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Abstract

In system dynamics methodology, a formal mathematical model of a dynamic system
consists of a stock-flow diagram and a set of equations. It is possible to simplify and
express a system dynamics model as a set of differential equations, which can then be used
to obtain the corresponding block diagram for that system dynamics model. In the paper,
we obtain simplified differential equations for two system dynamics models and based on
the differential equations, we construct two block diagrams. Differential equations serve as
a bridge between the two systems modeling perspectives, system dynamics and control
theory. In addition, we also show other mathematical forms that can be used to express a
dynamic model such as approximate integral equations, difference equations, and integral
equations. In Appendix A, a summary of Laplace transforms, transfer functions, and block
diagrams are provided as a quick reference. In Appendix B, 18 generic system dynamics
models, their simplified differential equations, and their corresponding block diagrams are
presented. We carefully formulated SD models and their corresponding block diagrams
and verified their behavior by simulating them and by observing the same exact behavior
from the SD model and its block diagram. Similar to “differential equations”, this paper

aims to construct a bridge between control theory and system dynamics.

Keywords: approximate integral equations; block diagram; control theory; differential
equations; frequency domain; Laplace transform; stock-flow diagram; system dynamics

model.
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Introduction

Laplace transform is widely used in control theory, which is a method of converting
a set of ordinary differential equations to a set of algebraic equations that can be easily
solved. A transfer function is the ratio of a system’s output to its input in the Laplace
domain, which is also known as the frequency domain (Olivi, 2006). Block diagrams are
often used to represent dynamic systems in control theory. Each block in a block diagram
has at least two Laplace domain signals connected to it, one input signal and an output
signal, and an associated transfer function that transforms the input signal into the output
signal. Blocks are connected via their signals (i.e. the output signal generated by a block
can be the input to another block). Thus, a complete block diagram represents the dynamic
relationship between one input or many inputs to a system and one output or many outputs

of that same system (Bequette, 2007; Seborg, 2004).

In system dynamics (SD) methodology, a formal mathematical model of a dynamic
system consists of a stock-flow diagram and a set of equations, which together correspond
to a set of approximate integral equations. It is also possible to express these models as a
set of differential equations (Barlas, 2002; Forrester, 1961 and 1971; IE 533, Unpublished
Lecture Notes; IE 550, Unpublished Lecture Notes; Sterman, 2000). As mentioned before,
a block diagram represents a set of differential equations in frequency domain. Therefore,
it is natural that a block diagram of an SD model can be obtained. Jay Wright Forrester, the
founder of SD, developed the field adapting servomechanistic ideas (Forrester, 2007; Lane,
2007). Today, servomechanism theory is known as classical control theory. This paper
aims to build a bridge between SD and its roots (i.e. control theory). For this purpose, we
constructed block diagrams of well known generic SD models providing details about SD
modeling concepts. Such a link between the two fields of dynamic systems will help
control theorists to understand SD models and will assist system dynamicists in
representing their models using block diagrams, which will hopefully enable them use the
analysis methods of control theory. Another aim of this paper is to show different
mathematical representations of an SD model. Therefore, after giving the stock-flow
diagram and equations of two example models, we also provide their approximate integral

equations, difference equations, differential equations, and integral equations.

Block Diagrams of Generic System Dynamics Models -2
Sema Mehmet and Hakan Yasarcan



The first example given in the paper is a basic population model and the second
example is a stock management model with three different delay structures; a supply line
delay, a decision delay, and a perception delay. In Appendix B, we give SD model,
corresponding differential equation(s), and block diagrams of 18 commonly used
structures: compounding, draining, first-order linear, production, goal seeking (stock
adjustment), capacitated growth, growth with overshoot, a first order and a third order
continuous material delay, a first order and a third order continuous information delay,
discrete material delay, discrete information delay, oscillating, simple goal setting,
epidemic, stock management with a first order and a third supply line delay. Block
diagrams that we present are not only exact replicas of their corresponding SD models, but
they also include all the details present in the SD models. In addition, we present a
summary of Laplace transforms, transfer functions, and block diagrams as a quick
reference. We carefully formulated SD models and their corresponding block diagrams and
verified their behavior by simulating them and by observing the same exact behavior from

the SD model and its block diagram.

A basic population model

Stock-flow diagram of a basic population model is given in Figure 1.

__——=X—9{ Population X
Births Deaths

- N ¥

Birth fraction Death fraction

Figure 1. Stock-flow diagram of a basic population model

In the stock-flow diagram given in Figure 1, “Population” is a stock variable, which
is an accumulation formed over time. “Population” (p) can only change via “Births” and

“Deaths”, which are flow variables. There can be one, two, or more than two flows
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attached to a stock variable. In this simple example, there are only two flows attached to p,
where “Births” is the inflow and “Deaths” is the outflow. Therefore, “Births” fill in and
“Deaths” drain out p. “Birth fraction” (bf) and “Death fraction” (df) are the parameters of
the population model, which consists of the stock-flow diagram given in Figure 1 and the

equations 1 and 2.
Births =bf x p (1)
Deaths = df x p (2)
To be able to simulate the model, numerical values must be assigned to bf, df, and
simulation-time-step (DT). bf and df can assume non-negative values and DT can assume a
value between zero and one. If the value of DT is strictly between zero and one, the model

corresponds to an approximate integral equation. If the value of DT is one, the model

corresponds to a difference equation. DT cannot be equal to zero.

The approximate integral equation of the basic population model

The relationship between the stock variable, which is p, and the flow variables

attached to it, which are “Births” and “Deaths”, imply Equation 3 (see Figure 1).

Popr =P, + (Births - Deaths)x DT 3)

Inserting equations 1 and 2 into Equation 3 and simplifying the equation result in
Equation 4, which is the corresponding approximate integral equation of the model (IE

533, Unpublished Lecture Notes).

Pror =P, +(bf —df)x p,x DT 4)

In continuous time simulation, an approximate integral equation or a set of

approximate integral equations are used; the value assigned to DT must strictly be less than
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one and greater than zero (IE 533, Unpublished Lecture Notes; IE 550, Unpublished
Lecture Notes).
The difference equation of the basic population model

In discrete time simulation, a difference equation or a set of difference equations are
used. Assigning one to DT in Equation 4 and simplifying the equation result in Equation 5,

which is the corresponding difference equation of the model (IE 533, Unpublished Lecture
Notes).

Piipr :(l+bf_df)xpt (5)

The differential equation of the basic population model

Equation 4 can be re-written as Equation 6.

