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ABSTRACT 

According to natural decision models, good decisions are mainly dependent on 

understanding the consequences of chosen options. Thus, receiving information on 

causal relations between options and results is supposed to be helpful. Using a capacity 

management simulator, we conducted laboratory experiments with two levels of 

complexity in which participants had to make decisions repeatedly. Results indicate that 

showing not only key performance indicators reflecting the consequences of chosen 

options on the user interface but also visualizing causal relations between them leads to 

better decisions. The results are stronger in the more complex situation.  
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THE CHALLENGE OF DYNAMIC DECISION MAKING 

 

Dynamic decision making (DDM) – defined as a sequence of multiple, interdependent, 

and sometimes real-time decisions occurring in complex dynamic environments 

(Brehmer, 1992; Edwards, 1962) – is an ubiquitous challenge in society, business, and 

personal affairs. However, human performance in such tasks is generally poor. In more 

than 30 years, dynamic decision making research has accumulated ample evidence of 

decision making failures in dynamic complex systems. Poor results persist over a wide 

range of systems such as a town, a warehouse, a supply chain, fishery, and a coal-fired 

power plant (Dörner, 1980; Dörner et al., 1994; Moxnes, 1998; Reichert & Dörner, 

1988; Sterman, 1989b; Wittmann & Hattrup, 2004). Typically, these systems consist of 

stocks and flows as well as interrelating information links (Forrester, 1961). They are 

characterized by feedback and delays between cause and effect (Sterman, 1994). Human 

decision makers perceive these systems as opaque, incomprehensible, and hard to 

control (Dörner, 1996).  

 

While a universal theory of dynamic decision making has not yet emerged (Fox et al., 

2013), various research efforts in the past three decades have contributed to a better 

understanding of the “logic of failure,” as Dörner (1996) named these phenomena. 

Grounded in psychology, one stream of research explored the relationship between 

DDM performance and a broad range of personal traits, specifically intelligence, 

knowledge and personality. Although early studies did not find performance in micro 

world experiments correlating with tests of intelligence or personality (Brehmer, 1992; 

Dörner et al., 1994), more recent research using advanced intelligence structure tests 

observed a significant, medium strong relationship between intelligence and 

performance in complex simulations (Beckmann & Guthke, 1995; Strohhecker & 

Größler, 2013; Süß, 1996; Wittmann & Hattrup, 2004).  

 

Another common explanatory pattern for poor human decision making in dynamically 

complex situations that emerged from mostly system dynamics based research is 

misunderstanding of feedback and delays. Sterman (1989a, 1989b) showed that supply 

chain management performance suffers systematically from misperceptions of the 

feedback structure of the system that has to be managed. Participants use inappropriate 

anchoring heuristics, misperceive time lags, and use open-loop explanations of 

dynamics. These phenomena have been repeatedly re-observed and corroborated (Barlas 

& Özevin, 2004; Brehmer, 1992; Cronin & Gonzalez, 2007; Diehl & Sterman, 1995; 

Kleinmuntz, 1985; Moxnes, 1998; Paich & Sterman, 1993; Rahmandad et al., 2009). In 

more general terms, this stream of research has identified shortcomings in the decision 

makers’ knowledge or mental models about the causal structure of reality which is seen 

as an important element in dynamic decision making theorizing (Dörner, 1996; Dörner 

& Wearing, 1995; Sterman, 1994). Dörner and Wearing (1995) argue that better 

performing participants in a dynamic decision making experiment use more elaborated 

networks of causal relations in their decision making process than the bad performers. 

Using longitudinal case study data (Barr et al., 1992, p. 15) found that “successful 

organizational renewal is a continuous process of first and second order changes in 

cognitive maps”. Recently, Gary and Wood (2011, p. 569) provided empirical evidence 
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based on laboratory experiments that “accurate mental models lead to better decision 

rules and higher performance”.  

 

This paper builds on the findings of previous research, specifically on the existence of a 

positive relationship between causal knowledge and decision making performance. 

