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The Ebola Outbreak in West Africa: Important Lessons  

about Modeling & Simulating Uncertain Dynamic Issues 

 

Erik Pruyt – E.Pruyt@tudelft.nl – Delft University of Technology 

 

ABSTRACT: During the first half of 2014, the Ebola outbreak in West Africa was severely 

underestimated. But during the second half of the year, many modelling studies showed 

catastrophic projections of cumulative Ebola cases and deaths. Recently, these modelling studies 

have been criticized for severely overestimating the outbreak. As a consequence, the usefulness of 

simulation models during outbreaks has even been questioned, even in Nature. This study exposes 

some of the causes for overestimation as well as for underestimation when using simulation 

models for current uncertain dynamic issues. Addressing some of these causes by calibrating more 

complex instead of less complex transmission models to more, or more recent, data is shown to 

reduce the Ebola projections from millions to tens of thousands of cases. This study also shows that 

the current outbreak was likely to be curbed by the current massive deployment and behavioural 

changes before accelerated vaccination campaigns can even be rolled out. It is shown that the 

quality of the model and results can be improved substantially, but also that some uncertainty 

cannot be reduced, and that communicating results under uncertainty to decision makers, the 

media, and other scientists remains problematic 
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THIS IS AN EXTREMELY ABBREVIATED VERSION OF THE ARTICLE IN ORDER TO BE ABLE TO 

PUBLISH IT AS A JOURNAL ARTICLE. THE FULL ARTICLE IS AVAILABLE UPON REQUEST.  

 

1. INTRODUCTION 

STRONGLY ABBREVIATED HERE. 

The remainder of this article is structured as follows. First, methods and models used in this research 

are briefly presented. Second, simulation results from several models and from multiple post-

processing rounds are presented and discussed. Finally the consequences of these results are 

discussed and conclusions are drawn.  

 

2. METHODS AND MODELS 

STRONGLY ABBREVIATED HERE. 

The models used and policies simulated here are discussed in (Pruyt et al., 2015). See Figure 1.  

3. RESULTS  

3.1 Omission versus consideration of uncertainty  

STRONGLY ABBREVIATED HERE. 

  



3 
 

 

 

Figure 1: Simplified diagram of the core simulation model showing compartments, infective routes, 

and some endogenous social psychological effects 
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Table 2: Uncertainties with pre-calibration and post-calibration ranges (calibrated values in bold)

 

Parameter   Units  Initial  Calibr 1 Calibr 2   Sources/Remarks 

     (28/09)  (28/09;17/10;4/11) 

 

average recovery time  [d] (7,12) (7, 10.48)  (9.36,10.15)  (WRT14), +detec.time + saf.time in Q, calibrated 

detection time  [d] (4,6)  (5.88, 6) (4,6)  (Gomes 2014, Schieffelin 2014, WRT14), calibrated 

initial incubated   [p] (5,10) (6.64,10) (5,10)  (Baize et al. 2014), calibrated 

repr. nmbr non hyg. susc. pop.  [p/p] (1.50,2) (1.89, 2) (1.63,1.77)   (Gire 2014, Gomes 2014, Rivers 2014) , calibrated 

fraction repr. nmbr [/] funeral   [-]  (0.3,0.6) idem  (0.3,0.58)  fraction infections due to unsafe funerals, calibrated 

relative infectivity 1st symptoms [-] (0.3,0.9) idem (0.56,0.64)  assumed, calibrated 

adequacy endo. building Q cap [-] (0.2,0.3) idem idem  assumed based on WHO situation reports 

average incubation time [d] (10,13) idem idem   (WRT14, Schieffelin 2014, Lekone and Finenstädt

        2006,  Towers et al. 2014) 

average decease time [d] (4,5) idem idem    (WRT14, Gomes 2014), +‘detect t’ -> death 

average Q disinfection time [d] (0.5,1.5) idem idem   assumed quarantine bed turnaround time 

CFR (case fatality ratio) [-] (0.6,0.8) idem idem    (WRT14) 

contact rate factor  [-] (1, 4) idem idem   effect infectious fraction on contact rate reduction 

delay on endo adaptation Q cap [d] (21,45) idem idem   assumed based on WHO situation reports 

factor learning hyg. [f(contact)] [-] (0,5) idem idem   assumed 

fraction to Q if not endo. [-] (0.25,0.5) idem idem   assumed 

infections of hygienic infected  [1/d] (10-3,0.04) idem  idem  assumed, infections of hyg.Susc. by Infectious in Q. 

safety time in Q   [d] (2,4) idem  idem  additional time in quarantine before discharge 

size kin   [p/p] (50, 200) idem  idem  assumed to calculate fear of infecting kin  

size rumour quarantine fear [p/p] (500,2 103) idem idem  assumed to calculate fear of quarantine 

time from non hyg. to hyg. [d] (2,14)  idem  idem  assumed 

factor asymptomatic   [-] (0.2,1.2) idem  idem  (Bellan ea. 2014, Leroy ea. 2000); fraction = factor/2  

reduction RN by hygienic  [-] (0.5,0.9) idem  idem  assumed, % reduction in reproductive number 

Order Incubation Delay  [-] 2, 3 idem  idem  categorical, (WRT14) 

OrderDeceaseDelay    [-] 2, 3 idem  idem  categorical, assumed   

OrderRecoveryDelay   [-] 2, 3 idem  idem  categorical, assumed 

 

(WRT14):= (WHO Ebola Response Team 2014); [d] := [day]; [p] := [person]; [-] := dimensionless; Q:= quarantine 
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3.2 Omission versus inclusion of psychological and sociocultural effects 

STRONGLY ABBREVIATED HERE. 