Pipr — Pr _ x
T—(bf df )x p (6)

Equation 7, which is the corresponding differential equation of the model, is obtained

from Equation 6 by taking the limit of DT to zero (IE 533, Unpublished Lecture Notes).

dp _ . (Pupr—P
= lim | &2 20\ = (bf —df )x 7
dt DT»O*[ DT ( / f) P @
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The integral equation of the basic population model

Equation 7 can be re-written as Equation 8.

o = Jor —ar)< pxa (8)

Po

Equation 9, which is the corresponding integral equation of the model, is obtained

from Equation 8 (IE 533, Unpublished Lecture Notes).

P, = po+ [ (bf —df)x pxadt ©)

Block diagram of the basic population model

Block diagram of the basic population model is given in Figure 2. More information

on Laplace transforms and block diagrams is provided in Appendix A.

1 Populaticn Births
- — " 1 +

5

Integrator Birth fraction

Ceaths
1

Death fraction

Figure 2. Block diagram of a basic population model
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Stock management with three different delay structures: a supply line

delay, a decision delay, and perception delay

Stock-flow diagram of a stock management structure with a three different delay

structures is given in Figure 3.
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Supply Line Time
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Stock Adjustment
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Figure 3. Stock-flow diagram of a stock management structure with three different delay

structures

In the stock-flow diagram given in Figure 3, “Supply Line” (SL), “Stock™ (9),
“Perceived Stock” (PS) and “Control Flow” (CF) are stock variables, which are
accumulations formed over time. CF' is, at the same time, a flow variable. The other flow
variables are “Acquisition Flow” (4F), “Loss Flow” (LF), “Perception Formation” (PF),
and “Decision Formation” (DF). SL can only change via CF and AF, S can only change via
AF and LF, PS can only change via PF, CF can only change via DF. CF is the inflow of
SL, AF is the outflow of SL, simultaneously, AF is the inflow of S, LF is the outflow of S,
PF is the inflow of PS, DF is the inflow of CF. Therefore, CF fill in and AF drain out SL,
AF fill in and LF drain out S, PF fill in PS and DF fill in CF. “Indicated Control Flow”
(ICF), Desired Supply Line (SL*), “Supply Line Adjustment” (SLA), and “Stock
Adjustment” (SA) are intermediate calculation variables (i.e. auxiliary variables) of the

model. “Decision Making Delay Time” (dmdt), “Weight of Supply Line” (wsl/),
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“Acquisition Delay Time” (adt), “Stock Adjustment Time” (sat), “Desired Stock” (S*) and

“Perception Delay Time” (pdt) are the parameters of the stock management model that

consists of the stock-flow diagram given in Figure 3 and the equations 10-16.

ICF =LF +SA+ SLA

*_
S4 = S*-PS
sat
*_
SLA :wsl><u
sat
4F =L
adt
SL* = adt x LF
DF — ICF - CF
dmdt
PF - S—-PS
pdt

(10)

(1)

(12)

(13)

(14)

(15)

(16)

To be able to simulate the model, numerical values must be assigned to dmdt, wsl,

adt, sat, S*, pdt, and simulation-time-step (DT). dmdt, wsl, adt, sat, S*, and pdt can assume

non-negative values and DT can assume a value between zero and one. If the value of DT

is strictly between zero and one, the model corresponds to a set of approximate integral

equations. If the value of DT is one, the model corresponds to a set of difference equations.

DT cannot be equal to zero.
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The set of approximate integral equations of the stock management model with three

different delay structures

The relationship between the stock variable, which are S, SL, CF, PS, and the flow
variables attached to it, which are AF, LF, CF, DF, and PF, imply equations 17-20 (see

Figure 3).
S..pr =S, +(AF = LF)x DT (17)
SL,, py = SL, +(CF — AF )x DT (18)
CF.,, =CF +(DF)x DT (19)
PS,.,, = PS,+(PF)x DT (20)

Inserting equations 10-16 into equations 17-20 and simplifying the equations result
in equations 21-24, which are the corresponding set of approximate integral equations of

the model (IE 533, Unpublished Lecture Notes).

S, =5, +(S—L—LF}<DT @l
adt
SL.,, =SL + [CF - S_L] « DT (22)
adt

S*—PS X(adthF—SL)_

LF + + wsl CF
t t
CF,.pr =CF, + 4 Tmdt at x DT (23)
PSs,.,, =PS, +[S_PSJ><DT (24)
pdt
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The set of difference equations of the stock management model with three different

delay structures

Assigning one to DT in equations 21-24 and simplifying the equations result in
equations 25-28, which are the corresponding set of difference equations of the model (IE

533, Unpublished Lecture Notes).

SL
S.pr=S +| —-LF 25
or =5+ - 17 @9
SL, ., =SL + (C —S—LJ (26)
adt
k_ —

1S PS+Wslx(adt><LF SL)_CF
CF.,, =CF, + sat — sat (27)
PS,.,. =PS, + (S ‘PS) (28)

pdt

The set of differential equations of the stock management model with three different

delay structures

Equations 21-24 can be re-written as equations 29-32.

Swpr =5, = SL_ LF (29)
DT adt
SLHDT — SLt =| CF _S_L (30)
DT adt
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k__ —
1S PS+WSlx(adt><LF SL)_CF
CE+DT - CFt _ sat sat (3 1)
DT dmdt
PS,.,,—PS, (S-PS (32)
DT pdt

Equations 33-36, which are the corresponding set of differential equations of the
model, are obtained from equations 29-32 by taking the limit of DT to zero (IE 533,
Unpublished Lecture Notes).

95 _ i [ Seeor =5 :(SL _LF (33)
dt pr-o DT adt
AL _ i (SLeor =55 ) _( o -S—Lj (34)
dt  pr-o* DT adt
* __ _
1S PS+WSlx(adt><LF SL)_CF

dCF — lim CFHDT ~ CFt _ sat sat (3 5)

dt DT—0" DT dmdt
dPS _ . (PS.p —PS,\_(S-PS 36)

dt  proo* DT pdt

The set of integral equations of the stock management model with three different delay

structures

Equations 33-36 can be re-written as equations 37-40

S, t
: L
IdSzJ(S——Lijdt (37)
5, o\ adt
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i ! SL
deL = !(CF —ijdt

SL,

k__ —
o (po S*=PS Wslx(adthF SL)_CF
IdCF =I sat sat % dt
¢R, 0 dmdt

(38)

(39)

(40)

Equations 41-44, which are the corresponding set of integral equations of the model,

are obtained from equations 37-40 (IE 533, Unpublished Lecture Notes).

