 

According to Equation A.12, Laplace transform of the delayed version of a function 

equals to e-sθ times the Laplace transform of that function (Bequette, 2007; Seborg et al., 

2004). 

 

 

The generic form of the Laplace transform of a first order derivative 

 

The generic form of the Laplace transform of a first order derivative of a function is 

obtained by using integration by parts technique (Equation A.17). 

 

 dte
dt

tdf
dt

tdfL st 



 




0

)()(  (A.13) 

 

Equation A.13 can be re-written as Equation A.14. 

 

 dt
dt

tdfe
dt

tdfL
b

st

b






 



)(lim)(

0

 (A.14) 

 

 











  



b
stbst

b
dtetfsetf

dt
tdfL

0
0

)()(lim)(  (A.15) 
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 











  



b
stsb

b
dtetfsfebf

dt
tdfL

0

)()0()(lim)(  (A.16) 

 

Finally, Equation A.17, which is the generic form of the Laplace transform of a first 

order derivative of a function, is obtained from Equation A.16. 

 

   )0()()( ftfLs
dt

tdfL 



  (A.17) 

 

 

Laplace transforms of commonly used time domain functions 

 

Laplace transforms are used for solving most dynamic problems and, in solving such 

a problem, Laplace transform tables are usually used to save time. Accordingly, a Laplace 

transform table for some of the common functions is also provided in this Appendix (Table 

A.1). For a more comprehensive Laplace transform table, see, for example, Bequette 

(2007) or Seborg et al. (2004). 
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Table A.1.  Laplace Transforms of Common Time Domain Functions 

Time domain 
function Laplace domain function 

)(tf  )(sF  

)(t   (Equation A.18) 1 

)(tS   (Equation A.20) 
s
1  

a 
s
a  

)( tf  )(sFe s   

t 2

1
s

 

nt  1

!
ns

n  

ate  as 
1  

atet    2

1
as 

 

)(sin at  22 as
a


 

)(cos at  22 as
s


 

dt
tdf )(    )0()( ftfLs   

dt
tfd n )(  )0()0()0()0()( )1(321   nnnnn ffsfsfssFs   

 

Unit impulse ( )(t ) is defined by Equation A.18 and its integral from negative 

infinity to positive infinity, which is equal to one, is given in Equation A.19. 

 

 
























t

t
t

for0

0for1
lim)(

0
 (A.18) 
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 11lim)()(
0

0
0

  












 dtdttdtt  (A.19) 

 

Unit step ( )(tS ) is defined by Equation A.20. 

 

 












0for1
0for0

)(
t
t

tS  (A.20) 

 

It is also possible to use a Laplace transform table (Table A.1) to obtain the inverse 

Laplace transform of a Laplace domain function, which is defined by Equation A.21. 

 

   )()(1 tfsFL   (A.21) 

 

Note that the inverse Laplace transform of the Laplace transform of a time domain 

function is itself (Equation A.22). 

 

   )()( 1 tfLLtf   (A.22) 

 

 

Solving linear differential equations using Laplace transforms: an example first 

order equation 

 

To solve a differential equation with Laplace transform, Laplace transform of both 

sides of the differential equation must be taken. Then, the resulting algebraic equation must 

be solved for  )(tfL . Finally, the inverse transform must be taken by using Laplace 

transform table. 

 

An example first order differential equation is given below (Equation A.23): 

 

 tetx
dt

tdx
 )()(  (A.23) 
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Initial condition is ax )0( , where a is a constant value. 

 

Taking the Laplace of Equation A.23 gives Equation A.24. 

 

  teLtx
dt

tdxL 



  )()(  (A.24) 

 

    teLtxL
dt

tdxL 



 )()(  (A.25) 

 

Equation A.26 is obtained from Equation A.25 using Table A.1. 

 

     
1

1)()0()(



s

txLxtxLs  (A.26) 

 

Equation A.26 can be re-written as Equation A.27. 

 

    
1

1)(1



s

atxLs  (A.27) 

 

Solving for L[x(t)] gives Equation A.28. 

 

  
   11

1)( 2 





s
a

s
txL  (A.28) 

 

Equation A.29 is obtained by inverting Equation A.28 to the time domain using 

Laplace transform table (Table A.1). 

