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A study was performed by the author on formal analysis of uncertain non-linear systems
in the context of System Dynamics (SD). The objective of this study was to develop a
more insightful method to classify model behaviour for exploratory modelling. The long
term vision of this study is more efficient, more exhaustive and more insightful model
behaviour exploration than the current sampling and clustering approaches. To illustrate
the possibilities this, a simple predator-prey model from literature was analysed. Uncer-
tainties were specified on the parameters and the resulting behaviour was represented in
phase portraits. Through further analysis of local, linearised behaviour around equilibrium
points, classes of behaviour were defined on mathematical properties of the system instead
of properties of the output. For the predator-prey model, these behaviour classed resulted
in well-defined boundaries in the uncertainty space. The major finding of the study is
that formal analysis can analytically split the uncertainty space into sub-spaces that result
in different behaviour, thereby offers an alternative to the current behaviour classification
methods.

1 Introduction

This paper treats formal analysis of uncertain non-linear systems, in the context of System
Dynamics (SD). The systems considered in SD are often prone to uncertainty caused
by difficult or impossible identification of the system equations. Therefore, exploratory
modelling is chosen over predictive modelling. Currently, this is done in the Exploratory
System Dynamics Modelling and Analysis (ESDMA) approach [1, 2], based on the work
of Bankes in 1993 [3]. Here, all uncertainties are identified and the influence of these
uncertainties is investigated, often through a large number of simulations. Analysis and
clustering of thousands of runs follows, which sometimes requires some tinkering and is
computationally expensive. Also, this hardly ever leads to a clear and insightful result.

Formal analysis is presented as an alternative to the numerous simulations that post-
processed and interpreted. Formal analysis allows one to define criteria on the outputs
of a model up front, and consequently search for which uncertainties these hold or do
not hold. This allows for more and different insight into the impact of uncertainty on a
model. As an example, a simple predator-prey model with deeply uncertain parameters
is introduced, and analysed. The methodology is further elaborated on and the possible
future developments are sketched. A more mathematical treatment of the method and this
particular example can be found in [4].
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2 Example Predator-Prey System

2.1 The Predator-Prey Model

Assume given the predator-prey model in Figure 1, which is adapted from Bossel [5, p.
105-109]. The goal of the model is to describe the population development over time.
Figure 1 is the proper model, according to SD standards.

RABBIT BIOMASS ENERGY

CROABBIT _ GRAZING CAPACITY  LOSSPER FOXBIOMASS GAIN cONSUMPTION RATE
ENCOUNTER PER ENCOUNTER OF FOXES

INITIAL RABBITS INITIAL FOXES

_ rabbits _ oy foxes
rabbit rabbit fox gain fox loss

possible
encounters per time_

time unit

Figure 1: Stock-flow model of the predator prey example Eq. (??7), adapted from [5, p.
105-109]

The parameters and initial condition are easily found in the stock-flow diagram; they only
go into the model and are not affected by it. Therefore, they are at the back end of the
arrows. Also, all constants and initial state values are written in capitals.

The model in Figure 1 is characterized by a prey population z; and a prey population xs,
isolated from other species. Under the assumption that the prey is herbivorous and grazing
capacity is unlimited, the following exponential growth and decay are recognized:

1 = ary (1a)
.I"Q = —de (1b)

with z; the prey population in prey biomass units (for example number of rabbits) and
the predator population in predator biomass units (for example number of foxes). Eq. (1)
assumes the following:

1. The prey always have ample food available
2. The rate of change of a population is proportional to its size
3. The environment is considered to be constant and no evolution or adaptation occurs

4. The predators die due to age
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The growth rate a is a positive constant that defines the exponential growth of the prey.
The predators in Eq. (1b) have no food, and undergo exponential decay, according to the
energy consumption rate d.

The predator and prey have encounters in the middle of Figure 1, and they exchange
biomass. The interaction between the populations is modelled with three more assump-
tions:

5. The actual encounters are proportional to the total number of combinations of a
predator and a prey (z122)

6. The food supply of the predators consists only of the prey population

7. Predators are always hungry

Thus, the possible encounters per time scale with z125. When prey meets a predator, with
a certain probability, the prey is killed and eaten. The average biomass lost from the prey
per possible encounter is defined as b, and the biomass increase of the predator is ¢. Both
b and c are positive constants. The resulting differential equation, together with initial
conditions x1(0) = z1 0 and 22(0) = x4y, is

Ztl = ary — b.I‘ll’Q (2&)

.fil'g = CT1Ty — dl‘g (2b)

From Eq. (2) it is readily observed that b and ¢ are weights of non-linear coupling terms.
Also, there are no inputs acting on the system. This means that Eq. (2) is an autonomous,
non-linear set of differential equations.

