
The 33rd International Conference of the System Dynamics Society, Cambridge, Massachusetts, USA, 19 July-23 

July 2015 

 

 

Improving Services to Hospital Outpatient Clinics 
 

Keming Wang, Ashish Taneja, Irene Zeng and Daniel Wong 

Corresponding email address: kemingwang@hotmail.com 

 

 

Abstract 
The waiting time from referral to actual appointment to see a specialist doctor at the outpatient clinic is often 

long, can be many months. It is challenging to manage the number of patients from the waiting list whom can be 

seen with respect to retaining sufficient capacity to follow-up existing patients. The situation is often worse if 

some of the patients have to revisit clinic many times or, in some cases, throughout their lifetime. This study 

demonstrate how system dynamics can be used as an insightful strategic planning tool for an outpatient clinic to 

manage the increasing demands due to the constrained capacity and capability. An outpatient system dynamics 

model was built according to the principles of system dynamics. The simulation model includes the operational 

parameters as measures of capacities. A number of impact areas are identified and proposed to test the 

effectiveness of the model. Key indicators were set to enable the validation and evaluation of the proposed 

interventions. All the scenarios have been simulated 1000 times to generate a mean result for the validation. 

The model suggested that creating specialist clinic and patient orientated follow-up system would improve 

services to the outpatient clinics. Given the recommended interventions, the model generates an accurate 

prediction of outcomes. Following this intervention with the surgical outpatient services, the model has been 

used interactively with nearly all the outpatient services in the organisation. The model provides accurate 

forecasting scenarios that are validated with post-intervention data. It supports the service implementing the 

intervention with the consideration of system delays and provides a balanced solution to avoid any short-term 

or long-term disruption. 
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Introduction 
Counties Manukau Health (CM Health) is a large publicly funded healthcare provider in South Auckland, New 

Zealand, providing services for a multi-ethnic population of just over 500,000 people. It encounters many of the 

same challenges as most publicly funded health organisations, with increasing demands for healthcare services 

but limited resources. In endeavouring to meet the pressure to deliver sustainable high-quality services, managers 

and decision makers are looking to adopt tools that can help with planning, optimising or even reforming service 

processes. This study demonstrates how system dynamics can be used as an insightful strategic planning tool to 

help manage the increasing demands due to the growing new patient referrals and follow-up (FUP) appointments 

for an outpatient clinic. Effective interventions are developed in the context of constrained capacity (e.g. facility) 

and capability (e.g. workforce).  

Background 
An important part of healthcare services for CM Health is the outpatient service; it is a common point for patients 

to access secondary healthcare services, on referral from their primary care ‘healthcare home’. The waiting time 

from referral to actual appointment to see a specialist doctor at the outpatient clinic is often long, can be many 

months. The ever-growing referrals to outpatient service have a major impact on the long growing  waiting list. 

However, in addition to the newly referred patients, FUP patients—who have been seen previously at an 

outpatient clinic—are also requiring further clinic appointments. As the waiting list only records the newly referred 

patients, clinics struggle to manage those ‘invisible’ future demands by FUP patients. For instance, in order to 

reduce the waiting list for an outpatient clinic, the General Surgical service scheduled extra Saturday clinic sessions 

to see more new patients with minor anorectal disorders from the waiting list. In the short-term, this succeeded 

in reducing the waiting list for patients with minor anorectal disorders. However, the service was flooded with 

FUP patients a couple of months later. As a result, the extra capacity to see newly referred patients from the 

waiting list was subsequently limited.  The waiting list quickly increased again when the 'extra' FUP patients began 

coming back to the clinic. This phenomenon can be observed in Figure 1. The waiting list dropped by more than 

100 from March to April, but has steadily increased thereafter.  

Figure 1: Historical waiting list trend 

 



It is challenging to manage the number of patients from the waiting list whom can be seen with respect to retaining 

sufficient FUP capacity. The situation is often worse if some of the FUP patients have to revisit clinic many times 

or, in some cases, throughout their lifetime. This means that clinicians have to decide carefully  which patients 

truly need outpatient clinic follow-up and which might be managed appropriately by their primary care healthcare 

home; and managers need to understand the dynamic between new referrals and FUPs. Managing this complex 

situation requires managers and decision makers to have a fully understanding of the dynamics of system 

relationships and behaviours so they can foresee the short term and long term effect of their decisions.  

