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Abstract 

In order for policy makers to effectively manage the process of the diffusion of renewable energy technologies, it 

is important to understand the mechanisms behind the diffusion process of such technologies. Most of the 

literature on innovation diffusion focuses on static or relatively simple dynamic models of diffusion. Recently, 

researchers have argued that analyzing innovation diffusion needs new methods, allowing for a more 

comprehensive dynamic analysis. With this aim in view, this research used system dynamics modelling as a 

dynamic tool for modelling wind turbine diffusion. To be able to see to what extent system dynamics is able to 

capture the underlying mechanisms of diffusion processes, a known case of wind turbine diffusion in California 

and Denmark was chosen as a comparative case study. The results showed that Denmark was more successful 

due to various reasons: high oil prices, strong networks enabling knowledge sharing, and determination of the 

government. This research also showed that system dynamics is a promising approach for understanding 

innovation diffusion in a holistic manner. 

1. Introduction 

Understanding the diffusion of innovation is of crucial importance for researchers and policy makers. 

Once the details of the causes and their interactions are clearly identified, managing the direction and 

the rate of diffusion becomes easier. Managing the diffusion of renewable energy technologies has 

gained more importance, since the need for clean energy and sustainable technologies has become a 

must rather than a luxurious option. Both the development of the new technologies and the adoption of 

these technologies in society create a challenge for policy makers.  

A variety of studies has been conducted on this issue. However, most of these studies focus on static 

or relatively simple dynamic models of diffusion. Recently, researchers have argued that analyzing 

innovation diffusion needs new methods allowing for a dynamic analysis (Jacobsson and Johnson, 

2000; Hekkert et al., 2007). Static analyses of innovation diffusion remain inadequate for explaining 

the reasons for the behaviour of diffusion. This is caused by not being able to capture indirect effects 

and time dependent effects of policies. Instead, only the direct effects are captured in a black-box 

manner. 

This research aims to explain the reasons for innovation diffusion by defining an innovation system 

using a transparent, dynamic methodology. To reach this aim, system dynamics modelling has been 

chosen to model the innovation diffusion principles using a case study. To be able to see what system 

dynamics can bring to our understanding, a well-known case of diffusion of wind turbines in 

California (US) and Denmark is taken. Reading the same story with different glasses could bring a 

new perspective on the story, thus this case is analyzed with system dynamics using the dynamic 

perspective suggested in the diffusion literature.  
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The next section introduces the dynamic understanding of innovation diffusion in the literature. 

Section 3 provides background information about the diffusion stories in California, US, and in 

Denmark. Section 4 puts the literature and the case stories into the same modelling framework and the 

transfers the conceptual model into a system dynamics model. The results of this model are shown in 

Section 5, and the final section concludes with the achievements and the limitations of the study. 

2. Innovation Diffusion in the Literature 

Diffusion of innovation is a field of study looking to explain how and at what rate innovations are 

adopted in or through cultures. The idea was introduced by Rogers in 1962 (Rogers and Everett, 

1983), and a vast amount of studies have been built on this since. The theory suggests that there are 

four main factors driving the diffusion process: the innovation itself, communication channels, time, 

and the social system the innovation spreads through. Yet, since the theory has both social and 

technological parts and it occurs in a complex system which is society itself, exactly explaining why 

diffusion succeeds or fails is not possible. On the other hand, tracing the activities impacting diffusion 

could be invaluable information to policy makers. This would allow them to not only understand the 

diffusion in a deeper manner, but also how to manage it. With this aim, researchers have considered 

the process of diffusion from different perspectives. Authors who emphasize the importance of a 

dynamic analysis are Hekkert et al. (2007) who describe functions of innovation systems and Yücel 

(2010) who covers the mechanisms of transitional change.  

The functions (Hekkert et al., 2007) and mechanisms (Yücel, 2010) will be introduced below, and will 

then be used to develop the conceptual framework for our model of wind turbine diffusion. However, 

before introducing the functions and mechanisms, it is important to note that the activity of learning is 

central to many studies of innovation systems (Hekkert et al., 2007), and different learning activities 

can be seen in the functions and mechanisms. We can distinguish learning by actors on the supply side 

and learning by actors on the demand side. Learning by actors on the supply side can influence the 

quality and cost of the technology, and learning by actors on the demand side can influence the 

perception of the technology. An example of learning on the supply side is the well-known learning-

by-doing mechanism. Learning-by-doing implies that the cost of the technology decreases as the 

cumulative production increases, since more opportunities exist to improve the product, or production 

methods (Argote and Epple 1990; Arrow 1962; Dosi 1988). In that sense, learning-by-doing represents 

the experience gained by the industry by the scale of production. Sagar and Zwaan (2006) indicate that 

further research is needed on exactly how this learning takes place and what it involves. Learning-by-

searching is another example of learning related to the supply side and this represents the knowledge 

gathered from R&D activities related to the technology. Learning which can influence actors’ 

perceptions on the demand side can take place via direct observation or experience with a technology, 

or through social interaction in a network of actors, for instance by means of word-of-mouth.   

Below, the processes described by Hekkert et al. (2007) and Yücel (2010) will first be explained and 

compared, and will then be discussed in the light of the wind turbine diffusion case. 

Hekkert et al. (2007) distinguish the following seven processes that are important for innovation 

systems that perform well. They call these processes Functions of Innovation Systems (FIS). 

 Function 1 consists of entrepreneurial activities. Existing manufacturers do not want to take the 

risk of losing market share and core competencies by focusing on innovations. These activities are 

carried out by entrepreneurs most of the time, which generates experimental knowledge about the 

product and strengthens the learning-by-doing mechanism.  
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 Function 2 is knowledge development. Mechanisms of learning are central to innovation, and  this 

function refers to learning-by-searching and learning-by-doing. 

 Function 3 concerns knowledge diffusion through networks. Exchange of information through a 

network is important for innovation diffusion. The number of members in the network and the 

level of interaction among them are the two main drivers for information spread.  

 Function 4 concerns guidance of the search. If there are many available technologies and there are 

no clear messages for choosing one, the rate of diffusion would slow down. Thus, the government 

takes the initiative for guiding the market towards a certain technology in such situations.  