 

3.3 Including Interventions 

See Fig. 3. STRONGLY ABBREVIATED HERE. 

  

 

Fig. 3: Simulated total cases on 28 September, 31 December, 3 July calibrated with 28 September data  

 

3.4 Communicating Ensembles of Uncertain Results 

STRONGLY ABBREVIATED HERE. 

 

3.5 Time Reduces Some Uncertainty 

STRONGLY ABBREVIATED HERE. 
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3.6 Accounting for surprises and changes  

See Figure 4.  STRONGLY ABBREVIATED HERE. 

 

Fig. 4: Reduction of percentiles due to post-processing over time (28 Sep -> 17 Oct -> 4 Nov) 

 
STRONGLY ABBREVIATED HERE. 

A second online notebook1 documents the calibration in which changing sociocultural psychological 

effects and past surprises are accounted for and the simulation results. The newly calibrated ranges 

are listed in the fifth column of table 5. Calibration with superspreading and shift in underlying model 

actually improves the fit between the simulated ensemble and the real data: instead of 1/3 now ½ of 

the runs survive post-processing.  

                                                           
1
 See http://nbviewer.ipython.org/gist/ep77/f2108a3bf5941b4392e5 

http://nbviewer.ipython.org/gist/ep77/f2108a3bf5941b4392e5
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Figure 5: Ensembles with surprises (superspreading) and changing social-psychological behaviour 

STRONGLY ABBREVIATED HERE. 

 

3.7 With Shrinking Uncertainty Bounds 

STRONGLY ABBREVIATED HERE. 

 
3.8 With Future Surprises and Geo-Spatially Specific Models 

 
 
STRONGLY ABBREVIATED HERE. 

 
4. DISCUSSION  
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Although social and psychological feedback effects are important and should therefore be included in 

models, massive quarantine deployment with effective supporting policies is much more important 

for curbing the Ebola epidemic in West Africa. Massive intervention with good supporting policies 

and better estimates over a longer period of time, even without underlying behavioural changes, 

already reduce estimates of total Ebola cases from between 20 thousand and 2.1 million cases (90% 

CI) to 18-96 thousand cases (90% CI), or to 17-42 thousand cases (90% CI) if more recent estimates (4 

November 2014) are believed to be more accurate (95%-150%). Note, however, that this does not 

mean that massive interventions can be stopped or scaled down early on. These “best case 

projections” are only valid with massive interventions being implemented on time. In case of Ebola, a 

pro-active ‘overkill’ intervention policy is most effective. Given the outbreak and mass interventions 

implemented, it was clear that the outbreak could be curbed before a mass vaccination campaign 

could be rolled out.  

In this article, it was argued and shown that uncertainty bounds of early projections should be very 

wide to properly reflect the uncertainty. However, projections should not be implausible as was the 

case with some projections of the Ebola outbreak in West Africa. It was shown that these wide 

uncertainty bounds automatically shrink over time with new real-world information becoming 

available.  

It was also shown that models with the necessary social-psychological complexity generate better 

estimates than overly simplistic models. In the case of the Ebola outbreak in West Africa, But it was 

especially the shift from adverse behaviours to normal behaviours. 

Adverse social effects matter especially in 2014 whereas the lack of social effects matters in 

especially in 2015, and asymptomatic infections matter especially in 2015. 

Interestingly, the overly simplistic models used early on may have drawn attention to the worst case 

outcomes, and may therefore have created the necessary sense of urgency to plan for the worst, i.e. 

to deploy massively. (Early) planning for the worst in turn results in robust interventions that would 
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be excessive for most, but not all, plausible futures. Thus, early projections with high worst case 

projections, and even with inadequate models, may have provoked the right response. However, 

inadequate models are easily criticized. But even adequate models may generate projections that are 

judged to be ‘wrong’ in hindsight. Especially if forecasted evolutions are defeated by the action taken 

to prevent it.  

From the above, it is possible to identify multiple reasons why the models got it ‘wrong’. One, the 

Ebola outbreak was a moving target with new information becoming available every few days. Two, 

the transmission models used early on lacked social & psychological feedback effects. Three, even 

the most complex models were too simplistic. Four, simulations without interventions were 

communicated. Five, models were calibrated to poor uncertain data without  accounting for 

surprises. Six, models were simulated at a time the future was still very uncertain. Seven, simulation 

under uncertainty is hard to communicate, hence, uncertainty is not properly discussed. And eight, 

dramatic estimates receive(d) more attention than reasonable estimates.  

Hence, there are many causes for overestimation, including: the omission of effects of interventions, 

the omission of dynamic social-psychological effects, the uncertainty of early data/info, a 

fundamental misunderstanding of uncertainty, the treatment of poor data as good data, hard 

overfitting with deterministic models, not considering enough heterogeneity, not considering past 

surprises like past superspreading, the fear to underestimate, and the fact that catastrophic news 

sells better. 

Hence, there are many causes for underestimation, including: the assumption that interventions  are 

effective and certain, the omission of (super-) adverse effects, uncertainty of data/info, a 

fundamental misunderstanding of uncertainty, the treating of poor data as good data, overfitting 

with deterministic  models, too much homogeneity (region, agent), and the omission of future 

superspreading / surprises.  Note that many causes could lead to overestimation as well as 

underestimation. 
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