These findings are extended by focusing on the research question if and how the 

decision makers mental model (and as a result thereof her/his dynamic decision making 

performance) can be advanced by showing both causal relations between levers and 

objectives and the stock-and-flow structure in a decision making cockpit.  

 

Methodologies such as system dynamics (Forrester, 1961; Sterman, 2000) or soft 

systems methodology (Checkland, 1981; Checkland & Scholes, 1990) have 

demonstrated their effectiveness in improving decision makers’ mental model and 

closing knowledge gaps regarding causal relations (e.g., Akkermans, 1993; Pala & 

Vennix, 2005; Sterman, 2010). However, learning and applying these approaches as a 

whole is time consuming and costly – although advances in interactive modeling and 

simulation tools has lowered the bar (Morecroft, 2007; Sterman, 2000). Therefore, we 

are focusing on one element from the system dynamics methodology that is relatively 

easy to integrate in decision supporting management dashboards – stock-and-flow 

diagrams. This type of diagrams visualizes both the causal relations between variables 

and their stock-and-flow structure. Management dashboards (or cockpits) that assemble 

and visualize the key indicators needed to steer an organization towards its objectives 

(Daum, 2006; Eckerson, 2011; Rasmussen et al., 2009) can easily be (re-)designed to 

show causal linkages between levers and performance indicators and illustrate stocks 

and flows. This research provides empirical evidence from a laboratory dynamic 

decision making experiment that visualizing causal relations and stock-and-flow 

structures in a management cockpit indeed improves dynamic decision making 

performance. 

 

The structure of this paper is as follows. In Section 2, we review the relevant literature 

on dynamic decision making and derive our hypotheses. Thereafter, the experimental 

setting and its implementation are described in Section 3. Section 4 comprises the 

results of the experiment which are discussed in Section 5. The paper closes (Section 6) 

with a general discussion of implications, limitation of the study and some suggestions 

for further research. 

 

THEORY 

Compared to static decision theories as, for instance, expected utility theory (e. g., Grant 

& Zandt, 2009; Von Neumann & Morgenstern, 1944), Bayesian decision theory (e. g., 

Binmore, 2009), prospect theory (Kahneman & Tversky, 1979) or regret theory (Loomes 

& Sugden, 1982), DDM theories place decision making in realistic settings. DDM 

research focuses on naturalistic decision challenges where the necessity of decision 

making is not at all obvious, the set of options is not predefined but has to be 

determined, the consequences of implementing the various decision alternatives are 

obscure, criteria for determining preferences have to be established, and so on. Within 

DDM research, the so called naturalistic decision making stream (Klein, 2008; Lipshitz 

et al., 2006; Lipshitz et al., 2001; Zsambok & Klein, 1997) seeks to understand how 
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people decide and perform in demanding situations such as fire-fighting using field 

studies. Similarly, the complex problem solving research camp (Ackerman & Kanfer, 

1993; Brehmer & Dörner, 1993; Frensch & Funke, 1995; Wittmann & Hattrup, 2004) 

focuses on the investigation of naturalistic decisions setting as, for instance, 

management of a fisheries business or a coal-fired power plant – typically using realistic 

computer simulations in laboratory research (Brehmer, 1992).  

 

Good decision making in dynamically complex settings requires avoiding a range of 

typical errors that have been observed using computer-simulated micro worlds in a 

laboratory. More precisely, the following different tasks that make up the “whole 

process of action regulation” (Dörner & Schaub, 1994, p. 434) have to be conducted 

successfully: (1) goal elaboration, (2) hypothesis formation, (3) prognosing, (4) 

planning, (5) monitoring and (6) self-reflection. Bad-performing decision makers fail in 

clearly defining their goals and subdividing it into concrete sub goals (Dörner, 1996). 