 Function 5, market formation, implies governmental support for new technologies to compete with 

the incumbent ones. Creating a protected space for new technologies will make them economically 

competitive in the market.  

 Function 6 is resources mobilization, which includes both the allocation of human capital and 

financial resources.  

 Function 7 consists of creation of legitimacy. The new technology will compete with the existing 

ones. For this reason it is likely to face opposition as well as support from different parties with 

different interests. Lobbying or bringing new legislation for adoption of a technology would create 

a legitimate environment for the new technology.  

 

Yücel (2010) introduces a number of processes as mechanisms of transitional change.  

 Experience driven change in option properties, such as the price and quality of the wind turbine 

option, occurs when the experience with an option leads to the development of an option. This 

mechanism is equivalent to learning-by-doing. 

 Resource driven change occurs because the properties can also be influenced by utilizing 

resources. These resources are not only financial, but they also include, for example, physical 

capital, manpower, and time (R&D, managerial, etc.). In general, resource-driven changes are 

induced by purposeful resource allocations of the actors who aim to alter the option properties. 

This mechanism is equivalent to learning-by-searching. 

 Individual learning refers to the improvement of the precision of information an individual has 

about the option. This can be through direct observation or the experience of an individual. 

 Social learning is about the diffusion of information among people or parties. Information flow via 

social interaction (e.g. word-of-mouth or information contagion) is a well-known process in 

innovation diffusion. 

 Commitment formation refers to the fact that decisions are not always history-independent. 

Decisions can be very much influenced by the former courses of action that were taken.   

 The preference structure of an individual or group of individuals indicates the important issues in 

assessing the available options, as well as the relative importance (e.g. weights) of this issue. In 

the short term, the preference structures of actors can be assumed to be stable. However, in the 

long term this may not be the case.  

 

Table 1 shows the general correspondence between the processes mentioned as functions of 

innovation systems and as mechanisms of transitional change.  

  



4 
 

Table 1. Correspondence between Functions of Innovation Systems and Mechanisms of Change 

 

Functions of Innovations 

(Hekkert et al., 2007) 

Mechanisms of Change 

(Yücel, 2010) 

F1: Entrepreneurial activities Experience driven change in option properties 

F2: Knowledge development Experience driven change in option properties 

Resource driven change in option properties 

F3: Knowledge diffusion through networks Individual and social learning (familiarity) 

F4: Guidance of the research 

F5: Market formation 

Commitment Formation 

Not a mechanism but an activity affecting the purchasing decision 

F6: Resources mobilization  

F7: Creation of legitimacy 

Resource driven change in option properties 

Preference structure change 

 

 

 Function 1 says that entrepreneurial activities are the key drivers of experience for developing the 

technology, because the new entrants are more willing to take risks and innovative activities. 

Yücel also says that experience driven change in option properties helps diffusion by 

accumulation of actor’s experiences leading to improvement in product properties (learning-by-

doing is an example of experience driven change). The main source of the experience defined by 

Yücel is entrepreneurial activities as Hekkert describes.  

 Function 2 refers to learning-by-searching and learning-by-doing coming from not only the 

entrepreneurs but from all actors, such as large firms and the research centers. Yücel’s experience 

driven change in option properties covers all learning-by-doing mechanisms, and resource driven 

change in option properties implies the R&D spending and other resource allocation such as 

building research centers for a certain technology, and/or industry-government agreements.  

 Function 3 is more about the demand side of the diffusion, mentioning the word-of-mouth coming 

from adopters and non-adopters. Individual and social learning from Yücel’s mechanisms address 

the same concepts.  

 Function 4, the guidance of the research represents the determination of the authorities, adopters or 

the investors to focus on a certain technology among various alternatives. Yücel addresses this 

issue by explaining the effect of commitment formation to the technology.  

 Function 5 covers the demand pull type of policies of a government such as creating niche markets 

with pilot programs or offering subsidies. This could be understood as an input fostering the 

demand for the new technology by affecting certain mechanisms. For example, if a subsidy is 

offered this would trigger more purchases and this will trigger the individual and social learning 

mechanisms.  

 Function 6 (resources mobilization) behaves as an input to Function 2 (knowledge development), 

where the resources are allocated to contribute knowledge development by the government. 

Therefore the correspondence to Yücel’s mechanisms is the same as Function 2.  

 Finally, function 7 concerns the demand for the new technology coming from the bottom, such as 

advocacy groups working for the legitimacy of the new technology. Yücel mentions this 

phenomenon by explaining the preference structure change of the actors where the conventional 

options are not satisfactory and they look for new options.  

 

For the cases of wind turbine diffusion in California and Denmark, we will analyze whether the 

concepts mentioned in Table 1 exist or not, and then their interactions will be conceptualized. Below, 
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we first describe the development of wind turbines in California and Denmark, after which we relate 

both situations to the concepts discussed above. 

3. Wind Turbines in California and Denmark 

3.1 California 

The diffusion story of California starts with the oil crises of the 1970s, when the U.S. government 

started to seek alternative solutions for energy, to reach a more secure energy supply. Electricity 

generation from wind turbines was one of the possibilities in this regard, because it was the only 

promising technology among renewables in terms of cost-competitiveness at that time (Menz and 

Vachon, 2006). Also, a secondary reason was important to policy-makers. Due to urban fog and acid 

rain during the 1970s, the environmental concerns had increased (Norberg-Bohm, 2000). Various gas 

emissions such as SO2 (which leads to acid rain) concerned the policy makers about public health 

(Menz and Seip, 2004). With these concerns, there were several policy attempts to stimulate 

environmentally friendly energy generation, such as the Clean Air Act. Although these policies did not 

create a strong stimulus for wind turbines, it initiated the increased R&D investment growth of the late 

1970s (Norberg-Bohm, 2000). Following R&D investments and additional federal and state policies 

creating incentives for wind turbines, about 95% of the wind turbines in the US are installed in 

California, where favorable weather conditions also played an important role (Sawin, 2001). It is 

possible to categorize these policies into supply-push and demand-pull policies, where supply-push 

policies aim to stimulate innovations, whereas demand-pull policies try to create a market for new 

technologies. 