 

 tt eaettx )(  (A.29) 
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Solving linear differential equations using Laplace transforms: an example set of first 

order equations 

 

An example of a set of first order differential equations is given below (equations 

A.30 and A.31): 

 

 1)()(
2

1  tx
dt

tdx  (A.30) 

 

 0)()( 2
1 

dt
tdxtx  (A.31) 

 

Initial conditions are 11 )0( ax   and 22 )0( ax  , where a1 and a2 are constants. 

 

Taking the Laplace of equations A.30 and A.31 gives equations A.32 and A.33. 

 

    1)()(
2

1 LtxL
dt

tdxL 



  (A.32) 

 

    0)()( 2
1 L

dt
tdxLtxL 



  (A.33) 

 

Equations A.34 and A.35 are obtained from equations A.32 and A.33 using Table 

A.1. 

 

 
s

sXxsXs 1)()0()( 211   (A.34) 

 

 0)0()()( 221  xsXssX  (A.35) 

 

Equations A.34 and A.35 can be re-written as equations A.36 and A.37. 
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 121
1)()( a
s

sXsXs   (A.36) 

 

 221 )()( asXssX   (A.37) 

 

Equation A.38 is obtained from Equation A.37. 

 

 )()( 221 sXsasX   (A.38) 

 

Equation A.39 is obtained by inserting Equation A.38 into Equation A.36. 

 

 122
2

2
1)()( a
s

sXsXssa   (A.39) 

 

Solving for X2(s) gives Equation A.40. 

 

   111
1)( 2

2
2

1
22 










s
sa

s
a

ss
sX  (A.40) 

 

Equation A.41 is obtained from Equation A.40. 

 

  
11

11)( 2
1

2
2

2 






s

a
s

sa
s

sX  (A.41) 

 

Equation A.42 is obtained by inserting Equation A.41 into Equation A.38. 

 

  













11

11)( 2
1

2
2

21 s
a

s
sa

s
sasX  (A.42) 

 

Equation A.42 is simplified to Equation A.43. 

 

  
11

1111)( 2
1

2221 









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s
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s
aasX  (A.43) 



 

Block Diagrams of Generic System Dynamics Models 
Sema Mehmet and Hakan Yasarcan 

- 25 - 

  
11

1)( 2
1

2
2

1 








s
sa

s
asX  (A.44) 

 

Using Table A.1, the two Laplace domain functions (equations A.41 and A.44) is 

inverted to the time domain, which are given below: 

 

   )cos()(sin1)( 121 tatatx   (A.45) 

 

   )sin()(cos11)( 122 tatatx   (A.46) 

 

 

Solving linear differential equations using Laplace transforms: an example second order 

equation 

 

An example second order linear differential equation is given below (Equation 

A.47): 

 

 tetx
dt

tdx
dt

txd  2
2

2

)(4)(4)(  (A.47) 

 

Initial conditions are 1)0( ax   and 2)0( ax  , where a1 and a2 are constants. 

 

Taking the Laplace of Equation A.47 gives Equation A.48. 

 

    teLtxL
dt

tdxL
dt

txdL 











 2
2

2

)(4)(4)(  (A.48) 

 

Equation A.49 is obtained from Equation A.48 using Table A.1. 

 

    
2

1)(4)0()(4)0()0()(2




s
sXxsXsxxssXs   (A.49) 
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Equation A.49 can be re-written as Equation A.50. 

 

  
2

14)(44 121
2




s
aasasXss  (A.50) 

 

Solving for X(s) gives Equation A.51. 

 

    
 

44
4

44244
1)( 2

12
2

1
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


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
ss
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ss
sa

sss
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Equation A.52 is obtained from Equation A.51. 

 

    2211 2
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4
1

2
1

16
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216
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




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



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 




s
aa

s
a

s
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Equation A.53 is obtained by inverting Equation A.52 to the time domain using 

Laplace transform table (Table A.1). 

 

 ttt etaaeaetx  





 






  2

21
2

1
2 2

4
1

16
1

16
1)(  (A.53) 

 

 

Transfer functions and block diagrams 

 

Transfer function of a dynamic system is the ratio of the output variable to the input 

variable in the Laplace domain. In general, g(s) is used to represent a transfer function that 

is defined in Equation A.54 (Bequette, 2007; Seborg et al., 2004). 

 

 
)(
)()(

su
sysg   (A.54) 

 

where u(s) is the input variable and y(s) is the output variable in the Laplace domain. 
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Block diagrams 

 

Transfer functions are often used in block diagrams. The relationship between input 

and output defined by Equation A.54 is depicted in Figure A.1. 