Poor decisions also follow from an erroneous and/or incomplete set of hypothesis about 

the causal structure of the system (e.g., Dörner, 1980; Forrester, 1961). Prognosing (or 

forecasting) is another sub-task that is error prone – specifically when the forecast 

stretches far into the (simulated) future. Delays between actions and results are often 

misperceived (Rahmandad et al., 2009; Sterman, 1989b) and nonlinear causal relations 

are misjudged (Dörner, 1996). With regard to planning a goal-directed course of action, 

Dörner and Wearing (1995) identify disregarding side- and long-term effects of actions 

as the main mistake, which is rooted in an incomplete and/or inaccurate mental model 

of the system’s causal structure. Planning might further be complicated in situations of 

uncertainty, where action outcomes are not certain, forcing people into making error-

prone probabilistic judgments (Kahneman & Tversky, 1972; Tversky & Kahneman, 

1974). Typical mistakes in the monitoring stage range from simply just forgetting to 

deliberately neglecting to monitor previous actions (Dörner & Schaub, 1994). Similarly, 

the important phase of self-reflection that implies to recognise and analyse the mistakes 

made in past decisions is often completely abandoned (Dörner, 1996; Dörner & Schaub, 

1994; Dörner & Wearing, 1995).  

 

At least the sub tasks (2), (3) and (4) of the above mentioned six DDM phases are 

compromised by erroneous and vague mental models of the system’s causal structure. 

Indeed, empirical evidence is increasing that causally more accurate mental models 

result in better decision making performance (Denrell et al., 2004; Dörner & Schaub, 

1994; Gary & Wood, 2011). How decision makers’ mental models can be improved is a 

widely neglected issue in DDM research though. Training decision makers in system 

dynamics would improve their ability to build accurate mental models of a system and 

better understand stocks and flows (e.g., Akkermans, 1993; Pala & Vennix, 2005; 

Sterman, 2010). However, such training requires effort and time. Providing decision 

makers with decision aiding dashboards that make use of core system dynamics tools as 

causal loop and/or stock-and-flow diagrams would be much easier. Then, these 

dashboards would not only show performance indicators but also causal links in-

between and the system’s stock-and-flow structure. However, if and to what extent 

DDM performance is influenced by different types of dashboards has been neglected in 

DDM research so far. Obviously, micro worlds used in this research had more or less 

sophisticated user interfaces presenting varying amounts of information. However, the 
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effects of different presentations on the participants’ decision making performance have 

not been investigated.  

 

Literature on management dashboards or cockpits is primarily practice-oriented and 

normative (e.g., Daum, 2006; Eckerson, 2011; Rasmussen et al., 2009). However, 

empirical evidence on the effect of information presentation format on judgement and 

decision making is provided by information systems and accounting information 

systems research (see, e.g., the recent review of Kelton et al., 2010). A substantial 

literature exists on the effects of graphical and tabular representations of information on 

decision making performance (e.g., Amer, 1991; Cardinaels, 2008; Davis, 1989; Harvey 

& Bolger, 1996; Schulz & Booth, 1995; Stock & Watson, 1984). It has also been 

examined how various task characteristics influence the relationship between the 

external problem representation and problem-solving performance (e.g., Amer, 1991; 

Benbasat & Dexter, 1985; Coll, 1992; Dennis & Carte, 1998; Speier, 2006). Additional 

studies focused on the effect of experience, knowledge and ability on the relation 

between problem representation and decision performance (e.g., Benbasat & Dexter, 

1985; Cardinaels, 2008; Coll et al., 1994; Libby & Luft, 1993; Speier et al., 2003). An 

investigation of the performance impact of providing graphical information on the 

causal and stock-and-flow structure of the decision making problem, however, is 

missing. 

 

Following the results from accounting information systems research that information 

presentation format matters and grounding in the findings of DDM research that more 

accurate mental models of the causal structure of the DDM task increase performance, 

we hypothesize that clarifying the causal and stock-and-flow structure in a decision 

aiding dashboard is beneficial:  

 

Hypothesis 1: The clearer the causal and stock-and-flow structure of a dynamic 

decision making task is shown in a decision aiding management cockpit, the 

higher is the decision making performance. 