Supply-push technologies are easily visible from the R&D spending. Until 1977, the R&D budget was 

rather low for all energy types, but the Department of Energy decided to increase the budget about six 

times (Norberg-Bohm, 2000). Yet, with the change of the government policy with Reagan’s 

administration, the budgets were cut drastically and it remained low until 1999  (Norberg-Bohm, 

2000). In total, from 1975 to 1988, the US spent $427.4 million on R&D only for wind technology (in 

real dollars). 

Demand-pull policies in the US started with the Public Utilities Regulatory Policy Act (PURPA), 

which was published in 1978 and implemented in 1981. This policy required utilities to purchase 

power from “qualifying facilities” which are defined as small renewable heat and/or electricity 

generators (Martinot et al., 2005). PURPA is the ancestor of the feed in tariff of today, however, the 

cost calculation was different. The cost was determined as “avoided cost”, which is the marginal cost 

for a public utility to produce one unit of power (IEPA, 2014). The calculation of this cost was left to 

the states, but the aim was to approximate the avoided costs of the utilities (Martinot et al., 2005). In 

1980, California offered a 25% state tax credit for investments in wind power, where there was also a 

25% federal tax credit. Federal tax credit ended in 1985, and state tax credit was reduced in 1985 and 

ended in 1987 (Sawin, 2001).  

California took the PURPA act to a further stage by offering long term contracts at a fixed electricity 

price for the first 10 years, in which the contract duration varies between 15 to 30 years (Martinot et 

al., 2005). This was a real stimulant in the California wind market, but only for a short period of time. 

This offer started at the end of 1983 and continued until 1985. In 1991, there was a new tax credit for 

wind power. The federal government offered 1.5 ¢/kWh reduction on electricity cost for wind with the 

Energy Policy Act. The implementation of these policies and corresponding wind turbine installations 

can be seen in Figure 1. 
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PURPA = Public Utilities Regulatory Policy Act; CA = California; PG&E = Pacific Gas & Electric Company; SCE = Southern California Edison; 

ISO4 = Interim Standard Offer 4 

Figure 1. Annual wind turbine installations (MW) and policies in California (Norberg-Bohm, 2000) 

3.2 Denmark 

In Denmark, the wind turbine energy topic was raised during the same time, where the main motive 

was the oil crises of the 1970s. Denmark had no energy source of its own, therefore the country was 

highly dependent on imports. In 1973, 94% of Denmark’s energy supply was coming from imported 

oil and the rest was mainly based on coal, which was also imported (Kamp, 2002). Environmental 

concerns were also on the rise, and it took a significant role in determining Danish energy policy for 

the following years. Society was strongly against nuclear energy, therefore Denmark had no other 

choice than wind turbines, since other renewables were far away from being cost competitive. Similar 

to the United States, Danish wind turbine policies followed two paths: supply-push and demand-pull.  

Under the supply-push policies Risø National Laboratory and the Technical University of Denmark 

started a Wind Power Program, to develop knowledge about large wind turbines (Van Est, 1999). In 

the first phase of this program, 35 million DKK was spent on developing wind turbines, and 82% of 

this budget went to development of large wind turbines (Van Est, 1999). 

Apart from putting R&D efforts into wind energy, the Wind Power Program directly involved the 

utilities in the program, since they would be the potential buyers of the technology. This involvement 

helped utilities to become more familiar with the technology from the development phase, which 

could be also interpreted as a demand-pull policy (Kamp, 2002).  
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The development of small scale wind turbines in Denmark started independently from R&D spending, 

with the efforts of small entrepreneurs. These entrepreneurs were in favor of small, locally owned 

power plants instead of centralized power plants. Besides, the society was environmentally conscious, 

therefore their mind-set was highly in favor of renewables instead of nuclear energy (Sawin, 2001). 

Therefore the Danish government provided clear aims to the producers by stating that they wanted to 

reach a 10% wind share in electricity generation by 2000 which is named the EnergiPlan Act (Olume 

and Kamp, 2004). In 1979, the Danish Ministry of Environment ordered utilities to provide wind 

turbine access to the grid and pay the fair rates for the electricity they generated. They provided 30%of 

the investment cost payment. This reduction was given to buyers of wind turbines, not to the producers 

(Buen, 2006).  

It should be kept in mind that this subsidy was given to the wind turbines which are approved by Risø 

Test Station assuring quality. Also a Danish wind atlas was published showing the best locations for 

siting wind turbines in 1980-1981. In 1985, there was an agreement between the government and 

utilities for 10 years. Utilities were able to buy the wind generated electricity by paying 85%of its 

price. This policy resulted in an increase in wind turbine installations.  

In 1986-87 investment subsidy was reduced to 20% and 10% respectively. And this subsidy was 

removed totally in 1989 (Kamp, 2002). In addition, the criteria for receiving the investment subsidy 

were tightened. In 1988, there was a new agreement between the government and the power 

companies to install 100 MW wind power by the end of 1990. However, this agreement was only 

totally realized at the end of 1992 (Buen, 2006).  

Figure 2 shows an overview of policies over time and the wind turbine installations per year in 

Denmark during 1976-2002. The figure can be interpreted as the visual representation of the policy 

procedures and their effects on wind turbine installations. Note that the California tax rebate became 

an advantage for the Danish producers, since they export wind turbines to the U.S. This advantage 

contributed to their knowledge of building better wind turbines. 
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DIFKO = Joint company export financing; IS = investment subsidy; PS = production subsidy; TRI = turbine replacement incentive;  

GCS = green certificate scheme.  

Figure 2. Annual wind turbine installations in Denmark and related policies (Buen, 2006) 

4. Model structure 

After describing the concepts for analyzing innovation diffusion and introducing the stories of 

California and Denmark, this section aims to bring them together into one modeling framework. The 

presence of the change processes and how they are shaped are explained in the following paragraphs. 