 

g(s)
u(s) y(s)

 

Figure A.1  The most basic block diagram representing an input-output relationship in the 

Laplace domain 

 

Block diagrams have three main types of elements which are signals, unary operator 

blocks, and m-ary (i.e., many-ary) operator blocks given in Figure A.2. 

 

g1(s)

g2(s)

r(s) y1(s)

y2(s)

u(s)
-+

 

Figure A.2  A block diagram with two blocks 

 

In the block diagram representation given in Figure A.2, r(s), u(s), y1(s), and y2(s) are 

signals. u(s) is the input signal and y1(s) is the output signal of g1(s). y1(s) is the input 

signal and y2(s) is the output signal of g2(s). g1(s) and g2(s) are unary operator blocks which 

operates on the input signals connected to them with the transfer functions to form the 

output signals. r(s) and y2(s) are the input variables and u(s) is the output variable of the 

summation block which is an m-ary operator block. An m-ary operator block is shown as a 

circle and has two or more input variables and a single output variable (Wescott, 2006). 
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Reduced block diagrams 

 

A generic example is given in Figure A.3. 

 

g1(s) g2(s)
u1(s) y1(s)

y2(s)

u2(s)
-+

Gain

y3(s)

 

Figure A.3  A generic example of block diagram 

 

The relationship between inputs and outputs of the system are given in equations 

A.55 and A.56, A.57 and A.58. 

 

 
)(
)()(

2

1
1 su

sysg   (A.55) 

 

 
)(
)()(

1

2
2 sy

sysg   (A.56) 

 

 Gainsysy  )()( 23  (A.57) 

 

 )()()( 21 susysu s   (A.58) 

 

Combining g1(s) and g2(s) into a single transfer function, g3(s) is obtained which is 

given in Equation A.59. 
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2
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Equation A.58 can be rewritten as Equation A.60. 

 

 
)()(

)()()(
21

2
21 sgsg

syGainsysu


  (A.60) 
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 
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









)()(
)()(1)()(

21

21
21 sgsg

sgsgGainsysu  (A.62) 

 

Overall transfer function of the process, g4(s) is given in Equation A.63. 

 

 
)()(1

)()(
)(
)()(

21

21

1

2
4 sgsgGain

sgsg
su
sysg




  (A.63) 

 

The reduced form of the block diagram given in Figure A.3 is depicted in Figure A.4, 

which is also a block diagram and an equivalent of the diagram given in Figure A.3. 

 

g4(s)
u1(s) y2(s)

 

Figure A.4  Reduced form of the example block diagram 
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Appendix B: The corresponding block diagrams of basic system 

dynamics models 
 

We first convert generic system dynamics model structures to differential equations 

and, later, we obtain corresponding block diagrams of these structures from the differential 

equations. To save space, the derivation process is not provided, but only the resulting 

differential equations and block diagrams are given. If the reader is interested in the 

derivation process, she can read the paper and Appendix A and carry out derivations 

herself. Note that a comprehensive model usually contains one or many of these generic 

structures. Moreover, a constant of a simpler structure may turn into a variable, even into a 

state variable, in a more complex model. 

 

 

Compounding structure 

 

Stock-flow diagram of a compounding structure is given in Figure B.1. 

 

Stock
Inflow

Fraction
 

Figure B.1  Stock-flow diagram of the compounding structure 

 

The inflow equation of the model is given in Equation B.1. 

 

 StockFractionInflow   (B.1) 

 

where “Fraction” is a nonnegative constant value. 

 

The diagram in Figure B.1 and Equation B.1 define a compounding structure. The 

simplified differential equation that corresponds to this structure is given in Equation B.2. 
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 StockFractionInflow
dt

dStock
  (B.2) 

 

Block diagram of the compounding structure is given in Figure B.2. 

 

Figure B.2  Block diagram of the compounding structure 

 

 

Draining structure 

 

Stock-flow diagram of a draining structure is given in Figure B.3. 

 

Stock
Outflow

Fraction
 

Figure B.3  Stock-flow diagram of the draining structure 

 

The outflow equation of the model is given in Equation B.3. 

 

 StockFractionOutflow   (B.3) 

 

where “Fraction” is a nonnegative constant value. 

 

The diagram in Figure B.3 and Equation B.3 define a draining structure. The 

simplified differential equation that corresponds to this structure is given in Equation B.4. 
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 StockFractionOutflow
dt

dStock
  (B.4) 

 

Block diagram of the draining structure is given in Figure B.4. 