S,:S0+J'(S—L—Lijdt
o\ adt

SL, = SL, +j(CF —S—ijdt
0 adt

k_ —
(15 STPS gy (adix LE=SL) oy
CF, = CF, + | sal —— sal x dt

0

PS, =P50+j[S_PSdet
o\ pdt
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Block diagram of the stock management model with three different delay structures

Block diagram of the stock management structure with third order delay is given in
Figure 4. More information on Laplace transforms and block diagrams is provided in

Appendix A.

Acquisition Delay Time

Supply Line Adjustment 7] Sueply Line
e 5
rs

1/Stodk Adjustment

Waight of Supply Line

Loss Flow

Step

Stodk Adjustment

k

1/Stack Adjustment
Time

Figure 4. Block diagram of the stock management structure with third order delay

Conclusion

In this paper, block diagrams of well known generic SD models are constructed.
Such a link between system dynamics and control theory will help control theorists to
understand SD models and will assist system dynamicists in representing their models
using block diagrams. This paper presents the preliminary work of an ongoing master
thesis, which mainly focuses on modeling and analyzing inventory control systems. The

plan is to use both system dynamics and control theory as methodological approaches.

In the paper including its Appendix B, we present twenty different SD models and
their corresponding block diagrams. Block diagrams that we present are not only the exact
replicas of their corresponding SD models, but they also include all the details present in

the SD models. We carefully formulated SD models and their corresponding block
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diagrams. We simulated the SD models using Vensim and their corresponding block
diagrams by using Matlab’s Simulink and observe the same exact behavior from each one

of the SD models and their corresponding block diagrams.
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Appendix A: Laplace transforms, transfer functions, and block diagrams
In this appendix, we present a summary of Laplace transforms, transfer functions,

and block diagrams.

Laplace transform method

Laplace transform of a time domain function, f(?), is given in Equation A.l

(Bequette, 2007).
F(s) = Lf (O] = [ f()x e xat (A.1)
0
where s 1s a complex variable.

An example of Laplace transformation: exponential function

In this section, the Laplace transform of an exponential function is obtained as an

example (Equation A.6).

L[e_”t]z ]ie"” xe ' xdt (A.2)
0

where a is a constant. Equation A.2 can be re-written as Equation A.3.

b

Ll |=tim [ =M e (A3)
~(s+ape P
Lfe]= lim{e—} (A4)
boool — (s + a) 0
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Lle | =1im

b—w

~(s+a)xb
{ ¢ o } (A.5)

—(s+a) s+a

Finally, Equation A.6, which is the Laplace transform of an exponential function, is

obtained from Equation A.5.

Lfe]=! (A.6)

S+a

The Generic form of the Laplace transform of a time delayed function (pure delay)
If f() represents the value of a particular function at time ¢, its time delayed version,
f(t — 0), represents the value of that function at time ¢# — 6, where 8, which is a positive

constant, is the duration of the delay. In this section, the generic Laplace transform of a

delayed function is derived (Equation A.12).
L[f(t-0)]= j f(t-0)xe™ xdt (A7)
0

Equation A.7 can be re-written as Equation A.8.

L{f(t-6)]= j F(t=0)x e xdt (A.8)
0
Lft-6)]= j F(t=0)xe ™ xe™ xdt (A.9)
0
L[f(t-0)]=e™’ x j Ft=0)xe™ " xd(t - 0) (A.10)
0
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If a change of variables, { =t—01is used to integrate the function (Equation A.10),
Equation A.11 is obtained.

Lf(t-0)]=e x]gf(t*)xe”* xdt (A.11)

Finally, Equation A.12, which is the generic form of the Laplace transform of a time-

delayed function, is obtained from Equation A.11.
LIf(t-0)]=e"" x F(s) (A.12)
According to Equation A.12, Laplace transform of the delayed version of a function
equals to ¢*’ times the Laplace transform of that function (Bequette, 2007; Seborg et al.,
2004).

The generic form of the Laplace transform of a first order derivative

The generic form of the Laplace transform of a first order derivative of a function is

obtained by using integration by parts technique (Equation A.17).

L{df(t)}Tdf(t)xe-”xdt (A.13)
a | 1 ar

Equation A.13 can be re-written as Equation A.14.

L[m} = lim j LAV (A.14)
dt dt

b—w
0

A R e P 19
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L[%} = gg{ F(b)xe™ = f(0)+sx j f(O)xe™ xdt (A.16)

Finally, Equation A.17, which is the generic form of the Laplace transform of a first

order derivative of a function, is obtained from Equation A.16.

L[%} =sx L[ ()] f(0) (A.17)

Laplace transforms of commonly used time domain functions

Laplace transforms are used for solving most dynamic problems and, in solving such
a problem, Laplace transform tables are usually used to save time. Accordingly, a Laplace
transform table for some of the common functions is also provided in this Appendix (Table
A.1). For a more comprehensive Laplace transform table, see, for example, Bequette

(2007) or Seborg et al. (2004).
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Table A.1. Laplace Transforms of Common Time Domain Functions

Time domain

Laplace domain function

function
Q) F(s)
5(t) (Equation A.18) | 1
S(t) (Equation A.20) | ©
S
a
a J—
)
f(t—g) 676'5 XF(S)
1
! )
S
n!
tn n+l
—at 1
e
s+a
1
tx e*at .
(s+a)
1 a
sin (at
(at) S
S
cos(at
“ st+a’
df (t
o sx L[ ()]~ £(0)
dt
af@

dt

"X F(s)=s""x f(0)=s"2x f'(0)=s"> x f"(0) = --- — £"(0)

Unit impulse (6(¢)) is defined by Equation A.18 and its integral from negative

infinity to positive infinity, which is equal to one, is given in Equation A.19.

5(t)=1lim{ e (A.18)
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[8()xdt =[5(t)xdt = lim Ldr=1 (A.19)
—0 0

e—>0" 0 €

Unit step (S(¢) ) is defined by Equation A.20.

S(0) = 0 for ¢<0 (A20)
11 for >0 '

It is also possible to use a Laplace transform table (Table A.1) to obtain the inverse

Laplace transform of a Laplace domain function, which is defined by Equation A.21.

L'[F9)]= 1@ (A21)

Note that the inverse Laplace transform of the Laplace transform of a time domain

function is itself (Equation A.22).

fO=L"[L[f®]] (A.22)

Solving linear differential equations using Laplace transforms: an example first

order equation

To solve a differential equation with Laplace transform, Laplace transform of both
sides of the differential equation must be taken. Then, the resulting algebraic equation must

be solved for L[ f (t)]. Finally, the inverse transform must be taken by using Laplace

transform table.