Initially developed from the work of Jay Wright Forrester in the late 1950s, system dynamics was formally 

introduced in 1960s as “Industrial Dynamics” (1961), which is linked to various system philosophies. It is a method 

to enhance learning in complex systems (Forrester, 1961, 1969, 1994, 1998, 1999, 2007a, 2007b). System 

dynamics is grounded in the field of nonlinear dynamics and feedback control (Forrester, 1961, 1969; Sterman, 

2000), which helps to understand the behaviour of complex systems. System dynamics simulation models can be 

used to design and manage improved policies, operational procedures and ultimately organisations (Maani & 

Cavana, 2007; Sterman, 2000). It allows decision makers to experience the long-term effects of decisions, develop 

an understanding of complex systems and design structures and strategies for improvement (Maani & Cavana, 

2007; Sterman, 2000). The system dynamics modelling approach has been recognised as “a mature and powerful 

tool” for the health system “to test how different factors may improve efficiency, effectiveness and equity in 

situations where it is not possible to conduct real-world experiments” (Gray et al., 2006, p. 453). It has been 

successfully used in many health environments, primarily in hospital and residential services (Homer, Hirsch, 

Minnitii, & Pierson, 2004; Kim & Goggi, 2005; Taylor, Dangerfield, & Grand, 2005). Although system dynamics 

modelling “provides a method of conducting policy experiments at low risk and cost with instant results” (Gray et 

al., 2006, p. 456), it is not yet being utilised to its full potential. In the literature, only one study (Thomas R. 

Rohleder, Bischak, & Baskin, 2007) has been found using a system dynamics simulation model to help with 

outpatient clinic management, although a lot of simulation work has been done for outpatient services (Michael 

Thorwarth, 2012; Rau et al., 2013; Thomas R Rohleder, Lewkonia, Bischak, Duffy, & Hendijani, 2010). Using system 

dynamics models for this study has two key advantages that are not generally found in other study methods. 

Firstly, it can directly analyse  the complicated programmatic and behavioural interactions that abound in the 

system; secondly, it permits detailed and flexible analyses of the distributional impacts of interventions.  

Methodology 
At the beginning of this project, the General Surgery outpatient service was selected for detailed analysis because 

surgeons from this service were willing to test out how system dynamics could help them to improve the service. 

As mentioned earlier, Per Rectal (PR) bleeding service failed to achieve long-term reductions in the waiting list 

due to FUP patients. This particular service is chosen to validate the proposed interventions based on the results 

of the simulation. Different techniques had been used to gather information about the processes: interviewing 

surgeons and managers about the process and situation; a brainstorming workshop to determine the project 

boundaries; a preliminary simulation model to test out which data methods to choose; and statistical data mining 

methods to analysis the data output. Key indicators were set to enable the validation and evaluation of the 

proposed interventions. A standard process map was proposed.  



System dynamics software iThink was used to develop the simulation model. Descriptive statistical analysis was 

performed by using Statistical Analysis System (SAS) to determine the preferred summary statistics input for the 

model. Mean, standard deviation and interquartile range of the model parameters were used inthe preliminary 

simulation model (see Table 1). Based on the validation of forecasted data with actual collected historical data, 

the non-parametric method based on the random values between the 25th to 75th quintiles of historical records 

has been found to  produce the ‘best match’ to the historical trend (see Figure 4, Figure 5, and Figure 6). The other 

parametric method such as normal, lognormal, beta and Poisson distributions for the key variables were also 

tested in the simulations.  

Table 1: Descriptive statistics of key model variables  

Parameters used 
in the model 

Definition of the operational  
parameters Minimum Maximum Mean 

Std. 
Deviation Skewness 

FSA First Specialist Appointment 19.0 186.0 59.233 28.1254 2.398 

FUP Follow-up existing patients 9.0 76.0 50.535 13.4206 -.640 

FSA to Other 
(services) 

Ratio of patients referred from 
FSA to other services 

.00% 33.93% 10.3872% 10.18140% .810 

FSA to Surgery Ratio of patients referred from 
FSA to surgery 

.00% 37.84% 12.2706% 10.47596% .211 

FSA to FUP Ratio of patients referred from 
FSA to follow-up appointment 

6.41% 65.31% 42.6567% 15.93902% -.710 

FSA to DNA Ratio of patients whom did not 
attend FSA 

.00% 14.04% 3.5311% 2.80809% 1.577 

FSA to Discharge Ratio of patients been 
discharged from their first 

appointment 

16.22% 53.93% 31.1543% 9.45246% .539 

FUP to Other Ratio of patients referred from 
follow-up appointment to other 

services 

.00% 22.22% 6.8766% 6.35073% .832 

FUP to Surgery Ratio of patients referred from 
follow-up appointment to 

surgery 

.00% 22.22% 9.0760% 6.70054% .152 

FUP to FUP Ratio of existing patients having 
follow-up appointments 

16.67% 45.24% 31.3091% 7.40485% -.039 

FUP to DNA Ratio of patients whom did not 
attend follow-up appointment 

.00% 8.33% 2.3181% 2.38647% .790 



Parameters used 
in the model 

Definition of the operational  
parameters Minimum Maximum Mean 

Std. 
Deviation Skewness 

FUP to Discharge Ratio of existing patients been 
discharged 

32.35% 66.67% 50.4202% 7.86531% -.020 

Total number validated is 43 of each parameter.  