 

Figure B.4  Block diagram of the draining structure 

 

 

First order linear structure 

 

Stock-flow diagram of a first order linear structure is given in Figure B.5. 

 

Stock
Inflow Outflow

Fraction 1 Fraction 2
 

Figure B.5  Stock-flow diagram of the first order linear structure 

 

The inflow and outflow equations of the model are given in equations B.5 and B.6. 

 

 Stock1FractionInflow   (B.5) 

 

 Stock2FractionOutflow   (B.6) 

 

where “Fraction 1” and “Fraction 2” are nonnegative constant values. 
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The diagram in Figure B.5 and equations B.5 and B.6 define a first order linear 

structure. The simplified differential equation that corresponds to this structure is given in 

Equation B.7. 

 

   Stock2Fraction1FractionOutflowInflow
dt

dStock
  (B.7) 

 

Block diagram of the first order linear structure is given in Figure B.6. 

 

 

Figure B.6  Block diagram of the first order linear structure 

 

 

Production structure 

 

Stock-flow diagram of a production structure is given in Figure B.7. 

 

Stock 1

Stock 2

Production rate

Productivity

 

Figure B.7  Stock-flow diagram of the production structure 

 

The inflow equation of the model is given in Equation B.8. 
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 2StocktyProductivirateProduction   (B.8) 

 

where “Productivity” is a nonnegative constant value. 

 

The diagram in Figure B.7 and Equation B.8 define a production structure. The 

simplified differential equation that corresponds to this structure is given in Equation B.9. 

 

 2StocktyProductivirateProduction
dt

1dStock
  (B.9) 

 

Flows are not connected to the state variable named “Stock 2” because the focus of 

this structure is on representing “Production rate” flow. Similar to other simple model 

structures, the production structure usually is a part of a more comprehensive model. 

 

Block diagram of the production structure is given in Figure B.8. 

 

 

Figure B.8  Block diagram of the production structure 
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Goal seeking structure 

 

Stock-flow diagram of a goal seeking structure, which is also known as stock 

adjustment structure, is given in Figure B.9. 

 

Stock
Adjustment flow

Discrepancy
Goal

Adjustment
fraction

 

Figure B.9  Stock-flow diagram of the goal seeking structure 

 

The model equations are B.10 and B.11. 

 

 yDiscrepancfractionAdjustmentflowAdjustment   (B.10) 

 

 StockGoalyDiscrepanc   (B.11) 

 

where “Goal” is a constant value and “Adjustment fraction” is a nonnegative 

constant value. 

 

The diagram in Figure B.9 and equations B.10 and B.11 define a goal seeking 

structure. The simplified differential equation that corresponds to this structure is given in 

Equation B.12. 

 

  StockGoalfractionAdjustmentflowAdjustment
dt

dStock
  (B.12) 

 

Block diagram of the goal seeking structure is given in Figure B.10. 
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Figure B.10  Block diagram of the goal seeking structure 

 

 

Capacitated growth structure (S-shaped growth caused by a capacity limit) 

 

Stock-flow diagram of a capacitated growth structure is given in Figure B.11. 

 

Stock
Inflow Outflow

Fraction 1 Fraction 2

Ratio
Capacity

Standard
Fraction 1

Effect of Ratio on
Fraction 1

 

Figure B.11  Stock-flow diagram of the capacitated growth structure 

 

The model equations are B.13-B.17. 

 

 Stock1FractionInflow   (B.13) 

 

 1FractionStandard1FractiononRatioofEffect1Fraction   (B.14) 

 

  Ratiof1FractiononRatioofEffect   (B.15) 

 

 
Capacity

StockRatio   (B.16) 
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 Stock2FractionOutflow   (B.17) 

 

The diagram in Figure B.11 and equations B.13-B.17 define a capacitated growth 

structure. The simplified differential equation that corresponds to this structure is given in 

Equation B.18. 

 

 
Stock2FractionStock1FractionStandard

Capacity
Stockf

OutflowInflow
dt

dStock












 (B.18) 

 

Block diagram of the capacitated growth structure is given in Figure B.12. 

 

 

Figure B.12  Block diagram of the capacitated growth structure 

 

As an example, assume that f(Ratio) is given by Equation B.19. 