The last step in describing the model in Figure 1, is imposing a grazing capacity limit
for the prey. For demonstrative purposes, it is assumed that there is a maximum size of
the prey population that can be supported by the environment. This is called the grazing
capacity ¥ cap and removes the first assumption. The effect of the grazing capacity on the
prey increase can be modelled with a simple logistic function [5]. Expanding Eq. (2) with
this restriction results in:

T, = axr; (1 . ) — b2 (3a)

xl,cap
Ty = CT1Ty — dTo (3b)

This results in a differential equation with two states and five parameters, which keeps the
model simple enough to analyse analytically. Bossel published a base set of parameters
0 := [a,b,c,d, Ty cp)” and initial values g := [x10,220]7 [5, p. 109]. This can be seen in
Table 1.

3 of 19



Kuipers 2014 Formal Behaviour Classification under Uncertainty

Table 1: Parameters and initial values for the predator-prey example, from Bossel [5, p. 109]

Parameter Base Units

rabbit growth rate a 0.08 1/week

0.002 rabbit biomass

rabbit biomass loss per encounter b DBt Blomase® fox biomams

fox biomass

fox biomass gain per encounter c 0.0004 o Fomestrobhit Biomams
energy consumption rate of foxes d 0.2 1/week

grazing capacity Z1,cap 1000 rabbit biomass

initial rabbits 21,0 500 rabbit biomass

initial foxes 22,0 10 fox biomass

2.2 Base Case Results

The results of the predator prey model with a limited grazing capacity are compared to the
case where the grazing capacity is unlimited. The latter case is approximated by setting
T1cap = 10° > z1. The behaviour of the system over time is displayed for the first 250
weeks (= 5 years) in Figure ?7.

Figure 2a shows the model with grazing capacity =1, = 10% to simulate unlimited
grazing. This is the typical oscillation present in unconstrained Lotka-Volterra or predator-
prey systems. At t = 0, there are only a few predators; not a lot of prey are killed and
prey growth is observed. This increase in prey is followed by an increase in predators.
This is explained by larger availability of food due to the growth of the prey population.
Because of the fact that the predators also started to grow, the encounters and thus killings
increase. This causes the prey population to decrease rapidly. After a while the predator
population follows the decrease, because of the decrease in their food source. That in turn,
gives ample possibility for the prey to start growing again, and the cycle starts over.

In Figure 2b, the size of the populations over time can be seen for the limited grazing
capacity of 1 csp = 1000. The grazing limitation results in damping of the oscillations.
The predator population still has a lag compared to the prey, and the oscillation seems to
be a little bit slower than before.

When both these runs are plotted in the z; — z2 phase plane in Figure 3, the oscillatory
behaviour translates into clockwise spirals. The predator lag is still apparent. Note that the
run with restricted grazing branches off of the run with unrestricted grazing, and converges
to a stationary point; a different point than the equilibrium that the unrestricted model
is circling around. The unrestricted grazing, where z; ., = 108, seems to trace the same
loop. It is unclear whether it does, or if it converges or diverges very slowly. Either way,
the influence of a single parameter is very apparent. The explanation of the behaviour in
Figure 3 and the influence of different parameters are further treated in Section 77 and
Section ?7.
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Figure 2: Results of the predator prey model Eq. (?7), with 6 = 0,,s.. Prey in blue on the
left axes and predator in green on the right.

3 Uncertainty

Uncertainty is often present in System Dynamics models due to the nature of the social-
technical issues that are considered. Parameters are hard to identify or not measurable at
all, it is very difficult to measure social-technical systems accurately, and different views
of the world lead to different models of the same system. The inclusion of as many uncer-
tainties as possible is important, as it allows for more robust decision making by including
more possible scenarios.

In this paper, the main focus lies on input uncertainty, because of the more insightful
procedure of analysis. Pruyt considers inputs to be all the input the model uses [6]. As SD
models are to a high extent endogenous (causally closed) [7, p. 38],[8, 9], inputs consists
mostly of parameters and initial conditions.
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Figure 3: Results of the predator prey model Eq. (??), with § = 6! in the 27 — x5 plane.
Compare with and without grazing capacity for the prey.

3.1 Input Uncertainties in the Model

Recall the predator-prey model from Eq. (3) with the base case defined in Table 1. As the
predator-prey model is just an example, it is assumed that no measured data is available
and the exact values for the parameters 6 := [a,b,c,d, 71 cap]” and initial state zq =
(21,0, T20]" are uncertain. In order to get a grip on the uncertainty, the ranges on the
parameters are determined in Table 2 to create the uncertainty space; the combination of
all these ranges. With five variables for the parameters and two for the initial condition,
there is a total of seven uncertainties, with each range at least an order of magnitude.