Simulation 
The outpatient system dynamics model was built according to the principles of system dynamics. Figure 2 presents 

the model’s structure. Patient stocks are indicated as rectangles and the flows into and out of these stocks are 

indicated as tabs with arrows (flow directions). All other variables in the diagram directly or indirectly affect the 

flows, through causal relationships indicated with red arrows. Red circle variables are time-series input to the 

model, each of which requires an estimate of that variable’s behaviour from the model initial time (August 2012) 

to the present, as well as assumptions about its future trajectory. The result of any alternative scenario one might 

want to consider would be represented in the model through manipulation of one or more of these time-series 

inputs. Blue circle variables are for the purpose of calculating certain indicators. 

Figure 2: Outpatient system dynamics model overview 

 

 

Outpatients newly referred by general practitioners or other services are initially put onto the waiting list for a 

face-to-face appointment where that is requested. The ‘referral received’ variable is a random value generated 

by the model in the range of the historical records between quintile 25 and 75. The ‘referral increase rate’ may 

change over time (its initial value is set at 0% per year) as affected by the population growth, which can be changed 

by users accordingly. Referrers can also request a virtual FSA where the specialist reviews the information 



provided and provides advice back to the referrer. Similarly to requests for face-to-face referral, ‘virtual FSA 

referrals’ also generates a random value from the historical quintile 25 to 75 range. The ‘virtual FSA referrals 

increase rate’ specifies the proposed increase rate with an initial value of 0%. 

Referral to FSA is dependent on the availability of Total Clinic Capacity. It is calculated as follows:  

Referral_to_FSA = (Total_Clinic_Capacity-FUP_Appointments*2/3)-FSA_from_other_sources 

FSA from other sources includes acute FSA for some other services. The value is based on historical trends. The 

model assumes FUP appointments has higher priority than the FSA appointments. It constrains the availability of 

FSA appointments. Furthermore, the average FUP appointment time is shorter than that of the FSA appointment 

as it takes about 2/3 of an FSA appointment time. This means that each FUP appointments converts into 2/3 FSA 

appointment for calculation.  

FUP appointments have two main sources: one is post-FSA patients (this includes post-FSA from other sources or 

specialties), and the other is FUP patients who booked the appointment during their last FUP visit.  

The FSA to FUP ratio is a random value based on historical records between quintile 25 and 75. The FUP to FUP 

ratio is influenced by the frequency of the follow up. In general, the longer the follow-up period, the smaller the 

FUP to FUP ratio. Also the less follow up repeats, the smaller the FUP to FUP ratio. An FUP ratio converter is built 

to reflect this relationship in the model. Based on the historical trends, a graphical assumption is used to illustrate 

the relationship between changing FUP months and FUP to FUP ratio. The actual FUP to FUP ratio calculated as 

follow:  

FUP to FUP ratio = RANDOM(1-FUP_ratio_converter-0.03,1-FUP_ratio_converter+0.03) 

The FUP pool holds all the booked follow-up patients, which will vary by changing of follow-up time periods and 

actual discharged follow up patients.  

This model is simulated by specifying a set of initial conditions for the model’s population stocks, and then 

stepping forward by computing through the entire set of equations every simulated ¼ month. In each computation 

step, the model’s stock variables—written as difference equations—are firstly updated based on the previous 

period’s inflows and outflows. All other variables are then recalculated based on the updated stock variables and 

based on the current values of time-series inputs. The initial conditions have been specified in a way that allows 

for replication of historical trends. 

Results 
This model was initially finished in November 2013. It provided simulated results from August 2012 to October 

2013 that were validated by comparison with the actual historical records. Then, the model forecast results up to 

August 2017. Workshops were held with clinicians and managers to develop and test scenarios in the model. This 

forms a learning environment for all the participants. A number of impact areas are identified and proposed to 

test the effectiveness of the model: 

1. Reduce the referrals by providing specialist support to general practitioners.  



2. Increase capability to see more patients, e.g. extra clinic sessions.  

3. Reduce FUP patients without compromising the quality of care by: 

A. Reducing unnecessary FUP organised by junior doctors 

B. For some simple cases, change doctor organised FUP to patient organised FUP. This means that 

patients only revisit the clinic if their circumstances change. 

C. For some simple cases, doctor or nurse specialist makes phone call to FUP patient.  

D. Extend the period for patients to come back for FUP, e.g. in some instances, instead of clinic revisits 

every three months, it may be possible to change to every 4 or 5 months.  

After presenting the simulation results (details given below), the service decided to have an extra clinic once a 

month to see PR bleeding patients only. The additional clinic was to be run by a senior surgeon to reduce 

unnecessary FUP organised by junior doctors. In addition, the FUP method was changed to patient organised 

(patients call in if their circumstances changes).  