4.1 Case studies and their relationship with the theory 

The main similarities among these two cases in terms of the functions introduced in Table 1 are the 

following. Entrepreneurial activities (F1) were existent in both cases resulting in reduction in 

investment costs and improvement in the capacity factor of wind turbines by means of the learning-by-

doing mechanism (Sawin, 2001; Kamp, 2002). The knowledge development function (F2) was also 

active in both cases, which is triggered by R&D investments of the governments. Knowledge diffusion 

through networks (F3) is also active in both cases, because this function implies individual and social 

learning about the new technology via direct experience of the adopter, or hearing, seeing or talking 

about the new technology. For the wind turbine installers, the individual learning mechanism was 

active, whereas for the other utilities which are considered as potential adopters, the social learning 

mechanism was active. Market formation (F5) was provided in a similar manner in both cases with the 

provision of subsidies, instead of creating a niche market or making a pilot program. Since there was 

no competitive environment among the renewable technologies, and the wind turbine was the only 

alternative to the conventional technologies, resource mobilization (F6) is not affected by other 

technologies, the only key-point was the governmental mind-set and the budget (nuclear energy was 
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on the agenda of the government, but it was excluded from comparison, due to its negative 

environmental perception).  

There was no other alternative which could make commitment formation necessary (F4) since wind 

turbines were the only alternative in terms of cost competitiveness. Also, creating of legitimacy (F7) 

was not necessary, since the government itself wanted to have cleaner energy. This means that these 

two functions were not active in these cases.  

The main mechanisms that were active can thus be summarized as learning-by-doing (F1, F2), 

learning-by-searching (F2, F6) and knowledge diffusion through networks/familiarity (F3). F5 consists 

of the policies that were implemented by the government.   

These similarities show that both cases have the same diffusion structure with the same active and 

inactive mechanisms. Yet, the way in which these mechanisms work, created the differences between 

the two cases. For instance, the knowledge diffusion through the network was stronger in Denmark 

compared to California, because the government involved the utilities in the development of wind 

turbines from the beginning. The Danish Windmill Owners Association published a monthly magazine 

and brought wind turbine owners and potential adopters together with conferences from the early 

phases of wind turbine development (Kamp, 2002). Another difference between California and 

Denmark came from the determination of the Danish government and the Danish society on adopting 

wind turbines as an energy source from the beginning. They saw wind turbines as an only alternative, 

because they did not have any resources for fuel for conventional technologies, and they did not want 

nuclear energy with the security and environmental concerns. Last but not the least, even though the 

oil crises affected both countries, Denmark was affected more by this, because the average cost of 

producing energy from conventional sources was nearly three times more than the United States, 

which made an expensive option like wind turbines more affordable. 

4.2 General model description 

The active mechanisms mentioned above were used to model wind turbine diffusion with system 

dynamics. Since both cases have the same active mechanisms, the structure of the model is the same 

for both cases. The main mechanisms that were identified in the previous section, i.e. learning-by-

doing (green-red loops R1 and R2), learning-by-searching (blue), and familiarity (orange-red loop R3) 

are shown in Figure 3. Although all mechanisms seem positive, the LCOE’s of conventional 

technologies have to be considered as well, since the adoption decision is based on comparing LCOE 

of wind turbines with LCOE of conventional technologies. 
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Figure 3. Causal loop diagram of the main mechanisms in the model 

At an aggregated level there are two main influences on wind turbine installations, the familiarity with 

wind turbines and affinity with wind turbines. Familiarity increases with installations, and decreases 

with time. Affinity is a way of comparing wind turbines with other technologies and determining the 

share of wind turbines in new capacity installation. This comparison is based on the levelized cost of 

energy (LCOE). The LCOE represents the price of electricity at which electricity should be generated 

from a power source to break even over the lifetime of a power plant (NREL, 2013). It is a calculation 

method including both performance and cost related factors, such as capacity factor and investments 

costs, which improve over time by the learning-by-doing and learning-by-searching mechanisms. 

Appendix A contains a more detailed model description. 

This diffusion structure (i.e. model structure) is the same for California and Denmark. The difference 

between the cases lies in the quantification of the model. The initial values and parameter values differ 

between the cases, and the policies that have been implemented also differ between the cases. The 

model has been represented in Vensim. 

Before going through the model results, a brief explanation about the validation work should be given. 

With regard to model structure, a parameter confirmation test and dimensional consistency test were 

conducted. Following this, extreme conditions were applied to LCOE, familiarity and learning 

parameters and the results showed that the model behaves as expected under these extreme conditions. 

For the sensitivity analysis, the parameters were altered with a 10% increase and decrease. Univariate 

analysis was conducted using all parameters, and multi-variate analysis was conducted on parameters 

related with familiarity, on parameters related with learning curves, and on parameters related with 

affinity. The results showed that the model is numerically sensitive to the parameter value changes, as 

expected. The sensitivity to the alpha values which influence learning-by-doing is largest. The alpha 

values in the model were chosen so that the same cost and performance improvement would be 

achieved in the model from 1980 to 1995 as in the available data from these two years. A comparison 

with historical data (Figure 4 below and Appendix C) shows that the model is able to capture the main 

dynamics of the diffusion stories in California and Denmark. Although the actual data points show 

significant differences, the behavior is representative considering the high R2 values. 

R1 

R2 

R3 
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 5. Model Results 

5.1 Base results 

The initial results of the model for yearly installations of wind turbines are shown in Figure 4, with 

their fit to the real wind turbine installations. As the base results in Figure 4 show, the model is able to 

capture the stories of innovation diffusion. However, it should be noted that the initial settings are 

quite important to reach real world imitating results. Therefore, we have tried to set the initial values 

of variables in an explainable manner as much as possible (see Appendix B).  

California yearly installations (MW/year)

 

Denmark yearly installations (MW/year) 

 

Figure 4. Comparison of model results and actual yearly wind turbine installations (red dots represent the real 

values whereas blue lines are the model results) 

The blue lines in Figure 5 show the model results for the total installed capacity of wind turbines over 

the years. The behavior of the model without any policy interventions is also shown in Figure 5 (red 

lines), indicating the results of different initial conditions and parameters of these cases.  

 

California 

Cumulative wind turbine installations (MW) 

 

 

Denmark 

Cumulative wind turbine installations (MW) 

 

 
 

Figure 5. Cumulative wind turbine installations with (blue) and without policies (red) 

 

As is clear from Figure 5 the initial settings lead to a considerable amount of installations in Denmark 

whereas there are few installations in California. The reasons for this can be explained with the 

following combined effects:  

First of all, utilities in Denmark are more sensitive to price changes in energy, because they purchase 

all of the resources from outside at very high prices compared to California. This situation results in 

total installed capacity of wind turbines
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easy switching to a new energy alternative, since their satisfaction with the current ones is not that 

strong.  