 

With regard to the complexity of the dynamic decision making task, Gary and Wood 

(2011, p. 572) propose that “more accurate mental models of the causal relationships in 

the business environment have a greater positive effect on performance in environments 

that are more complex”. This proposition is mainly build on computational results 

(Gavetti & Levinthal, 2000; Rivkin, 2000) and has to be tested empirically in the 

respective context. Based on these propositions we formulate a second hypothesis as 

follows: 

 

Hypothesis 2: The higher the dynamic complexity of the dynamic decision making 

task, the more decision makers’ performance is improved by clarifying the causal 

and stock-and-flow structure in in a decision aiding management cockpit. 
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EXPERIMENTAL DESIGN AND IMPLEMENTATION 

Task description 

We use an interactive, computer-based simulation of managing short-term capacity 

dynamics as experimental task in our study. The micro world is developed using the 

Forio Simulate platform. Participants are asked to take over the role of a team manager 

in a bank’s settlement and clearing of securities department. In this department 

incoming securities orders have to be processed by employees (see Figure 1). Order 

processing capacity is determined by the number of employees and their productivity 

which is assumed constant and known. In case of capacity shortages, orders are 

backlogged and have to be processed the day after. Employee capacity utilization is 

derived from the total number of orders processed by the order processing capacity. The 

service level is determined as the order fill rate. Following Oliva and Sterman (2001), a 

first order exponential smooth structure is used to model the customers’ service quality 

perception. Whether the changes in the perceived service levels affects demand is 

determined by the market structure. In a competitive environment, eroding service 

levels will make customers turn away and place their securities orders elsewhere – 

which closes both the balancing feedback loop B1 and the reinforcing feedback loop R1 

shown in Figure 1. In a monopolistic situation, customers have no choice and there will 

be no effect of service levels on incoming orders (B1 and R1 both disappear). By 

closing or cutting through theses loops we can create two dynamic decision making 

tasks with different levels of dynamic complexity – a closed loop setting with higher 

dynamic complexity and an open loop version with lower dynamic complexity.  

 

 

Figure 1: Stock-flow model of the dynamic decision making task 
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Participants have to decide on a daily basis on the number of full time equivalent 

employees that they request from the headquarters’ employee pool. Regarding Figure 1 

they decide on the variable “Employee Requests Placed”. They are instructed that they 

will receive exactly what they requested three days later. By this, the participants have 

to manage an employee supply chain as shown in the lower part of Figure 1 (using 

pipeline delays).  

 

The participants make their decision on the number of employees twenty days in a row. 

They actively move forward from day to day by pressing a button and receiving updated 

information on the computer screens. Starting point for decision making is day 0. In the 

instructions, participants receive information back to day -3 as illustrated in Table 1. For 

days -3 to -1 the system is held in dynamic equilibrium. Then, for day 1, a step-increase 

in incoming orders is announced (similar to the order pattern typically used in the beer 

game, e.g., Sterman, 1989b). Participants get the information that an additional fixed 

order volume of 800 securities orders per day is acquired changing incoming orders 

from 4,200 to 5,000 per day. Thus, participants are faced with the challenge to bring the 

system back into dynamic equilibrium as soon as possible.  

 

 

Table 1: Information in the initial decision making situation 

 

The participants’ objectives are set slightly differently for the two complexity settings. 

Participants in the “open loop, low complexity” setting are asked to maximize the 

capacity utilization under the constraint that orders are processed the same day, that is, 

the fill rate equals 100 %. In the “closed loop, high complexity” environment the 

cumulated number of processed orders have to be added as a goal. Therefore, 

participants are asked to process as many orders as possible and, at the same, time 

maximize average capacity utilization and average fill rate (service level)! 

Measures 

Independent Measure: The independent variable in this experiment is the assigned 

treatment group.  