 

   RatioRatiof1FractiononRatioofEffect  75.01  (B.19) 

 

The corresponding part of the block diagram representing f(Ratio), which is obtained 

under this assumption (Equation B.19), is given in Figure B.13. 
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Figure B.13  Block diagram of an example f(Ratio) 

 

 

Growth with overshoot structure (caused by a delayed effect of capacity limit) 

 

Stock-flow diagram of a growth with overshoot structure is given in Figure B.14. 

 

Stock
Inflow Outflow

Fraction 1 Fraction 2

Ratio
Capacity

Effective
Ratio Adjustment flow

Delay time

Standard
Fraction 1

Effect of Effective
Ratio on Fraction 1

 

Figure B.14  Stock-flow diagram of the growth with overshoot structure 

 

The model equations are B.20-B.25. 

 

 Stock1FractionInflow   (B.20) 

 



 

Block Diagrams of Generic System Dynamics Models 
Sema Mehmet and Hakan Yasarcan 

- 39 - 

 1FractiononRatioEffectiveofEffect1FractionStandard1Fraction   (B.21) 

 

  RatioEffectivef1FractiononRatioEffectiveofEffect   (B.22) 

 

 
timeDelay

RatioEffectiveRatioflowAdjustment 
  (B.23) 

 

 
Capacity

StockRatio   (B.24) 

 

 Stock2FractionOutflow   (B.25) 

 

The diagram in Figure B.14 and equations B.20-B.25 define a growth with overshoot 

structure. The simplified set of differential equations that corresponds to this structure is 

given in equation B.26 and B.27. 

 

 
  Stock2FractionStockRatioEffectivef1FractionStandard

OutflowInflow
dt

dStock




(B.26) 

 

 
timeDelay

RatioEffective
Capacity

Stock

flowAdjustment
dt

RatiodEffective


  (B.27) 

 

Block diagram of the growth with overshoot structure is given in Figure B.15. 

 

 

Figure B.15  Block diagram of the growth with overshoot structure 
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Continuous material delay structures 

 

Stock-flow diagram of a first order continuous material delay structure is given in 

Figure B.16. 

 

Stock
Inflow Outflow

Delay time
 

Figure B.16  Stock-flow diagram of the first order continuous material delay structure 

 

Outflow equation of the model is given in Equation B.28. 

 

 
timeDelay

StockOutflow   (B.28) 

 

The diagram in Figure B.16 and Equation B.28 define a first order continuous 

material delay structure. The simplified differential equation that corresponds to this 

structure is given in Equation B.29. 

 

 
timeDelay

StockInflowOutflowInflow
dt

dStock
  (B.29) 

 

where “Delay time” is a nonnegative constant value. 

 

Block diagram of the first order continuous material delay structure is given in 

Figure B.17. 
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Figure B.17  Block diagram of the first order continuous material delay structure 

 

Stock-flow diagram of a third order continuous material delay structure is given in 

Figure B.18. 

 

Stock 1 Stock 2 Stock 3
Input Flow 1 Flow 2 Output

Delay time for
each stage

Order Delay time
 

Figure B.18  Stock-flow diagram of the third order continuous material delay structure 

 

The model equations are B.30-B.33. 

 

 
stageeachfortimeDelay

1Stock1Flow   (B.30) 

 

 
stageeachfortimeDelay

2Stock2Flow   (B.31) 

 

 
stageeachfortimeDelay

StockOutput 3
  (B.32) 
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Order

timeDelaystageeachfortimeDelay   (B.33) 

 

The diagram in Figure B.18 and equations B.30-B.33 define a third order continuous 

material delay structure. The simplified set of differential equations that corresponds to this 

structure is given in equations B.34, B.35, and B.36. 

 

 
OrdertimeDelay
1StockInput1FlowInput

dt
1dStock

  (B.34) 

 

 
OrdertimeDelay
2Stock

OrdertimeDelay
1Stock2Flow1Flow

dt
2dStock

  (B.35) 

 

 
OrdertimeDelay
3Stock

OrdertimeDelay
2StockOutput2Flow

dt
3dStock

  (B.36) 

 

where “Delay time” and “Order” are nonnegative constant values and “Order” 

corresponds to the number of state variables (i.e., stocks) in the material structure. 

 

Block diagram of the third order continuous material delay structure is given in 

Figure B.19. 

 

 

Figure B.19  Block diagram of the third order continuous material delay structure 
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Note that every material delay structure is an application of aforementioned draining 

structure. Hence, a material delay structure contains one or many draining structures. 