Secondly, the effectiveness of users and non-users for triggering adoption is higher in Denmark, and 

this is beyond the power of government, because this effect was coming from the bottom, where the 

investors and entrepreneurs worked together for effective communication. Such a movement was not 

observed in the California case. When the effectiveness of users and non-users is stronger, this triggers 

the feedback mechanism of familiarity, and familiarity has a multiplicative effect on the demand share 

of wind turbines.  

The learning curves were also effective in these results, but in a subtle way. The key criterion for 

adoption is to have a profitable value for wind turbines compared to conventional technologies, not to 

have the lowest value in the global market. Since the cost of conventional technologies was already 

high in Denmark, with the cost reductions coming from learning curves, it was easier to reach the 

desirable LCOE in Denmark (note that Denmark also gained advantage from the California tax rebate, 

which was modelled implicitly by calibrating the learning-by-doing factor). On the other hand, in 

California, the cost of generating electricity from conventional sources was already cheaper, and as a 

result, the learning curves had to be more effective to reach a desirable cost. For this reason, Denmark 

was more promising for wind turbine diffusion initially, which already creates an advantage for the 

diffusion process. However, without any policy intervention, the rate of innovation diffusion would 

still be low in Denmark. Thus, it would be wrong to conclude that the policies were not the real 

reasons for fostering wind turbine diffusion. For this reason, policy tests were conducted to see the 

effects of policies in fostering wind turbine diffusion. 

5.2 Policy tests 

All policies were implemented in isolation to observe the sole effects on the diffusion, and also all-

but-one type of policy tests were conducted by removing a policy from the full model to see whether 

there is a policy that hinders the installation rate. Additionally, the policies existing in one of the cases 

but not in the other one were also added to the other model to see what would be the possible 

consequences of that policy. For example a PURPA act type of policy did not exist in Denmark, but 

for a what-if analysis it was put into the Danish model. The results for each policy are explained 

briefly below. The graphs are mainly shown in total installed capacity, since it is the main variable 

representing adoption, however graphs of yearly installations are also shown if there is interesting 

behavior. 

Effect of R&D efforts 

The effect of R&D investments on wind turbine installations triggers the learning-by-searching 

mechanism, leading to a decrease in LCOE of wind turbines and making it a more attractive option for 

the utilities. However, the results show that this effect is quite small for fostering wind turbine 

installations (Figure 6).  
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California(MW) Denmark(MW) 

  

Figure 6. Effect of R&D investments on cumulative wind turbine installations 

It is important to note that, in total the United States spent 538.5 million (in 1980 $) from 1980 to 

1995, where in total it spent 200 million from 1970 to 1980 for R&D of wind turbines. On the other 

hand, Denmark spent 33.9 million from 1980 to 1995(in 1980$ value), and they spent 12.5 million 

from 1970 to 1980 which was treated as an initial value (Norberg-Bohm, 2000; Sawin, 2001). These 

results show that, in the model learning-by-searching mechanisms are not enough for effective 

diffusion, because it takes time to reach a cost competitive result for a new technology only by 

learning-by-searching. In the meantime, since the new technology is expensive, there is no or little 

adoption, and this situation results in a decrease in familiarity, because familiarity requires a certain 

ratio of social exposure. One of the main sources of social exposure is the adopters, and the word of 

mouth coming among non-adopters about the technology, which is not triggered effectively in this 

policy. 

Effect of subsidies 

The effect of subsidies on wind turbine installations aims at the demand for wind turbines by directly 

influencing the LCOE. The subsidies in general are more effective than R&D efforts (Figure 6),  but 

they do not contribute to the diffusion significantly (Figure 7).  
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 Figure 7. Effect of subsidies on wind turbine installations 

The Energy Policy act remains ineffective when it is implemented in isolation, because since the 

learning-by-doing mechanism is inactive due to low installations, the cost reduction is not enough to 

make wind turbines competitive with 15 $ subsidy per MWh. It is a lso important to note that the 

effect of investment subsidies is similar to the subsidies offered on LCOE, because a significant part 

of LCOE belongs to investment cost in wind turbine technology, since there is no fuel cost and little 

operation cost.   
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Effect of the PURPA act 

The PURPA act, which was explained in section 3.1, required utilities to purchase power from 

qualifying facilities. The effect of the PURPA act on wind turbine installations shows that this policy 

is quite effective in California, making the cost effectiveness of the wind turbines closer to the 

conventional technologies (Figure 8).  

 
Figure 8. Effect of the PURPA act on wind turbine installations 

In Denmark, the cost of conventional technologies is already high for the utilities, therefore they do 

not consider the same LCOE for wind turbines and conventional technologies with a high level of 

affinity (meaning that they still thought it was expensive). The level of affinity is not that strong in 

Denmark with the PURPA act, therefore, even though the installation rate increases due to the better 

price offer for the LCOE of wind, it is not as effective as California case.  
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Effect of the EnergiPlan act 

The EnergiPlan act policy, which aims for a %10 energy share of wind turbines by 2000, represents 

the determination of the Danish government in setting wind turbines as the only energy alternative and 

determining persistent goals for the wind turbine share in energy generation. This policy has a soft 

effect similar to marketing, making the option visible to consumers. However, such a mechanism is 

not observable in California, due to rapidly changing policies and governmental mind-set towards 

renewables. Therefore, to see the possible effects of EnergiPlan act on California’s installations, this 

policy is added to the California model (Figure 9).  

 

Figure 9. Effect of the EnergiPlan act on wind turbine installations 

The results show that in isolation the EnergiPlan act also does not have a significant effect, because 

even though the familiarity plays a significant role in adoption, it is not sufficient by itself, because if 

the option remains expensive, people would not purchase it. Therefore, the effect of this policy is also 

tested with the PURPA act and the results showed that awareness campaigns in addition to demand-

pull policies have significant effects in fostering diffusion. 
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Effect of long-term contracts 

As an extension of the PURPA act, California offered long-term contracts for installing wind turbines. 

There was no such offer in Denmark, therefore this policy is implemented in the Denmark model to 

see the possible effects (Figure 10). This policy creates a temporary demand for installing wind 

turbines, but the effects are not as strong as the PURPA act. The results of the Danish case also shows 

similar results.  