 

Dependent Measures: Participants have to make the same capacity ordering decision 20 

days in a row. Success is measured by (1) the number of processed orders, (2) the 

average service level and (3) the average capacity usage level.  

 

The number of processed orders is the result of the amount of incoming orders which 

could be worked on by the demanded employee capacities. The measure is accumulated 

from day 1 (participants make their first decision in day 0) to day 21 (last decision is 

made on day 20). The average service level is calculated by dividing the number of 
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processed orders through the number of incoming orders. The average capacity usage is 

the result of dividing the accumulated capacity of employees and the number of 

processed orders. 

Setting of the experiment 

For each of the two complexity settings – (1) the “open loop, low dynamic complexity” 

and (2) the “closed loop, high dynamic complexity” setting – we use a two-group 

posttest-only randomized experiment design (e.g., Trochim & Donnelly, 2007) to test 

our hypothesis. The treatment groups in each complexity setting had access to a 

dashboard in the capacity management simulator that showed not only the performance 

indicators but also the causal relations in-between and the stock-and-flow structure as is 

illustrated in Figure 3 and Figure 5. The stock-and-flow causal dashboards were 

designed following at large the suggestions from the system dynamics literature (e.g., 

Morecroft, 2007; Sterman, 2000). Stocks were shown as boxes, inflows and outflows to 

stocks were symbolized as bold arrows. Causal information links were symbolized as 

thin curved arrows. Valve and cloud symbols were omitted from the dashboard as these 

were suspected to cause confusion and questions. Going beyond system dynamics 

stock-and-flow diagrams, key performance indicators were placed in soft edge boxes to 

increase their salience.  

 

 
Control 
Group 

Treatment 
Group 

Open Loop, Low Dynamic Complexity 
A 

Figure 2 
B 

Figure 3 

Closed Loop, High Dynamic Complexity 
C 

Figure 4 
D 

Figure 5 

Table 2: Four group between-subject experimental design 

The control groups received a user interface in the style of a traditional performance 

management dashboard (see Figure 2 and Figure 4). Of course, all measures from the 

treatment dashboards were also included in the control group dashboards. By this any 

difference in the information load were eliminated. The control group dashboards were 

clearly structured in three categories – KPIs shown at top, order-related indicators 

grouped in the middle part and capacity-related measures put at the bottom of the 

dashboard screen. Obviously, no causal links between the indicators or the indicator 

categories were shown and no indications were provided regarding their stock or flow 

character. Summarizing, Table 2 illustrates the experimental two-by-two design.  
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Figure 2: KPI dashboard in the open loop low complexity DDM task 

 

Figure 3: Stock-flow causal dashboard in the open loop low complexity DDM task 
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Figure 4: KPI dashboard in the closed loop high complexity DDM task 

 

Figure 5: Stock-flow causal dashboard in the closed loop high complexity DDM task 

Following suggestions from experimental economics (e.g. Friedman et al., 2004; Guala, 

2005), Smith’s (1976, 1982) induced value theory is applied and participants are 

incentivized by a monetary reward. A random lottery design is chosen with chances of 

winning of 1:11 within each treatment group to ensure a sufficient subjective chance of 

winning (e.g., Cubitt et al., 1998; Dugar, 2013; Vinogradov & Shadrina, 2013). In case 
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of winning, the financial incentive was linked to this participant’s performance. 

Payment was 20 € minimum and 50 € maximum for participating in an experiment that 

we expected to take about 15 minutes. An expected pay-out of 80 € to 200 € per hour is 

deemed an valid incentive (Tversky & Kahneman, 1992). If a participant was selected, 

the performance of one of the three rounds was chosen. 

Participants and procedure 

In total, 135 undergraduate management students from five courses participated in the 

experiment. It was integral part of a course on “Value Chain Management” in which, 

amongst other topics, capacity management was taught. In all courses, the experiment 

was conducted before this subject was addressed. Therefore, previous experience of the 

participants in capacity management was rather low with a value of 2.2 (SD: 1.1) on a 

five-point Likert-scale. System dynamics in general or stock-and-flow diagrams in 

particular were not included in the curriculum of our participants. Therefore, we can 

safely assume that they had no pre-experience concerning these topics. 

