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Abstract 

Background: The current outbreak of the Ebola Virus (EBOV) is characterized by 

inadequate intervention capacities. In this theoretical paper, we research what the influence of 

limitations in the intervention capacity are on the effective reproduction number, and what the 

effectiveness would be of a more proactive approach in expanding the intervention capacities. 

Methodology: We use a transmission model extended with dynamical intervention 

capacities of isolation, health workers, tracing officers, and eventually vaccines. We generate a 

set of plausible scenarios explaining the current reported Ebola Virus Disease (EVD) cases taking 

into account a bandwidth for potential underreporting. We use these scenarios to test the 

effectiveness of a more proactive approach in extending intervention capacities. 

Results and conclusions: We show that a reactive approach in extending intervention 

capacities leads to under-capacity for isolating EVD cases. This under-capacity can lead to a 

significant increase in the effective reproduction number, leading to faster transmission of 

EBOV. A more proactive approach, which takes into account development delays of capacities, 

the doubling time of the disease, and the factor of potential underreporting of the number of 

cases, helps in any scenario in limiting the total number of EVD cases and deaths. 
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Introduction 

 The 2014 outbreak of Ebola Virus (EBOV) and, consequently, Ebola Virus Disease (EVD) 

in Liberia, Sierra Leone, Guinea, Senegal, Mali, Nigeria, Spain, and the United States of 

America1,2 is by far the largest observed to date;3 The number of cases and deaths outnumbers 

the sum of all previous outbreaks of EVD. The outbreak distinguishes itself from earlier 



outbreaks by occurring in densely populated urban areas.3 Earlier outbreaks took place in rural 

or otherwise sparsely populated areas.4-12 

Dynamic transmission models can be used for intervention capacity planning for 

epidemics like the 2014 EVD epidemic. These models have been used for estimating the 

reproduction number of Ebola, and projecting the future development of the epidemic.3,13,14 

However, projecting the dynamics of EBOV is complicated by the uncertainty about many input 

factors.15 Examples include the case fatality ratio,16 and the basic reproduction number R0.3,17,18 

Further, the actual number of cases during this epidemic is believed to be considerably higher 

than the reported number of cases,19 since the infrastructure to diagnose new cases and identify 

contamination epicenters is insufficient, as is demonstrated by the continued spreading of the 

disease. 

When EBOV was spreading exponentially, medical staff, hospitals, isolation facilities, and 

tracing officers were trying to limit the further spreading of the virus, and an effort was started to 

develop Ebola vaccines and medication as quickly as possible. Therefore, it makes sense to 

incorporate these intervention capacities in transmission models aimed at projecting the future 

development of the epidemic. For example, Bachinksy & Nizolenko combine a SEIR model with 

capacities.20 They model bed capacity as isolation capacity and kept the number of available beds 

constant. Further, several studies of influenza look at the influence of anti-viral medication and 

vaccination programs.21-25 

In this paper, we present a model that incorporates EBOV propagation in an extended 

SEIR model. We incorporate endogenously modeled intervention capacities, and parameterize 

the model for Liberia. The parameterization happens in a Scenario Discovery approach where we 

sample over a broad bandwidth of input parameter values to account for the uncertainty 

characterizing the current EVD outbreak. This allows us to evaluate the influence of dynamic 

limits of EVD interventions on the effective reproductive number. As such, the effective 

reproduction number is modeled as the result of a SEIR model extended with endogenous 

intervention capacities. This theoretical paper thus tries to explain how the epidemic risk and the 

necessary intervention interact, what the consequences are of this interaction, and how the use 

of dynamic transmission models with integrated dynamic intervention capacities may inform 

planning of intervention capacities during future large outbreaks. 

The setup of this paper is as follows. First, we explain how we developed the model, 

extending the SEIR model structure with limiting intervention capacities of isolation, health 

workers, tracing officers, and eventually vaccines, and the experimental setup. Second, we 

present the results of our analysis for the reproduction number, cumulative number of cases, 



cumulative number of deaths, cases in isolation, and cases not in isolation. Third, we discuss our 

findings and potential future research directions, followed by the conclusions. 

Methodology 

We present a model combining a SEIR core with possible interventions aimed at stopping 

the Ebola epidemic in West Africa. The model is represented using System Dynamics 

(henceforth called SD).26-28 We use the model in a Scenario Discovery approach29 to explore the 

consequences of the different combinations of uncertainties on the dynamics of the epidemic, 

and test the effects of different intervention strategies. 