 
 

Figure 10. Effects of long-term contracts on wind turbine installations 

 

Effect of government installing wind turbines 

Denmark decided to install 100 MW of wind turbines with government funding with an agreement 

with the utilities from 1988 to 1992. There was no such attempt in California, therefore to show the 

possible results this addition is modelled (Figure 11).  

 

Figure 11. Effect of government installing wind turbines on diffusion 

The results show that the effect of governmental installing wind turbines has a temporary boost in the 

installations. Also, the familiarity changes were checked for these external installations and the model 

shows almost no change in familiarity. The reason for this is because these installations are added 

from outside the system, and it does not affect the yearly installations done by utilities or cooperatives. 
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Therefore, the affinity to wind turbine installations does not change, leading to no change in 

familiarity. This value affects the social exposure from users and non-users but since the impact itself 

is quite small, there is no long-lasting effects of government installations of wind turbines. 

5.3 Summary of model results 

The model shows that the differences between the California and Denmark cases are twofold. First the 

initial settings in Denmark shows that it provides a more suitable environment for wind turbine 

diffusion with a stronger network, expensive LCOE of conventional alternatives, high sensitivity of 

adopters to price due to a fluctuating and expensive market, and a positive mind-set towards wind 

turbines. On the other hand, in California, the conventional alternatives were already cheaper which 

requires wind turbines to be improved much more to be cost competitive. Also, people had no interest 

in building networks regarding wind turbines, which also resulted in decreasing familiarity with wind 

turbines and consequently less installations. Apart from that, the market was more stable in 

conventional technologies, which made the utilities to be reluctant in switching to a new technology. 

All of these initial conditions resulted in a less promising environment for wind turbine diffusion in 

California compared to Denmark.  

Although the initial settings were in favour of Denmark, policy interventions exist to counteract the 

disadvantageous situation of California. From a policy making perspective, we see that the most 

effective policies in both cases are demand-pull policies by offering subsidies and feed in tariffs. The 

Denmark case showed that it is also important to create awareness about the new technology to 

increase its adoption rate. The model results also show that the direct interventions on installing wind 

turbines such as long term contracts in California and government installing wind turbines in Denmark 

have temporary effects on diffusion, whereas the effects of stimulating markets also impacts the 

adoption in the future due to increased familiarity and triggered a learning-by-doing mechanism. R&D 

efforts also improve the adoption, but it has effects to a certain extent, therefore spending vast amounts 

on R&D is not a desirable policy according to the results of the model. 

6. Discussion and Conclusions 

This research is an attempt to explain innovation diffusion with a more comprehensive dynamic 

approach. The study showed promising results in behaviour for modelling innovation diffusion, by 

looking at diffusion stories which occurred in the past. Even though the data points showed significant 

differences, the behavior was representative, making it useful for analyzing the behavior of  the 

diffusion. This way it was possible to observe the ability of the system dynamics method to capture the 

different diffusion paths. This could be an indication for future studies, with the suggestion of 

forecasting the direction of a certain technology in society with planned policies.  

Developing a system dynamics model for a historical case is not often done in the system dynamics 

literature. This case has shown that this can also be an interesting contribution to the knowledge about 

a case, as it allows for a coherent and integrated dynamic explanation of the development of the case 

over time. 

System dynamics also brought a new ability to test the non-existent policies which could be 

considered as a what-if analysis. With the common methods, such as regression analysis, such  a 

transparent what-if analysis is not possible. Therefore for understanding the possible effects of a 

policy, system dynamics may be used. Additionally, this study also showed that the supply side of the 

innovation of diffusion is worth considering, since it has important effects on creating the demand. 



19 
 

Another issue realized in this research is about the diffusion of innovation literature itself. Different 

attempts to give the diffusion studies a more dynamic approach have been tried, but these attempts 

have remained theoretical so far (Hekkert’s FIS has not been implemented in a quantified manner to 

the authors’ knowledge). This study was also an attempt to apply these theoretical suggestions to case 

studies. To test the validity of these theories, more case studies should be conducted with other well-

known diffusion stories. This way, the strength of these theories can be supported. 

It should be noted that the conditions and the mind-sets of the actors have changed in wind turbine 

diffusion since the 1980s. At that time, the knowledge about environmental hazards coming from 

conventional technologies were only at the initial stage. Therefore, there was no green demand coming 

from the consumers, and the utilities only focused on the profit side of generating electricity. Yet, this 

is not the case today, the number of environmentally friendly consumers has increased, demanding 

green energy from the utilities even at a higher price. The change of this mind-set offers a new 

research focus, to understand the change in people’s minds and the factors affecting this change. 
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Appendix A Model description 

This appendix contains more details about the implementation of the model structure, which was 

shown at an aggregated level in Figure 3.  

 

The learning-by-searching and learning-by-doing mechanisms are modelled with the two factor 

learning curve formula (Kouvaritakis et al., 2000). 

 

The formula for cost improvement is as follows: 

𝑆𝑃𝐶 = 𝐴. (
𝐶𝐶

𝐶𝐶0
)−∝. (

𝐾𝑆

𝐾𝑆0
)−𝛽                                             (1) 

 

In equation (1), SPC stands for the investment cost per unit for the technology (specific cost ) and CC 

is the cumulative installed capacity at a given time, which is divided by the cumulative capacity at 

time 0 (CC0). –α is the learning factor, and A is the specific cost at time 0. KS stands for the knowledge 

stock at a given time, measured by the R&D investments of that year. KS0 is the initial knowledge 

stock and β represents the learning by searching factor, which is the representation of the percentage 

improvement on the investment cost coming from the learning-by-searching process, similar to –α 

representing the percentage improvement of learning-by-doing process. This formula is also adopted 

for performance improvement of the capacity factor, with positive α and β values.  