 

Participants were assigned randomly to one of the four groups in advance. Due to 

students not showing up in class on the day of the experiment, the number of 

participants varies between groups. In the first experiment run, we had 81 participants 

who were mostly male (77.8 %), thus, 22.2 % female. 39 participants were assigned to 

the control group and 42 participants to the treatment group. The 54 participants in the 

second experiment run had a similar distribution regarding gender (74.1 % male, 25.9 % 

female) as well as regarding previous experience with capacity management 2.2 (SD: 

1.1). Here, 25 were assigned to the control group and 29 to the treatment group. 

 

Experiments were carried out in a large computer room. Each participant had a cubicle 

preventing him to see anything on screens of other participants. An invigilator assured 

that there was no communication among the participants and no other software than the 

experimental software was used. The participants started at the same time by login into 

the capacity management simulation with their personally assigned user data. All 

essential information about the procedure of the experiment was presented to the 

participants before the experiment started. After finishing the experiment, each 

participant had to fill in an additional questionnaire on paper. Every participant could 

spend as much time as individually needed. 

Data Analysis 

We apply the recommended modified Kolmogorov-Smirnov-Test of goodness of fit to 

test whether our data is normally distributed (Yazici & Yolacan, 2006). To test our first 

hypothesis, we apply a T-Test for normally distributed data and the Mann-Whitney-U-

Test for non-parametric data (Ruxton & Beauchamp, 2008). 

 

The second hypothesis is tested with the two-way ANOVA. This statistical method 

allows the integration of two independent variables, i.e. settings and treatments. 
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RESULTS FROM THE EXPERIMENT 

Descriptives  

Average working time on the task in the open loop setting in round one is 10.1 minutes 

(SD: 3.6) for the control group A and 10.3 minutes (SD: 4.1) for the treatment group B. 

In the second round values are 3.2 minutes (SD: 2.0) A and 2.9 minutes (SD: 1.9) B. In 

the closed loop setting the working time on the task in round one is 9.3 minutes (SD: 

3.1) for the control group C and 8.2 minutes (SD: 3.1) for the treatment group D. Values 

for the second round are 2.8 minutes (SD: 1.0) C and 2.9 minutes (SD: 1.5) D. There is 

no statistical significant difference between the working times of treatment groups in 

both settings (Setting 1, Round 1: T(77) = 0.785, ns, Round 2: T(76) = 0.602; ns; 

Setting 2, Round 1: T(98) = 1.745, ns, Round 2: T(92) = -.404, ns). 

Experimental Results  

Mean values and standard deviations of the performance scores in the sub-samples of 

the different experimental conditions are reported in Table 1. 

 

Measure 

Open loop, low complexity Closed loop, high complexity 

Group A Group B Group C Group D 

Mean SD Mean SD Mean SD Mean SD 

Average capacity usage 96.0 0.04 96.8 0.05 94.7 0.06 96.3 0.04 

Number of processed 

orders 

    111783 6955 113503 2983 

Average service level 93.7 0.06 92.0 0.11 93.4 0.06 94.8 0.04 

Table 1: Overview of performance results 

The results regarding the first hypothesis show a statistical significant influence of 

visualization on the average capacity usage for the low complexity setting (U(5192.5), 

p < .001) as well as for the high complexity setting (U(8064.5), p < .01). Regarding the 

average service level there is no statistical significant improvement in the low 

complexity setting (U(6173.5), ns), but for the high complexity setting (U(8567), 

p < .03). In addition, a higher number of processed orders in the treatment group is 

confirmed for the high complexity setting (U(8299.5), p < .01) while this goal was not 

relevant in the low complexity setting. Thus, the null-hypothesis cannot be rejected and 

we see our hypothesis corroborated.  