Model description 

The SD model extends the traditional SEIR model by including a set of endogenous 

interventions. SD is a method for modeling and simulating dynamically complex systems or 

issues characterized by causal relations, feedback loops, accumulations, and delays. Although 

Causal Loop Diagrams and Stock-Flow Diagrams are used to explain the complexity of the 

system, which is characterized by feedback and accumulation effects, in an understandable 

way,30 SD models are essentially systems of differential equations. Numerically integrating these 

equations results in a simulation of the dynamically complex behavior of the modeled system. 

This simulation can be used to analyze problems related to the system, and to evaluate the effects 

of policy interventions in these systems. SD is regularly used to study disease dynamics and 

health policy.27,31 

The central structure of the model contains a Susceptible, Exposed, Infectious, and 

Recovered population (Figure 1). We made several changes to this basic structure. We divided 

the infectious population in a critical phase, where patients may either recover or die. The 

recovering patients are still infectious. Therefore, they are modeled using a second stock 

variable, the infectious survived population, who are recovering and will survive. We subdivided 

(i.e., vectorized or subscripted) these population stocks to take into account that the population 

may start to apply some self-quarantining. We assume that infecting the self-quarantined 

population is more difficult than infecting the rest of the population, and that the self-

quarantined infectious outside isolation are less infectious to their surroundings. The S, E, and I 

stocks outside isolation, and the flows between these stocks, thus contains this subdivision. In 

Figure 1, these stocks have a bold border. Introducing this structure is important, as a succesful 

societal reaction to an outbreak leads to a significant decrease in necessary intervention 

capacities like isolation capacity. Next to this, motivating the population to change behavior in 

this way can be seen as an intervention itself. 



Further, we added isolation capacity to the model, containing again two stocks for the 

critical and the survived infectious population. Treating and burying of the formally isolated 

happens at a lower infectivity rate, while the non-isolated deceased may still infect the 

susceptible population before their burial takes place. We, therefore, added a stock for the 

unburied deceased population. Finally, we included a stock for those who will be vaccinated 

when vaccines become available. This vaccinated population, and the recovered population, are 

assumed to be no longer susceptible to EBOV. 

 

Figure 1. Stock-flow structure of the extended (other factors and causal relations are not shown) SEIR model 
containing isolated population stocks, and the immune population due to vaccination. SEIR elements are indicated 
with their respective letters as well. Subscripted stocks have a bold border, infectious stocks are red, and the exposed 
population is blue. 

All interventions are limited in their capacity. Therefore, we included in this model the 

endogenous development of the availability of isolation capacity (i.e., beds), health workers, 

tracing officers, and vaccines. All intervention capacities are modeled as aging chains containing 

stocks for the preparation of capacity and the available capacity. These stocks are separated by 

delay time that may hinder timely reaction to an epidemic.32,33 



The capacities for isolation and other interventions are modeled adaptively: if needed, 

they are expanded, albeit delayed. In this way, the numbers of health workers, tracing officers, 

and available vaccines increase. For health workers, the possibility of getting infected by EBOV 

and consequentially dying of EVD is taken into consideration,34 thus reducing their availability. 

We assume that fully recovered healthcare workers will try to continue their efforts after an 

extensive recovery time. Further, healthcare workers may be recruited domestically or from 

outside the region. All physicians needed are assumed to be foreign. Only a small portion of the 

susceptible population is considered suitable for nursing since they are not trained to protect 

themselves properly, but a larger part of the recovered population is suitable for nursing, since 

they are immune. 

Finally, if the medical staff capacity is not sufficient for the isolation capacity, the 

isolation capacity will be limited following the available staff numbers. This represents the 

closing down of EVD treatment centers due to illness of staff. 

Experimental setup 

The model was implemented in the Vensim modeling software35 and parameterized for 

the Liberian situation. The model contains 161 variables, of which 20 were subdivided for 

hygienic and normal behaving population (i.e., vectorized or subscripted), and 35 were 

considered uncertain. We simulated the model for 400 days, with a time step of 0.25 days using 

the Runge-Kutta 4 auto numerical integration method. For the 35 uncertain parameters, we used 

a Latin Hypercube sampling approach, based on the ranges in Table 1. We generated 10.000 

samples. The model and scripts for the analysis can be found in the supplementary material.  