 

 

Continuous information delay structures 

 

Stock-flow diagram of a first order continuous information delay structure is given in 

Figure B.20. 

 

Stock
Adjustment flow

Delay time Discrepancy
Input

 

Figure B.20  Stock-flow diagram of the first order continuous information delay structure 

 

Equations of the model are given in equations B.37 and B.38. 

 

 
timeDelay

yDiscrepancflowAdjustment   (B.37) 

 

 StockInputyDiscrepanc   (B.38) 

 

The diagram in Figure B.20 and equations B.37 and B.38 define a first order 

continuous information delay structure. The simplified differential equation that 

corresponds to this structure is given in Equation B.39. 

 

 
timeDelay
StockInputflowAdjustment

dt
dStock 

  (B.39) 

 

where “Delay time” is a nonnegative constant value.  
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Block diagram of the first order continuous information delay structure is given in 

Figure B.21. 

 

 

Figure B.21  Block diagram of the first order continuous information delay structure 

 

Stock-flow diagram of a third order continuous information delay structure is given 

in Figure B.22. 

 

Stock 1 Stock 2 Output

Adjustment flow 1 Adjustment flow 2 Adjustment flow 3Input

Discrepancy 1 Discrepancy 2 Discrepancy 3

Delay time for
each stage

Order Delay time  

Figure B.22  Stock-flow diagram of the third order continuous information delay structure 

 

The model equations are B.40-B.46. 

 

 
stageeachfortimeDelay

1yDiscrepanc1flowAdjustment   (B.40) 
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stageeachfortimeDelay

2yDiscrepanc2flowAdjustment   (B.41) 

 

 
stageeachfortimeDelay

3yDiscrepanc3flowAdjustment   (B.42) 

 

 1StockInput1yDiscrepanc   (B.43) 

 

 2Stock1Stock2yDiscrepanc   (B.44) 

 

 Output2Stock3yDiscrepanc   (B.45) 

 

 
Order

timeDelaystageeachfortimeDelay   (B.46) 

 

The diagram in Figure B.22 and equations B.40-B.46 define a third order continuous 

information delay structure. The simplified differential equations that correspond to this 

structure are given in equations B.47, B.48, and B.49. 

 

 
OrdertimeDelay

1StockInput1flowAdjustment
dt

1dStock 
  (B.47) 

 

 
OrdertimeDelay

2Stock1Stock2flowAdjustment
dt

2dStock 
  (B.48) 

 

 
OrdertimeDelay

Output2Stock3flowAdjustment
dt

dOutput 
  (B.49) 

 

where “Delay time” and “Order” are nonnegative constant values. 

 

Block diagram of the third order continuous information delay structure is given in 

Figure B.23. 
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Figure B.23  Block diagram of the third order continuous information delay structure 

 

Note that every information delay structure is an application of aforementioned goal 

seeking structure. Hence, an information delay structure contains one or many goal seeking 

structures. 

 

 

Discrete material delay structure (pure delay) 

 

Stock-flow diagram of a discrete material delay structure is given in Figure B.24. 

 

Stock
Input Output

Delay time
 

Figure B.24  Stock-flow diagram of the discrete material delay structure 

 

Output equation of the model is given in Equation B.50. 

 

 
  
















timeDelayttimeDelaytInput

timeDelayt
timeDelay

Stock
tOutput

for

0for)0(
)(  (B.50) 
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where “Delay time” is a nonnegative constant value.  

 

The diagram in Figure B.24 and Equation B.50 define an infinite order (i.e., discrete) 

material delay structure. The simplified differential equation that corresponds to this 

structure is given in Equation B.51. 

 

  

    




















timeDelayttimeDelaytInputtInput

timeDelayt
timeDelay

StocktInput

OutputInput
dt

dStock

for

0for)0(  (B.51) 

 

Block diagram of the discrete material delay structure is given in Figure B.25. 

 

 

Figure B.25  Block diagram of the discrete material delay structure 
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Discrete information delay structure (pure delay) 

 

Stock-flow diagram of a discrete information delay structure is given in Figure B.26. 

 

Delay time

Input Output

Initial value

 

Figure B.26  Stock-flow diagram of the discrete information delay structure 

 

Output equation of the model is given in Equation B.52. 