 

Hypothesis 2, stating that the effect of visualisation is higher in a more complex 

decision setting, can be corroborated. The average service level is significantly better in 

the high complexity setting (F(1) = 6.096, p < .01) while the average capacity usage is 

not improved significantly in the more complex setting (F(1) = 0.841, ns). The average 

service level is dropping in the low complexity setting (-1.8%) and it increases in the 

high complexity one (1.5%). Regarding the capacity usage, the non-significant increase 

in the low complexity setting is 0.8% compared to 1.7% in the high complexity setting.  

DISCUSSION 

The results provide empirical evidence that visualising a causal and stock-and-flow 

structure of a dynamic decision making task leads to a higher decision making 
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performance. This result holds true independent from the complexity of the two given 

decision environments. Thus, previous research on the positive effect of graphical 

information presentation is extended with a specification how such a visualisation 

should be implemented. The given task requires prognosing, planning and monitoring 

skills as goals and hypotheses are defined in the settings. As participants have little 

previous knowledge regarding such decisions, they have to build a mental model to 

come up with good decisions. Results can be interpreted that the visualisation of causal 

and stock-and-flow structure helps to build a better mental model. Participants are 

especially better in increasing the average capacity usage on a similar service level and 

similar resp. increased number of processed orders. As the number of employees to be 

ordered is the only decision variable, average capacity usage can be influence more 

directly than the two other sub measures.  

 

As the effect of visualisation increases in a more complex decision environment, our 

results are in line with findings of Gavetti and Levinthal (2000) and (Rivkin, 2000) in 

computational simulations. While these authors found non-empirical evidence that for 

more complex decisions a higher accuracy of mental models is required, we find 

empirical evidence that visualising causal and stock-and-flow logic helps to build such 

models better with a higher complexity. Gary and Wood (2011), also building their 

hypothesis on the findings of Gavetti and Levinthal as well as Rivkin, did not find such 

an impact for their decision environment. However, Gary and Wood also recognised 

that the environments used were already on a high level of complexity hardly allowing 

determining the increasing need of mental models in more complex situations. Thus, 

they could state that the mental model has to have a high level of accuracy in complex 

decision environments. Concluding, it seems that the mental model is more complicated 

and that causal and stock-and-flow diagrams are the adequate visualisation helping to 

build this model. Having a look at the sub measures, we can observe that the main effect 

is on an improved average capacity usage between setting 1 and 2. Participants seem to 

need the visualisation in the more complex environment to better understand the impact 

of their delayed capacity ordering decision and can best transfer this on improving the 

average capacity utilisation.  

 

CONCLUSIONS, LIMITATIONS, AND FURTHER RESEARCH  

Our research contributes to the literature by investigating the performance impact of 

providing causal and stock-and-flow structure of the decision making model. We can 

show that such a visualisation leads to a better mental model and thus better decisions. 

The effect is even higher in more complex decision environments. Concluding, such 

visualisations should be used to support decision making situations. 

 

Two limitations have to be noted from the authors’ point of view. Participants were not 

very familiar with the decision making problem, thus, a comparison with participants 

having much knowledge of such situations was not included. Furthermore, as the 

working time for the third round was not recorded due to a system failure, a possible 

mediating effect of working time on performance could not be analysed.  

 

Within further research three major streams are of interest. Firstly, given the two levels 

of complexity it would be worthwhile to analyse the effect in even more complex 
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decision settings. A suitable extension could be the introduction of a random stochastic 

demand rate which would make the decision less predictable. Conducting such an 

analysis could reveal whether there is a linear increase in performance or if there is a 

tipping point from which the effect of visualisation is constant. Secondly, a closer 

analysis of how the mental model is influenced by the causal and stock-and-flow 

diagram would be helpful. Here, qualitative interviews could be conducted questioning 

participants afterwards and compare results with their performance. Thirdly, the 

learning effect over the three rounds could be further examined to understand the impact 

of the treatments on the learning process. 
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