An example first order differential equation is given below (Equation A.23):

dx(t
®) —x(t)=¢e' (A.23)
dt
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Initial condition is x(0) = a, where a is a constant value.

Taking the Laplace of Equation A.23 gives Equation A.24.

d. t
I{J%Q—x@ﬂsz] (A.24)
z{égﬂ}—Lhaﬂ=Lkﬂ (A.25)

Equation A.26 is obtained from Equation A.25 using Table A.1.

(5% L)} x(0)) - L] = (A.26)
Equation A.26 can be re-written as Equation A.27.
@—Uth@ﬂ—a:E%T (A.27)
Solving for L[x(#)] gives Equation A.28.
()] = — s ¢ (A.28)

T =Y

Equation A.29 is obtained by inverting Equation A.28 to the time domain using
Laplace transform table (Table A.1).

x(t)=txe +axe' (A.29)
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Solving linear differential equations using Laplace transforms: an example set of first

order equations

An example of a set of first order differential equations is given below (equations

A.30 and A.31):

L0 x, () =1 (A.30)

x(1) - —dx;t(t) =0 (A31)

Initial conditions are x,(0) =q, and x,(0) = a,, where a; and a, are constants.

Taking the Laplace of equations A.30 and A.31 gives equations A.32 and A.33.

L{%} +Llx,(0)]=L[1] (A.32)
L[x, (t)]—L[%} =L[o] (A.33)

Equations A.34 and A.35 are obtained from equations A.32 and A.33 using Table

Al
s><X1(s)—x](0)+X2(s):l (A.34)
s
X,(s)—sxX,(s)+x,(0)=0 (A.35)
Equations A.34 and A.35 can be re-written as equations A.36 and A.37.
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sxX](s)+X2(s):l+a]
s

X, (s)—sxX,(s)=-a,
Equation A.38 is obtained from Equation A.37.

X (s)=—a, +sxX,(s)

Equation A.39 is obtained by inserting Equation A.38 into Equation A.36.

1
—a,xs+5"xX,(s)+X,(s) =—+a,
s

Solving for X,(s) gives Equation A.40.

1 a a, xXs
1+2

X,(s)= +
() sx(1+s2) sP+1 st+1

Equation A.41 is obtained from Equation A.40.

(l—az)xs+ 4,
57 +1 57 +1

Xz(s):%_

Equation A.42 is obtained by inserting Equation A.41 into Equation A.38.

1 (l—a )xs a
X, (s)=—a, +sx|—— e
() : L st +1 sz+1}

Equation A.42 is simplified to Equation A.43.

1 a, X s
X, (s)=—a, +1-(1-a, )x|1- +
() =-a, +1-(1-a,) [ 52+J o
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(1—a2)+ a, xs

sS+1 0 57 +1

X,(s) = (A.44)

Using Table A.1, the two Laplace domain functions (equations A.41 and A.44) is

inverted to the time domain, which are given below:
x,(t) = (1—a, )xsin (¢) + a, x cos(t) (A.45)
x,(t) =1—(1—a,)xcos(t) +a, xsin(¢) (A.46)
Solving linear differential equations using Laplace transforms: an example second order
equation

An example second order linear differential equation is given below (Equation

A.47):

d*x(1) 3
dt’

4x D Ly x(t)=e > (A.47)
dt
Initial conditions are x(0) =a, and x(0) = a,, where a; and a, are constants.

Taking the Laplace of Equation A.47 gives Equation A.48.

dt* t

) fs ) e

Equation A.49 is obtained from Equation A.48 using Table A.1.

(s2 x X (s)—sxx(0)— )'c(O))—4>< (sx X (5)—x(0))+4x X(s) = % (A.49)
S

Block Diagrams of Generic System Dynamics Models -25 -
Sema Mehmet and Hakan Yasarcan



Equation A.49 can be re-written as Equation A.50.

(Sz—4><s+4)><X(s)—al><s—az+4><al:L2 (A.50)
S+

Solving for X(s) gives Equation A.51.

1 a, xs a,—4xa
X(s)=15 — (22 ) (A.51)
(s —4><s+4)><(s+2) s°—4xs+4 s°—4xs+4
Equation A.52 is obtained from Equation A.51.
1 1 1 1 1
X($)=——F—=+|a,—— |X +| ——-2xa,+a, |x A.52
(s) 16 (s +2) [1 16) 52 (4 ‘ 2) (s—2) (A-32)

Equation A.53 is obtained by inverting Equation A.52 to the time domain using
Laplace transform table (Table A.1).

1 —2xt 1 2xt 1 2xt
x()=—xe ™ +|a, —— |xe +| —=2xa, +a, |xtxe A.53
(?) T [1 16] 2 1 +a, (A.53)

Transfer functions and block diagrams
Transfer function of a dynamic system is the ratio of the output variable to the input

variable in the Laplace domain. In general, g(s) is used to represent a transfer function that

is defined in Equation A.54 (Bequette, 2007; Seborg et al., 2004).

g(s)=21) (A.54)
u(s)

where u(s) is the input variable and y(s) is the output variable in the Laplace domain.
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Block diagrams

Transfer functions are often used in block diagrams. The relationship between input

and output defined by Equation A.54 is depicted in Figure A.1.

u(s) y(s)
—> g(s) >

Figure A.1 The most basic block diagram representing an input-output relationship in the

Laplace domain

Block diagrams have three main types of elements which are signals, unary operator

blocks, and m-ary (i.e., many-ary) operator blocks given in Figure A.2.

r(s) §© u(s) > 2.(s) ya(s)
A
yZ(S) gz(s) o

Figure A.2 A block diagram with two blocks

In the block diagram representation given in Figure A.2, r(s), u(s), y1(s), and y,(s) are
signals. u(s) is the input signal and y(s) is the output signal of gi(s). yi(s) is the input
signal and y»(s) is the output signal of g2(s). gi(s) and g»(s) are unary operator blocks which
operates on the input signals connected to them with the transfer functions to form the
output signals. r(s) and y,(s) are the input variables and u(s) is the output variable of the
summation block which is an m-ary operator block. An m-ary operator block is shown as a

circle and has two or more input variables and a single output variable (Wescott, 2006).
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Reduced block diagrams

A generic example is given in Figure A.3.

y

) 4
T

u(s) N ua(s) 2.(s) yi(s) 2,(s)

ys(s) ya(s)

Gain

Figure A.3 A generic example of block diagram

The relationship between inputs and outputs of the system are given in equations

A.55 and A.56, A.57 and A.58.

g (s)= 1) (A.55)
U, (s)
g,(s)= 22(8) (A.56)
()
Y3(8) = y,(s)x Gain (A.57)
u (s) =y, (s) =u,(s) (A.58)

Combining gi(s) and g»(s) into a single transfer function, gs3(s) is obtained which is

given in Equation A.59.