 

   











timeDelayttimeDelaytInput

timeDelaytvalueInitial
tOutput

for
0for

)(  (B.52) 

 

where “Delay time” is a nonnegative constant value. 

 

The diagram in Figure B.24 and Equation B.50 define an infinite order (i.e., discrete) 

information delay structure. Note that there is no simplified differential equation that 

corresponds to this structure as there is no stock in Figure B.24. 

 

Block diagram of the discrete information delay structure is given in Figure B.27. 

 

 

Figure B.27  Block diagram of the discrete information delay structure 
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Oscillating structure 

 

Stock-flow diagram of an oscillating structure is given in Figure B.28. 

 

Stock 1

Stock 2

Inflow 1 Outflow 1

Inflow 2 Outflow 2

Productivity

Fraction
Consumption

multiplier
 

Figure B.28  Stock-flow diagram of the oscillating structure 

 

The model equations are B.53, B.54, and B.55. 

 

 2StocktyProductivi1Inflow   (B.53) 

 

 2StockFraction2Inflow   (B.54) 

 

 1StockmultipliernConsumptio2Outflow   (B.55) 

 

The diagram in Figure B.28 and equations B.53, B.54, and B.55 define an oscillating 

structure. The simplified differential equations that correspond to this structure are given in 

equations B.56 and B.57. 

 

 1Outflow2StocktyProductivi1Outflow1Inflow
dt

1dStock
  (B.56) 
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1StockmultipliernConsumptio2StockFraction

2Outflow2Inflow
dt

2dStock




 (B.57) 

 

where “Productivity” and “Consumption multiplier” are nonnegative constant values 

and “Fraction” is a constant value. 

 

Block diagram of the oscillating structure is given in Figure B.29. 

 

 

Figure B.29  Block diagram of the oscillating structure 
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Simple goal setting structure 

 

Stock-flow diagram of the simple goal setting structure is given in Figure B.30. 

 

Stock

Goal

Control flow

Goal adjustment
flow

Stock adjustment
time

Goal adjustment
time

 

Figure B.30  Stock-flow diagram of the simple goal setting structure 

 

The model equations are B.58 and B.59. 

 

 
timeadjustmentStock

StockGoalflowControl 
  (B.58) 

 

 
timeadjustmentGoal

GoalStockflowadjustmentGoal 
  (B.59) 

 

The diagram in Figure B.30 and equations B.58 and B.59 define the simple goal 

setting structure. The simplified set of differential equations that correspond to this 

structure are given in equations B.60 and B.61. 

 

 
timeadjustmentStock

StockGoalflowControl
dt

dStock 
  (B.60) 

 

 
timeadjustmentGoal

GoalStockflowadjustmentGoal
dt

dGoal 
  (B.61) 
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where “Stock adjustment time” and “Goal adjustment time” are nonnegative constant 

values. 

 

Block diagram of the simple goal setting structure is given in Figure B.31. 

 

 

Figure B.31  Block diagram of the simple goal setting structure 

 

 

Epidemic model structure 

 

Stock-flow diagram of the epidemic model structure is given in Figure B.32. 

 

Susceptible Infected
In Infection rate Removal

Infection fraction

Contacts

Contact fraction

Removal fraction

 

Figure B.32  Stock-flow diagram of the epidemic model structure 

 

Model equations are B.62, B.63, and B.64. 

 

 ContactsifrateInfection   (B.62) 
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 IScfContacts   (B.63) 

 

 IrfRemoval   (B.64) 

 

where if stands for “Infection fraction”, cf stands for “Contact fraction”, and rf stands 

for “Removal fraction”. S and I stand, respectively, for “Susceptible” and “Infected”. 

 

The diagram in Figure B.32 and equations B.62, B.63, and B.64 define the epidemic 

model structure. The simplified set of differential equations that correspond to this 

structure are given in equations B.65 and B.66. 

 

 IScfifInrateInfectionIn
dt
dS

  (B.65) 

 

 IrfIScfifRemovalrateInfection
dt
dI

  (B.66) 

 

where if, cf, and rf are nonnegative constant values. 

 

Block diagram of the epidemic model structure is given in Figure B.33. 

 

 

Figure B.33  Block diagram of the epidemic model structure 
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Stock management with a first order supply line delay structure 

 

Stock-flow diagram of a stock management structure with a first order supply line 

delay is given in Figure B.34. 