Table 1. Uncertainties used as model input. Factors for which no literature reference exists, are indicated as 
assumption. 

Variable name Unit Min Max References 

Average contact rate infectious 
population 

1/Day 0.3 0.9 3, 17, 37 

Average development time isolation 
facilities 

Day 4.2 18.8 Derived from reports like 36 

Average infectivity for medical staff 1/Day 0.0087 0.046 Derived from analysis; 36 

Average extra recovery time 
survivors 

Day 0.5 4.66 3; Derived from analysis 

Average time staff active Day 185 341 Derived from analysis 

Average time until burial Day 0.5 2 37 

Average time until return diseased 
health workers 

Day 21 60 Assumption 

Average period critical condition Day 4 9 3 

Case fatality rate in isolation relative 
to outside isolation 

Dimensionless 0.43 0.73 
Broad bandwidth around data from 3; 
Derived from analysis 

Case fatality rate outside isolation Dimensionless 0.45 0.86 3;  

Contact rate before funeral 1/Day 0.32 0.97 Derived from 3,36;  

Contacts to be traced per 
quarantined patient 

Contact/Person 5.47 40 Bachinsky and Nizolenko (20) 

Contacts traceable per tracer per day 
Contact/ 
(Person*Day) 

10 40  Bachinsky and Nizolenko (20) 

    

    

    

Delay time development new 
vaccines 

Day 250 350 
Assuming that vaccines will be available 
in first or second quarter of 2015 

Doctors per nurse Dimensionless 0.12 0.46 Assumption; Derived from analysis 

Effect of self-quarantining behavior Dimensionless 2.28 20 Assumption 

Fraction recovered population useful 
as medical staff 

Dimensionless 0.000458 0.043 Assumption; Derived from analysis 

Fraction susceptible population 
useful as medical staff 

Dimensionless 1.86E-06 0.000189 Assumption; Derived from analysis 

Incubation period Day 7 15 WHO Ebola Response Team 3 

Initial exposed population Person 50 100 WHO 37 

Initial isolation capacity Person 120 600 WHO 37 

Initial relative susceptible hygienic 
population 

Dimensionless 0.01 0.2 Assumption 

Initial tracing personnel Person 5 30 Assumption 

Initial vaccines in preparation Vaccine 4 20 Assumption 

Lifetime isolation capacity Day 180 360 Assumption; Derived from analysis 

Medical staff creating awareness 1/Day 5 100 Assumption 

Medical staff per new case 1/Day 0.2 0.5 WHO 37 

Preparing time foreign staff Day 14 60 Assumption; Derived from analysis 

Recognition rate diseased Dimensionless 0.2 0.95 Broad bandwidth around WHO 37 

Relative reduction in infectivity due 
to isolation 

Dimensionless 0.7 5 Assumption 

Training time new staff Day 3 10 Assumption 

Vaccination speed 
Vaccine/ 
(Person*Day) 

50 240 Assumption (estimate) 



Results 

Scenario selection 

The epidemiological data provided by the WHO presents the number of cases and deaths 

measured to date. However, it is plausible that this data considerable underreports the actual 

number of EVD cases.19 The WHO acknowledges this in its roadmaps.37 Therefore, we used both 

the measured cumulative cases and the actual cumulative cases as indicators for selecting the 

plausible scenarios from the total set of runs. The measured cumulative cases are the cases 

reported and found by tracing officers and the cases that report themselves. The actual 

cumulative cases are all cumulative EBOV infected cases. The measured cumulative cases was 

required to be minimally the reported number of cases, while the actual number of cases was 

required to be maximally 4 times the reported cases. Therefore, we take a slightly broader 

bandwidth than the potential underreporting correction factor of 2.5.19 Following this recipe, we 

were able to select 16 scenarios out of a total of 10000 model simulation runs. 

 

Figure 2. Dynamics for measured cases, historic data 
from WHO is indicated in dashed lines. The figure has a 
logarithmic y axis. 

 

Figure 3. Dynamics for actual cases, historic data from 
WHO is indicated with dashed lines. The figure has a 
logarithmic y axis. 