 

Affinity with wind turbines represents the probability of an actor to purchase wind turbines by 

comparing it with the conventional technologies. Modelling affinity and familiarity is adopted from 

Struben and Sterman’s (2008) work on electric vehicle adoption. The formula of affinity is based on 

standard multinomial logit choice models, which is a commonly used framework in modelling 

consumer choice among the different options in the consideration set. In this case, the consideration 

set consists of wind turbine vs. conventional technologies: 

𝑎𝑗 =  𝑎∗exp (−𝛿 [
𝐿𝐶𝑂𝐸𝑗

𝐿𝐶𝑂𝐸∗ − 1 ])      (2) 

 

Equation (2) represents the affinity of wind turbines based on LCOE. aj is the affinity towards wind 

turbines at a given time, where a* represents the reference affinity for the reference LCOE value 

LCOE*. The reference value stands for a normal value that the adopter has an idea about. For 

example, an actor decides whether the given LCOE of the available options is expensive or not by 

comparing it with the reference LCOE*. If the given LCOE is more expensive than the reference 

value, the affinity decreases and vice versa. The reference values are determined separately for 

conventional technologies and for wind turbines. For conventional technologies, the average LCOE of 

all times is taken as LCOE* and then affinity at this value is assigned as 1, because, on the average 

price of electricity generation cost, the utilities will go for the conventional methods. After 

determining reference values of conventional technologies, wind turbine reference values are 

determined accordingly. Assuming that if wind turbine is competitive with the conventional 

technologies, the affinity to the wind turbines is assigned to 1 with a lower reference LCOE* value, 

since it is a relatively new technology and utilities will have questions in their mind for going for a 

new technology. Besides there will be switching costs of the utilities for moving to a new technology, 

due to limited experience and unknowingness of the new technology. This way affinity is modelled as 

a decision making process of utilities for purchasing wind turbines. The formulation of LCOE is given 

in (3): 
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𝐿𝐶𝑂𝐸𝑡 =  
𝐸𝐴𝐶

𝐸𝑡
+ 𝑀𝑡 + 𝐹𝑡      (3) 

where 

𝐸𝐴𝐶 =  
𝐼0.𝑟.(1+𝑟)𝑛

(1+𝑟)𝑛+1
       (4) 

 

EAC stands for equivalent annual cost representing the cost per year of owning and operating an asset 

over its lifetime (Short et al., 1995). I0 represents the overnight cost of the project meaning if the 

project was completed overnight (no interest rate was taken into account). Et stands for the electricity 

generation in the year t, r stands for discount rate, n represents the lifetime of the project (which is 20 

years for wind turbines), Mt represents the operation and maintenance cost in year t and Ft represents 

the fuel cost in year t. Utilities make their decision based on this LCOE in the model with the 

corresponding affinity to the LCOE of that year. 

 

However, to be able to consider wind turbines as an option of energy generation, the actor should be 

familiar with it. Knowledge diffusion through networks is another important part of the diffusion 

process, therefore familiarity should also be modelled. Modelling familiarity is also adopted from 

Struben & Sterman’s (2008) study. The causal loops are shown in Figure A1. 

 
Figure A1. Stock-flow diagram for modelling Familiarity 

 

Familiarity is a stock variable between 0 and 1, where 0 represents no familiarity with the technology 

and 1 represents that all adopters and potential adopters are familiar with the new technology. 

Familiarity gain is determined by the social exposure coming from marketing campaigns, individual 

learning and social exposure coming from the users, and finally the social learning standing for the 

social exposure coming from non-users, which is word-of-mouth. The equation is shown below: 

𝑛𝑡 = 𝑎 + 𝑐𝑖𝐹 (
𝑊

𝑁
) + 𝑐𝑗𝐹 (1 −  

𝑊

𝑁
)     (5) 

 

In the familiarity gain equation which is illustrated in (5), a represents the social exposure gained by 

marketing/awareness programmes ci represents the effectiveness ratio of the users, F represents the 

familiarity value at that time, W represents the installed MW of wind turbines, N represents the total 

installed capacity for electricity generation in MW and finally cj represents the effectiveness ratio of 

non-users on adoption.  

 

Familiarity also decays over time, when there is not enough social exposure. This decay occurs in a 

non-linear way, because if the level of social exposure is low, familiarity decays very fast, but if the 
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level of social exposure is high it does not. This is modelled with the following exponential function 

(Struben and Sterman, 2008): 

∅𝑡 =  ∅0
exp (−4𝜀(𝑛𝑡− 𝑛∗))

1+ exp (−4𝜀(𝑛𝑡− 𝑛∗))
      (6) 

 

In this function, which is a characteristic logistic function, nt represents the social exposure from users, 

nonusers and awareness campaigns at time t. n* represents the reference rate of social exposure where 

familiarity decreases at half of the normal rate. The greater the exposure, the slower the decay. ∅0 is 

the maximum familiarity decay rate. Familiarity decreases fastest when nt is small. ε stands for the 

slope of the decay rate at a given point. It is assumed that ε is 1/n* which normalizes the elasticity of 

the familiarity decay to exposure at 1. 

 

Appendix B- Initial Settings for the Model 

 

Although the active mechanisms for California and Denmark are the same in the model, there are 

important differences in the initial settings triggering these mechanisms. These differences are 

illustrated in the model by determining the initial values of variables as well as the values of 

exogenous variables. The values of these variables an the reasoning behind those values are shown in 

the Table below. 

 
Variable CA DK Comments 

Alpha value for 

learning by doing 
on capacity factor 

1.07 1.07 Capacity factor learning did not show significant changes between CA and DK, therefore in the 

model, this variable is treated as a global value with the same values. 

Alpha value for 

learning by doing 

on investment cost 

0.88 0.95 When we look at the investment cost at 1980 and investment cost at 1995, we see that CA had 

a more  impressive learning curve compared to DK. (For investment costs, the lower the alpha 

value, the greater the learning impact, since it represents the percentage reduction on the cost). 
Also, as Hekkert et. al mentions, learning by doing is hugely affected from entrepreneurial 

activities (2007). In Denmark the entrepreneurs were producing agricultural equipment before, 

therefore they learned slowly with trial and error (Karnoe & Garud, 2001)  

Beta value for 

learning by 

searching on 
capacity factor 

1.04 1.04 Since capacity factor is treated as a global value, this learning effect is also the same. The 

reason it is lower than alpha value is based on literature (Kamp, 2002). 

Beta value for 

learning by 
searching on cost 

0.90 0.96 The reason to have lower value for CA which results in better cost reduction is based on 

available data. Note that these beta values are also less effective compared to alpha values 
which are based on literature (Kamp, 2002) 

Effectiveness of 

contacts of nonusers 

0.38 0.45 Since the communication among potential adopters in DK was higher than CA due to 

published Naturlig Energi magazine where the performances of wind turbines was made public 

(Kamp, 2004). This magazine helped them to increase the knowledge of nonusers.  For this 
reason, the effectiveness of contacts of non-users is assumed to be 7% less in CA. 