This paper was written in February 2015. The service implemented the recommendations and collected the 

historical data from November 2013 to January 2015. It hence provides the additional data to validate the model’s 

forecasting results. The model takes random values from each variable. All the scenarios have been simulated 

1000 times to generate a mean result. Figure 3 summarises all the mean projections and historical records of the 

waiting list.   

Figure 3: Patients waiting for FSA 

 

1. Grey colour—Do Nothing Scenario, which assumes the clinic carrying on as usual without any 

interventions. However, in this scenario, the population growth rate has not been applied yet, which 

would give a 1.4% annual increase of the demand if applied.  

2. Blue colour—Reduction of FSA to FUP ratio. Compared to the grey line, the waiting list starts to reduce 

from February 2014 if this intervention started from November 2013. This intervention shows a clear 
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delay effect, as the follow-up period for patient revisit clinic is about three months. This intervention 

requires discussion with clinicians on how to do it safely without compromising quality of care.   

3. Red colour—New Clinic Scenario. It assumes an extra clinic operating monthly, but no change of follow-

up ratio. However, this new clinic will take both new patients and follow-up patients instead of new 

patients only, which happened historically. Following the pre-set configuration the model can 

automatically allocate new patients and follow-up patients to the new clinic. This is a critical  function 

provided by the model, as the results can be exported and given to the clinic to implement the change 

and to avoid unintended consequences, e.g. if the clinic only uses the extra capacity to see new patients, 

it will cause a delayed follow-up patient surge.  

4. Light Green colour—New clinic with reduction of FSA to FUP ratio. As a combination scenario, it reduces 

the waiting list faster than other interventions; hence it is the preferred scenario. 

5. Dark Orange colour—historical data from August 2012 to October 2013. The model almost replicates the 

historical data, except for a few spikes of the historical data.  

6. Light Orange colour—Post intervention data from November 2013 to January 2015. It reflects the effect 

of the interventions, of introducing an extra clinic and reducing follow-ups from November 2013.  

In Figure 4, the left graph demonstrates the relation between the actual historical data (blue line) against the 

mean of 1000 simulations results (red line). The right graph presents a fitted regression line for the mean 

simulated data vs. the actual historical data. The fitted regression has an R square of 0.6031 and a linear slope of 

1.0437. The R square with a range of 0 and 1 is a statistical measure of how much variation of the actual data 

explained by the predicted values; higher R squares indicated a better fit with the simulated values. The R square 

of 0.6031 indicates that 60% of the variations have been explained by the simulation. The linear slope of 1.0437 

which is close to 1, indicates that the simulated values have a reasonable fit with the actual data. 

Figure 4: Validation of the Model-new clinic and reduction of FSA to FUP ratio 

 
 

In Figure 5, the fitted regression has an R square of 0.8255 and a linear slope of 1.0268. The largely improved R 

square indicates that more variations in the actual data have been explained by the simulation. The smaller linear 

slope of 1.0268 also indicates that the simulated values have a better fit with the actual data.  

 



Figure 5: Validation of the Model-new clinic only 

 
 

In Figure 6, which simulates a scenario that only includes the reduction of FSA to FUP ratio, the fitted regression 

has an R square of 0.69 and a slope of 0.93. Both statistics suggest that the simulated result does not match well 

with what had actually happened.  

Figure 6: Validation of the Model-Reduction of FSA to FUP ratio only 

 

In Figure 4 and Figure 5, the forecasted results closely match to the historical data. Although the real intervention 

includes both the new additional monthly clinic and reduction of the FUP ratio, because the parameter of the FUP 

ratio reduction is estimated from all patients instead of from patients in the new clinic, a better matched was 

observed in Figure 5. The ideal changes will be  to implement the reduction of FUP ratio for all patients.  If using 

an FUP ratio reduction that has taken into account what has actually happened in real life, the discrepancy 

between the observation and the simulation results should be smaller. Following this intervention with the 

surgical outpatient services, the model has been used interactively with nearly all the outpatient services in the 

organisation. 



Conclusion 
The outpatient model was developed in partnership with the clinicians and managers of the hospital outpatient 

services. The outpatient system dynamics modelling project began in February 2013 primarily as a result of the 

concern about the growing waiting list for surgical outpatient clinics. The system dynamics model was deemed to 

be an appropriate technique to look for intervention options and considering their relative effectiveness over the 

short and long term. Part of the appeal of system dynamics was its flexibility and ability to deal in an integrative 

and transparent way incorporating the many interdependent factors that affect waiting list control. In this study, 

the model provides accurate forecasting scenarios that are validated with post-intervention data. It supports the 

service implementing the intervention with the consideration of system delays and provides a balanced solution 

to avoid any short-term or long-term disruption (e.g. what happened in Figure 1). 
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