The 16 scenarios visible in Figure 2 and Figure 3 each provide a different internally 

consistent explanation of the measured data by the WHO. The runs start at the moment when 

the WHO reported 51 cases in Liberia, so t=0 can be interpreted as 22 June 2014. In the best-

case scenario, the underreporting of cases is limited due to relatively sufficient tracing officers 

capacities. Consequentially, the required additional capacities for isolation and medical staff, as 

well as for the additional tracing officers, can be estimated adequately, resulting in a situation 

where the disease can be controlled before the whole population becomes infected.  

In the worst-case scenarios, the tracing capacity is inadequate, which leads to inadequate 

development of isolation and medical staff capacity. This can be seen by comparing Figure 4 and 



Figure 5. Figure 4 shows the total non-isolated infectious population, while Figure 5 shows the 

isolated infectious population. First, the peak in the non-isolated population is considerably 

earlier than the peak in the isolated population. In these instances, the intervention capacity has 

missed the real peak in the epidemic. Second, missing this peak makes that an order of 

magnitude difference exists between the maximum non-isolated infectious and the maximum 

isolated infectious in the worst-case scenarios. 

In the worst-case scenarios, changes in population behavior (e.g., when part of the 

diseased actively seek help at treatment centers, even when they were not traced) will have less 

effect, as the required isolation capacity and treatment is not available. Therefore, it is the 

weakest link in the intervention capacities that determines the strength of the intervention 

capability. 

 

Figure 4. Total non-isolated infectious population 
dynamics 

 

Figure 5. Total isolated infectious population dynamics 

Limits in EBOV intervention capability influences the speed with which the virus is 

transmitted. The assumption underlying these dynamics is solely that an isolated EVD case is 

less infectious than a non-isolated EVD case. The results of this are illustrated in Figure 6, which 

shows how the reproduction number develops in the 16 scenarios. In the best-case scenario, the 

reproduction number will gradually decline as intervention becomes more effective. In the 

worst-case scenarios, however, we see that a failure to isolation a majority of EVD cases leads to 

a considerable increase in the reproduction rate of the disease, causing a significant increase in 

the effective reproduction number. As a result, we see that the doubling time of the number of 

cases declines (Figure 7). This indicates an increased spreading of EBOV, which leads to the 

break in current trends visible in Figure 2 and Figure 3. When the EBOV transmission is over its 

peak, the doubling time will quickly rise as the effective reproduction number falls below 1.0. 



 

Figure 6. Effective reproduction number dynamics 

 

Figure 7. Doubling time dynamics 

For two distinct reasons, scenarios showing an increased effective reproduction number 

may be plausible in the case of the 2014 West Africa EBOV epidemic. First, the reproductive 

number is the result of infectious people having contact with their surroundings (e.g., as they are 

being treated by family members, or in the case of unsafe burials). Therefore, if the relative share 

of infectious population that cannot be isolated increases, due to limitations in either available 

beds or available trained and well-equipped staff, then the effective reproduction number is also 

expected to increase. Second, many studies estimating the base reproductive number of EBOV or 

similar diseases assume that the intervention capability is not available at the beginning of the 

epidemic, while its adequacy increases over time (e.g., 13,38). In the case of the 2014 EBOV 

epidemic in West Africa, however, it seems as though the intervention capability is getting less 

adequate over time (compare data in 37), potentially resulting in the dynamics simulated here. 

Effect of a more proactive approach 

The response to the EBOV epidemic was initially inadequate, leading to a situation in 

which the outbreak could become out of control . The exponential character of the spreading of 

EBOV in the early phases of the outbreak might explain this. Since the response leading to an 

increase of the intervention capability is delayed, the capacities that become available will often 

fall short of the capacity required, especially when, for example, insufficient tracing capacities 

further increase the underreporting of the speed with which the virus propagates through 

society. Therefore, it may be needed to use a more proactive approach in increasing the 

intervention capacities, trying to be ahead of future increases in cases, while taking irreducible 

delays in the development of new capacities, into account. The following formula captures this 

kind of proactive planning: 

𝐶𝑡+1 = 𝑐𝑢 ∗ 𝐶𝑡,𝑑𝑒𝑠 ∗ (1 + (
𝜏𝐶
𝜏2
)) − 𝐶𝑡 



Where: 

𝐶𝑡+1 is the capacity to develop; 

𝑐𝑢 is the expected underestimation factor of the number of EVD cases; 

𝐶𝑡,𝑑𝑒𝑠 is the presently desired capacity; 

𝜏𝐶 is the delay on capacity development; 

𝜏2 is the doubling time for the number of EVD cases; 

𝐶𝑡 is current available capacity. 