(S)zyl(s)xyz(s)zyz(s) (A.59)

g;(s)=g,(s9)x g, u, () yi(s)  uy(s)
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Equation A.58 can be rewritten as Equation A.60.

_ < Gain = Y, (s)
u,(s)—y,(s)xGain )% 2.() (A.60)

_ V,(s) y .
u,(s)= —g, 5)x2.(5) + y,(s)x Gain (A.61)

1+ Gainx g, (s)x g,(s)

u; (8) =y,(s)x (A.62)
R 81(5)x€,(5)
Overall transfer function of the process, ga(s) is given in Equation A.63.
s s)x g, (s
g4(S):y2( ): g,(s)xg,(s) (A.63)

u,(s) 1+Gainxg,(s)xg,(s)

The reduced form of the block diagram given in Figure A.3 is depicted in Figure A .4,

which is also a block diagram and an equivalent of the diagram given in Figure A.3.

us(s) ya(s)
—> g4(s) >

Figure A.4 Reduced form of the example block diagram
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Appendix B: The corresponding block diagrams of basic system

dynamics models

We first convert generic system dynamics model structures to differential equations
and, later, we obtain corresponding block diagrams of these structures from the differential
equations. To save space, the derivation process is not provided, but only the resulting
differential equations and block diagrams are given. If the reader is interested in the
derivation process, she can read the paper and Appendix A and carry out derivations
herself. Note that a comprehensive model usually contains one or many of these generic
structures. Moreover, a constant of a simpler structure may turn into a variable, even into a

state variable, in a more complex model.

Compounding structure

Stock-flow diagram of a compounding structure is given in Figure B.1.

Y X B Stock

AN
Inflow

/‘ V\/
Fraction

Figure B.1 Stock-flow diagram of the compounding structure

The inflow equation of the model is given in Equation B.1.

Inflow = Fraction x Stock (B.1)

where “Fraction” is a nonnegative constant value.

The diagram in Figure B.1 and Equation B.1 define a compounding structure. The

simplified differential equation that corresponds to this structure is given in Equation B.2.

Block Diagrams of Generic System Dynamics Models -30 -
Sema Mehmet and Hakan Yasarcan




dStock
dt

= Inflow = Fraction x Stock

Block diagram of the compounding structure is given in Figure B.2.

(B.2)

— >

| =

Stodk : Inflow

Fracticn

Figure B.2 Block diagram of the compounding structure

Draining structure

Stock-flow diagram of a draining structure is given in Figure B.3.

Stock - )

Outflow

N ¥

Fraction

Figure B.3 Stock-flow diagram of the draining structure

The outflow equation of the model is given in Equation B.3.

Outflow = Fraction x Stock

where “Fraction” is a nonnegative constant value.

(B.3)

The diagram in Figure B.3 and Equation B.3 define a draining structure. The

simplified differential equation that corresponds to this structure is given in Equation B.4.
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dStock
dt

= —Qutflow = —Fraction x Stock (B4)

Block diagram of the draining structure is given in Figure B.4.

in

1 Stodk Cutflow
— . —
Fracticn
B }.

Figure B.4 Block diagram of the draining structure

First order linear structure

Stock-flow diagram of a first order linear structure is given in Figure B.5.

Q#» Stock #’Q
Inflow k/ dltﬂow
/ \F raction 2

Fraction 1

Figure B.5 Stock-flow diagram of the first order linear structure

The inflow and outflow equations of the model are given in equations B.5 and B.6.

Inflow = Fraction 1x Stock (B.5)

Outflow = Fraction 2 x Stock (B.6)

where “Fraction 1” and “Fraction 2” are nonnegative constant values.
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The diagram in Figure B.5 and equations B.5 and B.6 define a first order linear
structure. The simplified differential equation that corresponds to this structure is given in

Equation B.7.

dStock
dt

= Inflow — Outflow = (Fraction 1— Fraction 2)>< Stock (B.7)

Block diagram of the first order linear structure is given in Figure B.6.

| =

Stodk »{ Inflow
. +

Fraction 1

Cutflow

Fraction 2

Figure B.6 Block diagram of the first order linear structure

Production structure

Stock-flow diagram of a production structure is given in Figure B.7.

3 7 B Stock |

Production rate

Productivity/

Stock 2

Figure B.7 Stock-flow diagram of the production structure

The inflow equation of the model is given in Equation B.8.
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Production rate = Productivity x Stock 2 (B.8)

where “Productivity” is a nonnegative constant value.

The diagram in Figure B.7 and Equation B.8 define a production structure. The

simplified differential equation that corresponds to this structure is given in Equation B.9.

dStock 1

7 = Production rate = Productivity x Stock 2 (B.9)

Flows are not connected to the state variable named “Stock 2 because the focus of
this structure is on representing ‘“Production rate” flow. Similar to other simple model

structures, the production structure usually is a part of a more comprehensive model.

Block diagram of the production structure is given in Figure B.8.

Stodk 2 Preducticn rsltE.F 1 Stodk 1

Preductivity

n

Figure B.8 Block diagram of the production structure
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Goal seeking structure

Stock-flow diagram of a goal seeking structure, which is also known as stock

adjustment structure, is given in Figure B.9.

'y % P Stock
Adjustment flow

\ / Goal
Adjustment Discrepancy
fraction

Figure B.9 Stock-flow diagram of the goal seeking structure

The model equations are B.10 and B.11.

Adjustment flow = Adjustment fraction x Discrepancy

Discrepancy = Goal — Stock

(B.10)

(B.11)

where “Goal” is a constant value and “Adjustment fraction” is a nonnegative

constant value.

The diagram in Figure B.9 and equations B.10 and B.11 define a goal seeking

structure. The simplified differential equation that corresponds to this structure is given in

Equation B.12.

dStock
dt

Block diagram of the goal seeking structure is given in Figure B.10.
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Adjustment

n | =

Disrepancy flow Stodk
+ >{ T

Goal Adjustment fraction

Figure B.10 Block diagram of the goal seeking structure

Capacitated growth structure (S-shaped growth caused by a capacity limit)

Stock-flow diagram of a capacitated growth structure is given in Figure B.11.

oy

Fraction 1

Effect of Ratio on > C apacity

Fraction 1
Standard

Fraction 1

~ > P  Stock > iy
Inflow Outflow
/ V\y \/' \'Fraction )
Ratio

Figure B.11 Stock-flow diagram of the capacitated growth structure

The model equations are B.13-B.17.