 

Supply Line Stock
Control Flow Acquisition Flow Loss Flow

Acquisition Delay
Time

Desired Supply
Line

Stock Adjustment

Desired Stock

Supply Line
Adjustment

Weight of Supply
Line

Stock Adjustment
Time

 

Figure B.34  Stock-flow diagram of the stock management structure with a first order 

supply line delay 

 

The model equations are B.67-B.71. 

 

 SLASALFCF   (B.67) 

 

 
sat

SSSA 


*  (B.68) 

 

 
sat

SLSLwslSLA 


*  (B.69) 

 

 
adt
SLAF   (B.70) 
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 LFadtSL *  (B.71) 

 

where CF stands for “Control Flow”, LF stands for “Loss Flow”, SA stands for 

“Stock Adjustment”, SLA stands for “Supply Line Adjustment”, S* stands for “Desired 

Stock”, S stands for “Stock”, sat stands for “Stock Adjustment Time”, wsl stands for 

“Weight of Supply Line”, SL* stands for “Desired Supply Line”, SL stands for “Supply 

Line”, AF stands for “Acquisition Flow”, adt stands for “Acquisition Delay Time”. 

 

The diagram in B.34 and equations B.67-B.71 define a stock management structure 

with a first order supply line delay. The simplified set of differential equation that 

corresponds to this structure is given in equations B.72 and B.73. 

 

 LF
adt
SLLFAF

dt
dS

  (B.72) 

 

 
adt
SL

sat
LSLFadtwsl

sat
SSLFAFCF

dt
dSL








*  (B.73) 

 

Block diagram of the stock management structure with a first order supply line delay 

is given in Figure B.35. 
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Figure B.35  Block diagram of the stock management structure with a first order supply 

line delay 
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Stock management with a third order supply line delay structure 

 

Stock-flow diagram of a stock management structure with a third order supply line 

delay is given in Figure B.36. 

 

Supply Line
1

Stock
Control Flow Loss Flow

Acquisition Delay
TimeDesired Supply

Line

Stock Adjustment

Desired Stock

Supply Line
Adjustment

Weight of Supply
Line

Stock Adjustment
Time

Supply Line
3

Acquisition Flow 1 Acquisition Flow 2 Acquisition Flow 3

Supply Line
2

Supply Line

Order

 

Figure B.36  Stock-flow diagram of the stock management structure with a third order 

supply line delay 

 

The model equations are B.74-B.81. 

 

 SLASALFCF   (B.74) 

 

 
sat

SSSA 


*  (B.75) 

 

 
sat

SLSLwslSLA 


*  (B.76) 

 

 LFadtSL *  (B.77) 

 

 SL3SL2SL1SL   (B.78) 
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Orderadt

SL1AF1   (B.79) 

 

 
Orderadt

SL2AF2   (B.80) 

 

 
Orderadt

SL3AF3   (B.81) 

 

where CF stands for “Control Flow”, LF stands for “Loss Flow”, SA stands for 

“Stock Adjustment”, SLA stands for “Supply Line Adjustment”, S* stands for “Desired 

Stock”, S stands for “Stock”, sat stands for “Stock Adjustment Time”, wsl stands for 

“Weight of Supply Line”, SL* stands for “Desired Supply Line”, SL stands for “Supply 

Line”, adt stands for “Acquisition Delay Time”, SL1 stands for “Supply Line 1”, SL2 

stands for “Supply Line 2”, SL3 stands for “Supply Line 3”, AF1 stands for “Acquisition 

Flow 1”, AF2 stands for “Acquisition Flow 2”, AF3 stands for “Acquisition Flow 3”. 

 

The diagram in B.36 and equations B.74-B.81 define a stock management structure 

with a third order supply line delay. The simplified set of differential equation that 

corresponds to this structure is given in equations B.82, B.83, B.84, and B.85. 

 

 LF
Orderadt

SL3LFAF3
dt
dS

  (B.82) 

 

 
Orderadt

SL1
sat

SLLFadtwsl
sat

SSLFAF1CF
dt

dSL1








*  (B.83) 

 

 
Orderadt

SL2
Orderadt

SL1AF2AF1
dt

dSL2
  (B.84) 

 

 
Orderadt

SL3
Orderadt

SL2AF3AF2
dt

dSL3
  (B.85) 
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Block diagram of the stock management structure with a third order supply line delay 

is given in Figure B.37. 

 

 

Figure B.37  Stock-flow diagram of the stock management structure with a third order 

supply line delay 

 