The motivation for this formula is that while preparing new intervention capacities, one 

should be prepared for those EVD cases that will arise during the preparation time, as well as the 

exposed population that will become infectious after the deployment of the additional capacities. 

If the preparation time is relatively short compared to the doubling time, the necessary extra 

capacity is, therefore, smaller. Existing capacity may be subtracted from the capacity to develop. 

It should be noted, however, that in the case of probable underreporting of the number of EVD 

cases, the presently desired capacity should be multiplied with the expected underestimation 

factor. 

In any scenario, a more proactive approach will lead to a decrease in both the total 

number of cases (Figure 8) and the total number of deaths. However, the effectiveness of this 

change in intervention capacity development depends largely on the phase of the epidemic; 

when the spread of the virus is already decreasing and the doubling time is increasing (Figure 9), 

the potential gains are smaller.  

 

Figure 8. Total cases with proactive intervention 
expansion from day 110 

 

Figure 9. Doubling time dynamics with proactive 
intervention from day 110 

The effectiveness of a more proactive approach is especially clear when it is applied 

earlier in the exponential growth phase of the epidemic (Figure 10 and Figure 11). These figures 

show the result of starting the proactive approach at day 50. The worst case is now logically the 



scenario in which an initial underestimation of the size of the epidemic leads to an early increase 

in the reproductive number of the virus. Consequentially, it becomes more difficult to control the 

EBOV outbreak. An early proactive approach in building up the total spectrum of intervention 

capacities thus decreases the final scale of the epidemic, characterized by the cumulative cases, 

considerably. 

 

Figure 10. Total cases with proactive intervention 
expansion from day 110 

 

Figure 11. Total deceased with proactive intervention 
from day 110 

Discussion 

The results presented in this study provide plausible scenarios for the spread of the 

EBOV in Liberia, but should not be interpreted as forecasts of the future number of cases or 

deaths. Rather, we present an extended what-if analysis to explain how the epidemic might 

evolve under circumstances similar to the situation in Liberia in between June and October 

2014. 

For several reasons, the actual disease spread may be less dramatic than the worst-case 

scenarios presented in this study suggest. First, the geographic spread of the population may 

lead to a slower virus transmission. Within certain areas, the susceptible population may be, 

therefore, actually smaller than the assumption underlying our simulation model that the 

susceptible and infectious populations outside isolation are perfectly mixed. Further, this model 

does not contain possible social and psychological dynamics of the population that may 

considerably slow down EBOV transmission, nor the existence of asymptomatic infections and 

acquired immunity.39  

Finally, this research is not exhaustive in the possible intervention measures. We have 

not modeled essential medical supplies besides the medical staff and bed capacity in isolation. 

Further, we have assumed that the intervention capacities developed will not be hindered by lack 



of available resource, for example skilled medical personnel, in foreign countries. However, the 

same principle applies to these other measures: Any under capacity will harm the effectiveness of 

the total intervention capability. The entire intervention capability is as strong as the weakest 

capacity in the chain. 

Conclusions 

In this article, we have demonstrated that the current under capacity in intervention 

measures for combatting the 2014 West Africa EBOV epidemic may lead to an increased effective 

reproduction number. The consequence of such a situation may be that the growth in the actual 

number of EVD cases accelerates significantly. This finding is derived from an extended SEIR 

model that includes key intervention capacities endogenously, parameterized for the situation in 

Liberia.  

This research suggests that the reproduction number of the current Ebola epidemic may 

increase compared to the measured base reproduction number3 if the capacities of the different 

interventions are not brought to the minimally required level. Such a situation with sufficient 

intervention capacities is in contrast with the situation in the first half of October 2014 in 

Liberia, which shows a significant shortfall in bed capacity, caused by both a lack of health care 

staff and a lack of operational bed capacity in Ebola treatment units.40 

This under capacity may be caused by an overly reactive response to the initial 

exponential growth of the number of EVD cases. A more proactive approach in expansion of the 

intervention capacities may, therefore, help in controlling the 2014 West Africa EBOV epidemic, 

as well as future epidemics. A proactive approach takes into account how the development time 

of these capacities relates to the doubling time of the disease, and the factor by which the 

measured cases may be underreported. A proactive and faster reaction is especially important 

before the EBOV becomes endemic in the West African region.41 
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