Effectiveness of 

contacts of users 

0.68 0.8 Communication between the users of wind turbines were also higher in DK due to Wind 

Meetings where knowledge and experience were shared between manufacturers, owners and 
researchers. They also established Danish Windmill Owners Association (Kamp, 2004). For 

this reason, the effectiveness of contacts of users are assumed to be 12% less in CA. 

Initial familiarity 0.25 0.25 Initial familiarity with the wind turbines was low but not zero for both cases. Both CA and DK 

had historical experiences with wind turbines (see Section 3) and they were familiar with the 
windmills. There was no real indication of familiarity difference between two cases in the 

literature, therefore they are assumed to be the same.  

Initial installed 
capacity for 

electricity 

generation 

55000 7072 This number is based on EIA data, reflecting the real values (in MW). 

Initial investment 
cost of wind 

turbines per kW 

2500 
 
1322 This data is taken from the literature and converted to 1980’s dollar value. (Sawin, 2001; Lantz 

et al 2012). 

Interest rate 0.66 
(mean) 

0.0265 

(stdev) 

0.77 
(mean) 

0.0172 

(stdev) 

The interest rates are also taken from the literature (Sawin, 2001). 

Maximum decay 

rate 

0.42 0.42 Maximum decay rate for both cases are assumed to be same, because this value represents the 

reference value for forgetting rate. Due to differences in cultures this number could differ, but 

in general, people tend to forget the new technology when the exposure is not frequent enough 
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(Struben & Sterman, 2008). Since this situation is valid both for CA and DK the same value is 
used in the simulation. 

Normal social 

exposure 

0.20 0.20 Similar to maximum decay rate, this value represents the reference value for forgetting rate. 

When it is 0.2 it means that familiarity decays with the half of the maximum decay rate. Since 
maximum decay rate is assumed to be the same for both cases, it is reasonable to take the same 

reference value for normal social exposure, ensuring the decay behaves the same for both 

cases. 

Operation cost of 
wind turbines 

14.19 
(mean) 

3.53 

(stdev) 

12.73 
(mean) 

3.391 

(stdev) 

These costs change over time, therefore their mean and standard deviation is given in the table.  

Percentage increase 

of installed 
electricity capacity 

per year 

2.5% 2.5% These values are also calculated on average, by looking at the net changes of installed capacity 

between 1980 and 1995 (EIA, 2012). The average capacity increase per year for both cases 
turned out to be the same  

Sensitivity value for 
wind turbines 

 

1 1.8 The reason for taking Danish utilities’ sensitivity values higher than California is due to 
market’s results. When weighted average cost of conventional methods and LCOE of wind is 

examined, it is observed that standard deviation of the prices is much higher in Denmark 

compared to California. This situation implies an insecure market structure with more sensitive 
buyers to price. The numbers are calibrated with the fit to historical data. For both values DK 

values are 1.8 times higher than CA. 
Sensitivity value for 

conventional 

technologies 

0.54 1 

Weighted average 

cost of conventional 

methods (Average 
LCOE) 

24.87 

(mean) 

2.607 
(stdev) 

61.61  

(mean) 

11.63 
(stdev) 

These values are based on historical data. Since the value changes over time the mean and the 

standard deviation is given in the table. As can be seen, the prices are more stable in California. 

LCOE of wind 31.75 

6.95 

56.83 

19.68 

These values are calculated by the model, but to show the changes in the price over time it is 

added to the table.  
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Appendix C – R2 and MAE/Mean Tests Results 

 

The tables below show the real data, model data and the results of these tests. 

 Denmark  R2 and  MAE/Mean tests 

   investment cost cumulative installations yearly installations 

   real model real model real  model 

 1980 1322 1322.00 2 5.00 2 1.40 

 1981 1322 1248.06 6 6.09 4 2.41 

 1982 1360 1195.01 10 9.12 4 4.56 

 1983 1284 1145.09 14 16.19 4 14.32 

 1984 1265 1091.72 20 31.04 6 13.76 

 1985 1209 1042.04 47 48.62 27 22.28 

 1986 1133 998.38 72 73.75 25 25.57 

 1987 1058 959.49 112 104.08 40 26.80 

 1988 982 925.85 190 135.94 78 57.84 

 1989 1095 895.92 246 185.26 56 55.51 

 1990 1076 868.11 325 242.24 79 60.71 

 1991 1020 843.12 392 300.26 67 62.08 

 1992 982 820.78 435 358.17 43 39.31 

 1993 906 800.83 467 407.81 32 62.75 

 1994 831 783.00 520 470.23 53 82.81 

 1995 793 766.64 599 552.86 79 96.69 

 R2 0.87 0.98 0.76 

 MAE/Mean 10.95% 15.09% 27.56% 

 
         
 

 

California  R2 and  MAE/Mean tests 

   investment cost cumulative installations yearly installations 

   real model real model real  model 

 1980 2500.00 2500.00 0 8.00 0 0.00 

 1981 2297.00 2189.47 10 7.87 0 0.00 

 1982 1847.19 1990.29 70 11.03 10 3.17 

 1983 1466.00 1792.83 240 22.77 60 11.74 

 1984 1404.00 1374.73 617 300.35 170 277.58 

 1985 1350.00 1063.98 911 682.08 377 381.72 

 1986 1044.07 906.82 1235 973.06 398 290.99 

 1987 750.00 813.02 1304 1192.55 275 219.48 

 1988 701.75 750.37 1202 1279.71 154 87.16 

 1989 698.50 707.12 1302 1291.80 59 12.09 

 1990 681.37 675.06 1454 1297.51 64 5.71 

 1991 618.11 649.39 1679 1369.92 161 72.41 

 1992 621.00 627.24 1655 1443.12 165 73.20 

 1993 632.00 607.96 1608 1481.98 17 38.86 

 1994 599.50 590.91 1609 1510.12 9 28.14 

 1995 567.00 575.53 1523 1527.64 54 17.52 

 R2 0.96 0.96 0.83 

 MAE/Mean 7% 13% 39% 

  