Inflow = Fraction 1x Stock

Fraction 1 = Effect of Ratio on Fraction 1 x Standard Fraction 1

Effect of Ratio on Fraction I = f(Ratio)

Stock
Capacity

Ratio =
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Outflow = Fraction 2 x Stock (B.17)

The diagram in Figure B.11 and equations B.13-B.17 define a capacitated growth
structure. The simplified differential equation that corresponds to this structure is given in

Equation B.18.

dS;OCk = Inflow — Outflow
t
Stock (B.18)
= [L] x Standard Fraction I x Stock — Fraction 2 x Stock
Capacity

Block diagram of the capacitated growth structure is given in Figure B.12.

Effect of Ratio
5 on Fraction 1
I

B
B L

Ll
Fracti 1
Rati ¢ in} racticn
Capadty atiz f{Ratic)

Standard Fraction 1

Inflow Stook

Cutflow

Fraction 2

Figure B.12 Block diagram of the capacitated growth structure

As an example, assume that f{Ratio) is given by Equation B.19.

Effect of Ratio on Fraction I = f(Ratio) =1-0.75x% Ratio (B.19)

The corresponding part of the block diagram representing f{Ratio), which is obtained
under this assumption (Equation B.19), is given in Figure B.13.
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Effect of Ratic
Ratio on Fraction 1

Figure B.13 Block diagram of an example f{Ratio)

Growth with overshoot structure (caused by a delayed effect of capacity limit)

Stock-flow diagram of a growth with overshoot structure is given in Figure B.14.

O > P  Stock X -
Outflow

Inflow
Fraction 1

\ Ratio<—_

Effect of Effective Capacity
Standard Ratio on Fraction 1

Fraction 1 t

Fraction 2

Effective
Ratio B = )

\A/dj;stment flow

Delay time

Figure B.14 Stock-flow diagram of the growth with overshoot structure

The model equations are B.20-B.25.

Inflow = Fraction 1x Stock (B.20)
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Fraction 1 = Standard Fraction I x Effect of Effective Ratio on Fractionl (B.21)

Effect of Effective Ratio on Fraction 1= f (Effective Ratio) (B.22)

Ratio — Effective Ratio

Adjustment flow = B.23
/ S Delay time ( )
Ratio = 10k (B.24)
Capacity
Outflow = Fraction 2 x Stock (B.25)

The diagram in Figure B.14 and equations B.20-B.25 define a growth with overshoot
structure. The simplified set of differential equations that corresponds to this structure is

given in equation B.26 and B.27.

dStock
= Inflow — Outflow
dt /i i (B.26)

= Standard Fraction 1% f (Eﬁ’ective Ratio)x Stock — Fraction 2 x Stock

Stock

5 e Rati L
dEffective Ratio — Adjustment flow = Capacity
dt Delay time

— Effective Ratio

(B.27)

Block diagram of the growth with overshoot structure is given in Figure B.15.

Effect of Effective
Ratic on Fraction 1

Effective
Ratic

Adjustment
flow

1/Delay time f(Effective Ratio)

Capacity

Outflow

Standard Fraction 1 Fraction 2

Figure B.15 Block diagram of the growth with overshoot structure
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Continuous material delay structures

Stock-flow diagram of a first order continuous material delay structure is given in

Figure B.16.

———X—P Stock F—X—P

Inflow Outflow

N ¥

Delay time

Figure B.16 Stock-flow diagram of the first order continuous material delay structure

Outflow equation of the model is given in Equation B.28.

Outflow = _ Stock (B.28)
Delay time

The diagram in Figure B.16 and Equation B.28 define a first order continuous
material delay structure. The simplified differential equation that corresponds to this

structure is given in Equation B.29.

dStock = Inflow — Outflow = Inflow — LC]C. (B.29)
dt Delay time

where “Delay time” is a nonnegative constant value.

Block diagram of the first order continuous material delay structure is given in

Figure B.17.
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Inflow 1 Stodk

+ - —

o= 3

Integrator

Outflow }q
1

1/Delay time

Figure B.17 Block diagram of the first order continuous material delay structure

Stock-flow diagram of a third order continuous material delay structure is given in

Figure B.18.

Q‘%’ Stock 1 #’ Stock 2 #’ Stock 3 #’Q

Input (0]

\—/F(low 1 \—/'Flow 2 \_' utput

Delay time for
each stage

Order Delay time

Figure B.18 Stock-flow diagram of the third order continuous material delay structure

The model equations are B.30-B.33.

Flowl = Stockl (B.30)

Delay time for each stage

Flow?2 = Stock2 (B31)

Delay time for each stage

Output = Stock3 (B.32)
Delay time for each stage
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Delay time

B.33
Order ( )

Delay time for each stage =

The diagram in Figure B.18 and equations B.30-B.33 define a third order continuous

material delay structure. The simplified set of differential equations that corresponds to this

structure is given in equations B.34, B.35, and B.36.

dStock 1 = Input — Flow = Input — Stock 1 (B.34)
dt Delay time/Order
dStock 2 — Flow] - Flow2— Stock 1 3 Stock 2 (B.35)
dt Delay time/Order — Delay time/Order
dStock 3 — Flow2— Output = Stock 2 Stock 3 (B.36)

Delay time/Order - Delay time/Order

where “Delay time” and “Order” are nonnegative constant values and “Order”

corresponds to the number of state variables (i.e., stocks) in the material structure.

Block diagram of the third order continuous material delay structure is given in

Figure B.19.

Input

Flow1 Flow 2 Output

% Stodk 1 % Stook 2 %

Stodk 3

i
u
| =

¥
|

\’X

r

L
gk

P
P

Celay time

Order

Delay time Hie
for each stage =

Figure B.19 Block diagram of the third order continuous material delay structure
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Note that every material delay structure is an application of aforementioned draining

structure. Hence, a material delay structure contains one or many draining structures.

Continuous information delay structures

Stock-flow diagram of a first order continuous information delay structure is given in

Figure B.20.

Ty > Stock
AdJustment ﬂow (

& Input
Delay time Dlscrepancy

Figure B.20 Stock-flow diagram of the first order continuous information delay structure

Equations of the model are given in equations B.37 and B.38.

Di

Adjustment flow = —Lserepancy (B.37)
Delay time

Discrepancy = Input — Stock (B.38)

The diagram in Figure B.20 and equations B.37 and B.38 define a first order
continuous information delay structure. The simplified differential equation that

corresponds to this structure is given in Equation B.39.

dStock . Input — Stock
= Adjustment flow = p— (B.39)
dt Delay time
where “Delay time” is a nonnegative constant value.
Block Diagrams of Generic System Dynamics Models -43 -

Sema Mehmet and Hakan Yasarcan




Block diagram of the first order continuous information delay structure is given in

Figure B.21.

Adjustment

"? >| -t flow ) 1 Stook

w |

Input 1/Delay time

Figure B.21 Block diagram of the first order continuous information delay structure

Stock-flow diagram of a third order continuous information delay structure is given

in Figure B.22.

Stock 1 Stock 2 Output

SRS

Discrepancy 1 Discrepancy 2 Discrepancy 3

Input/ \t (] Adjustment ﬂowl\~t~ Adjustment flow 2 ] Adjustment flow 3

» . i~

X

Delay time for
each stage

Order Delay time

Figure B.22 Stock-flow diagram of the third order continuous information delay structure

The model equations are B.40-B.46.

Discrepancy 1

Adjustment flowl = (B.40)

Delay time for eachstage

Block Diagrams of Generic System Dynamics Models - 44 -
Sema Mehmet and Hakan Yasarcan




Discrepancy 2

Adjustment flow?2 =
Delay time for each stage

Discrepancy 3

Adjustment flow3 =
Delay time for each stage

Discrepancy 1 = Input — Stock 1

Discrepancy 2 = Stock 1 — Stock 2

Discrepancy 3 = Stock 2 — Output

Delay ti
Delay time for each stage = —eay wme
Order

(B.41)

(B.42)

(B.43)

(B.44)

(B.45)

(B.46)

The diagram in Figure B.22 and equations B.40-B.46 define a third order continuous

information delay structure. The simplified differential equations that correspond to this

structure are given in equations B.47, B.48, and B.49.

dStock 1 _ Adjustment flow ] = Input — Stock 1
dt Delay time/ Order

dStock 2 _ Adjustment flow2 = Stock 1 — Stock 2
dt Delay time/Order

dOutput _ Adjustment flow3 = Stock 2 — Output
dt Delay time/Order

where “Delay time” and “Order” are nonnegative constant values.

(B.47)

(B.48)

(B.49)

Block diagram of the third order continuous information delay structure is given in

Figure B.23.
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Adjustment

flow 1 wl 1 Stodk 1
» -
L= ]

5

Adjustment
flow 2

Delay time =
Crelay time

for each stage

Adjustment

flow3 | 1 Output
L

Crder

Figure B.23 Block diagram of the third order continuous information delay structure

Note that every information delay structure is an application of aforementioned goal

seeking structure. Hence, an information delay structure contains one or many goal seeking

structures.

Discrete material delay structure (pure delay)

Stock-flow diagram of a discrete material delay structure is given in Figure B.24.

QI#» Stock Z »Q

Input Output

~_ 7

Delay time

Figure B.24 Stock-flow diagram of the discrete material delay structure

Output equation of the model is given in Equation B.50.

_Stock(0) for 0<¢< Delay time
Output(t) = | Delay time (B.50)

Input(t — Delay time) for ¢ > Delay time
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where “Delay time” is a nonnegative constant value.

The diagram in Figure B.24 and Equation B.50 define an infinite order (i.e., discrete)
material delay structure. The simplified differential equation that corresponds to this

structure is given in Equation B.51.

dStock
Stoc = Input — Output
dt
Input(t)—M for 0<t< Delay time (B.51)
= Delay time
Input(t)— Input(t — Delay time) for ¢ > Delay time
Block diagram of the discrete material delay structure is given in Figure B.25.
J_ Input 1 Stock
- a I e
Step
E%é Owtput
Discrete
Delay
Figure B.25 Block diagram of the discrete material delay structure
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Discrete information delay structure (pure delay)

Stock-flow diagram of a discrete information delay structure is given in Figure B.26.
Initial value

)

Input Output
- v

'

Delay time

Figure B.26 Stock-flow diagram of the discrete information delay structure

Output equation of the model is given in Equation B.52.

(B.52)

Initial value for 0<t < Delay time
Output(t) =

Input(t — Delay time) for ¢ 2> Delay time
where “Delay time” is a nonnegative constant value.
The diagram in Figure B.24 and Equation B.50 define an infinite order (i.e., discrete)
information delay structure. Note that there is no simplified differential equation that

corresponds to this structure as there is no stock in Figure B.24.

Block diagram of the discrete information delay structure is given in Figure B.27.

Input .- 5‘%{ CQutput -

Step Discrete
Delay

Figure B.27 Block diagram of the discrete information delay structure
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Oscillating structure

Stock-flow diagram of an oscillating structure is given in Figure B.28.

.y >X—pp» Stock 1 X -
Inflow 1 Outflow 1

Productivity

Q#» Stock 2 v »Q
Inflow ‘2\/ Outflow 2
. / Consumption
Fraction multiplier

Figure B.28 Stock-flow diagram of the oscillating structure

The model equations are B.53, B.54, and B.55.

Inflow 1 = Productivity x Stock 2

Inflow 2 = Fraction x Stock 2

Outflow 2 = Consumptio n multiplier x Stock 1

(B.53)

(B.54)

(B.55)

The diagram in Figure B.28 and equations B.53, B.54, and B.55 define an oscillating

structure. The simplified differential equations that correspond to this structure are given in

equations B.56 and B.57.

dStock 1

p = Inflow I — Outflow I = Productivity x Stock 2 — Outflow I
t
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dStock 2
——— = Inflow 2 — Outflow 2
a 4 (B.57)

= Fraction x Stock 2 — Consumption multiplier x Stock 1

where “Productivity” and “Consumption multiplier” are nonnegative constant values

and “Fraction” is a constant value.

Block diagram of the oscillating structure is given in Figure B.29.

Dwtflow 2 }<

Consumption
multiplier

Inflow 1 Stodk 1

h 4
W=

Cutflow 1

Productivity

Inflow 2

Fraction

Figure B.29 Block diagram of the oscillating structure
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Simple goal setting structure

Stock-flow diagram of the simple goal setting structure is given in Figure B.30.

LJ——X—®  Stock Goal adjustment

Control flow time
/
Stock qdjustrnent Goal | o4 Ty
time Goal adjustment
flow

Figure B.30 Stock-flow diagram of the simple goal setting structure

The model equations are B.58 and B.59.

Control flow = Goal = Stock (B.58)

Stock adjustment time

Goal adjustment flow = Stock = Goal (B.59)

Goal adjustment time

The diagram in Figure B.30 and equations B.58 and B.59 define the simple goal
setting structure. The simplified set of differential equations that correspond to this

structure are given in equations B.60 and B.61.

dStock _ Control flow = Goal — Stock (B.60)
dt Stock adjustment time
dGoal = Goal adjustment flow = Stock = Goal (B.61)

Goal adjustment time
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where “Stock adjustment time” and “Goal adjustment time” are nonnegative constant

values.

Block diagram of the simple goal setting structure is given in Figure B.31.

Goal
adjustment flow

n | =
w |

2 Control flow St
Goal P@ >{ > 1 ook

1/Goal 1/5took
adjustment time1 adjustment time

Figure B.31 Block diagram of the simple goal setting structure

Epidemic model structure

Stock-flow diagram of the epidemic model structure is given in Figure B.32.

Infection fraction

- -——=Z—P| Susceptible Infected > ]

In Infectlon rate / Removal

Removal fraction
Contacts

Contact ﬂactlon

Figure B.32 Stock-flow diagram of the epidemic model structure

Model equations are B.62, B.63, and B.64.

Infection rate = if x Contacts (B.62)
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Contacts =cf xSx1 (B.63)

Removal =rf x1 (B.64)

where if stands for “Infection fraction”, ¢f stands for “Contact fraction”, and rf stands

for “Removal fraction”. S and / stand, respectively, for “Susceptible” and “Infected”.

The diagram in Figure B.32 and equations B.62, B.63, and B.64 define the epidemic
model structure. The simplified set of differential equations that correspond to this

structure are given in equations B.65 and B.66.

6jl—f:In—lnfection rate = In—if xcf xSx 1 (B.65)
dil . .
% = Infection rate — Removal = if xcf xSxI—rf x1 (B.66)

where if, cf, and rf are nonnegative constant values.

Block diagram of the epidemic model structure is given in Figure B.33.

In 1 Susceptible
>€_K\, .o 2 <
—

Infected

Remaoval

o

Removal fraction

Infection rate }< }<

Infection fractiom Contact fraction

Figure B.33 Block diagram of the epidemic model structure
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Stock management with a first order supply line delay structure

Stock-flow diagram of a stock management structure with a first order supply line

delay is given in Figure B.34.

NZ
Supply Line X p|  Stock 7as _ O
Control Flow \_icglisition Flow Loss Flow

Desired Stock
Acquisition Delay
Time <
Stock Adjustment

s
Supply Line Desired Supply
Adjustment Line Stock Adjustment

Weight of Supply/ Time
Line

Figure B.34 Stock-flow diagram of the stock management structure with a first order

supply line delay

The model equations are B.67-B.71.

CF =LF +SA+ SLA (B.67)
* _
sq4=5"75 (B.68)
sat
* _
SLA = wsl ><u (B.69)
sat
ar =L (B.70)
adt
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SL* = adt x LF (B.71)

where CF stands for “Control Flow”, LF stands for “Loss Flow”, S4 stands for
“Stock Adjustment”, SLA stands for “Supply Line Adjustment”, S* stands for “Desired
Stock”, § stands for “Stock”, sat stands for “Stock Adjustment Time”, ws/ stands for
“Weight of Supply Line”, SL* stands for “Desired Supply Line”, SL stands for “Supply

Line”, AF stands for “Acquisition Flow”, adt stands for “Acquisition Delay Time”.

The diagram in B.34 and equations B.67-B.71 define a stock management structure
with a first order supply line delay. The simplified set of differential equation that

corresponds to this structure is given in equations B.72 and B.73.

9 _yp-p =St R (B.72)
dt adt
k__ —
BL _ cp AR =LF + 2775 g5 G EEZSL SL (B.73)
dt sat sat adt

Block diagram of the stock management structure with a first order supply line delay

is given in Figure B.35.
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Desired Supply Line

Acquisition Delay Time

Supply Line Adjustment
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-
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|-|
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Figure B.35 Block diagram of the stock management structure with a first order supply

line delay

Block Diagrams of Generic System Dynamics Models
Sema Mehmet and Hakan Yasarcan

-56 -




Stock management with a third order supply line delay structure

Stock-flow diagram of a stock management structure with a third order supply line

delay is given in Figure B.36.

Order

Supply Line Supply Line Supply Line Stock ™
1 2 3

Control Flow Acquisition Flow 1 Acquisition Flow 2 Acquisition Flow 3 Loss Flow

Desired Stock

Acquisition Delay
- ~Desired Supply Time

Adjustment Line Stock Adjustment

‘\—/m

Supply Line

Weight of Supply
Line

Figure B.36 Stock-flow diagram of the stock management structure with a third order

supply line delay

The model equations are B.74-B.81.

CF = LF + SA+ SLA (B.74)
* _
sa=5"75 (B.75)
sat
*_
SLA = wsl ><u (B.76)
sat
SL* = adt x LF (B.77)
SL=SLI+SL2+SL3 (B.78)
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AF1=—SEL (B.79)
adt/Order

SL2

AF2 = S%2 (B.80)
adt/Order

ARz = SE3 (B.81)
adt/Order

where CF stands for “Control Flow”, LF stands for “Loss Flow”, S4 stands for
“Stock Adjustment”, SLA stands for “Supply Line Adjustment”, S* stands for “Desired
Stock”, § stands for “Stock”, sat stands for “Stock Adjustment Time”, ws/ stands for
“Weight of Supply Line”, SL* stands for “Desired Supply Line”, SL stands for “Supply
Line”, adt stands for “Acquisition Delay Time”, SLI stands for “Supply Line 17, SL2
stands for “Supply Line 27, SL3 stands for “Supply Line 3”, 4F'[ stands for “Acquisition
Flow 17, AF2 stands for “Acquisition Flow 2, AF'3 stands for “Acquisition Flow 3”.

The diagram in B.36 and equations B.74-B.81 define a stock management structure
with a third order supply line delay. The simplified set of differential equation that

corresponds to this structure is given in equations B.82, B.83, B.84, and B.85.

S ypzor=— S8 (B.82)
dt adt/Order
*_ _
ISLL_ g gpr = LF + 3575 4 e G4 LEZSE SLI (B.83)
dt sat sat adt/Order

—dSL2 =AFI1—- AF2 = SLI - SL2 (B.84)

dt adt/Order  adt/Order
aSL3 _ gy gz L2 SL3 (B.85)

dt adt/Order  adt/Order
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Block diagram of the stock management structure with a third order supply line delay

is given in Figure B.37.

_I\ Desired Supply Line
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Figure B.37 Stock-flow diagram of the stock management structure with a third order

supply line delay
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