4 Exploratory System Dynamics Modelling and Anal-
ysis

When acknowledging deep uncertainty, one quickly ends up with a large set of possible
combinations of uncertainties, as in Table 2. To adequately treat the set of models resulting
from the combinations of uncertainties, Steve Bankes initiated the move from predictive
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Table 2: Parameters, base case values and their uncertainty ranges

Parameter Base Range Units

rabbit growth rate a 0.08 [0.02,0.5] 1/week

rabbit biomass loss per encounter b 0.002  [0.001,0.01] b r&%ﬁggﬂi}?jﬁoma%
fox biomass gain per encounter c 0.0004  [0.0001,0.002] ¢ bionfggsfi‘;f;isbiomass
energy consumption rate of foxes d 0.2 [0.05,0.5] 1/week

grazing capacity Zicap 1000 [100, 1000] rabbit biomass

initial rabbits z10 500 [10, 750] rabbit biomass

initial foxes 2,0 10 [1,40] fox biomass

modelling towards exploratory modelling in 1993 [3]. Nowadays, the field Bankes initiated
is called Exploratory Modelling and Analysis (EMA), or ESDMA when applied to SD.

4.1 Random Sampling of the Uncertainty Space

To illustrate the impact that uncertain parameters have on a model, the example of the
predator-prey model is analysed. With the uncertain ranges and constraints stated in Ta-
ble 2, 100 parameter sets and initial conditions were randomly chosen from the uncertainty
ranges, with which the model was run. This serves just as a demonstration, but from the
results in Figure 4 it can be seen that interpreting the outputs is no trivial matter. From
Figure 4a it can be seen that oscillations with different time period are present, some runs
are converging within 50 weeks, while others hardly seem to converge at all.

Overall, it is clear that further analysis of the outcomes is required. Many authors use
numerical sensitivity analysis to changes in uncertain parameters around a base case, by
applying small changes to the parameters and sketching the envelop of outcomes[2, 10,
11, 12, 13]. Kwakkel and Pruyt list the PRIM and Classification and Regression Trees as
two rule inducing methods. Yiicel and Barlas [13] and Kwakkel et al. [14] use time series
clustering algorithms.

Formal analysis offers an alternative to previously mentioned methods. Furthermore, no
sampling is required as no model runs are performed. This analysis separately treats
uncertainty on the initial values and uncertainty on the parameters.

4.2 Uncertainty on the Initial Values
Uncertainty on the initial values can most easily be depicted in the x; — x5 plane. Because

time is not explicitly present in those plots, multiple outputs can easily be plotted onto the
same graph without becoming a mess. Each pair of outcomes z;(t) and x(t) is represented
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Figure 4: Exploring uncertainty: 100
defined in Table 2. Made with Matlab.

runs randomly sampled in the uncertainty space as
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as a curved arrow, and the system follows the arrow in forward direction as time progresses.
If the initial values are chosen carefully, they sketch the family of solutions for all initial
values for a fixed parameter set. The family of all solutions to a model with all possible
initial values is called a phase portrait. In practice, only a couple of solutions are drawn.
Examples of phase portraits for the predator-prey model are shown in Figure 5. For further
information on phase portraits, see Appendix A.

In Figure 5a, several curves enter from the upper-right. The prey population decreases as
the predators increase until they reach a maximum. The predators decrease after that,
until the prey population reaches a minimum. They spiral towards an equilibrium point
that has 500 prey and 20 predators. In the base case, all the oscillatory behaviour that
spirals toward this equilibrium point is considered to be similar. Figure 5b shows a set
of closed loops for positive numbers of predators and prey. The equilibrium point where
these loops circle around is at 500 prey and 40 predators. These loops are all considered
to be similar behaviour.

X, — predator
X, — predator

N SN N, N\
1000 1500

500

X1 — prey X1 — prey

(a) Base parameter set, 21 cap = 1000 (b) Base parameter set with 21 cap = 108

Figure 5: Phase portrait consisting of multiple ouputs (in blue) in the x; — z2 plane of the
predator-prey system in Eq. (3). The light grey arrows represent the local direction that the
outputs follow. Made with CurvesGraphics6.

Now that it is known that phase portraits in the x; — x5 plane contain a considerable
amount of information about a model for all initial conditions, the question might arise
how much these phase portrait will vary with changing, uncertain parameters. In Figure 5
it is readily observed that changing the grazing capacity for prey i, from 1000 to 108
changes the phase portrait considerably. More of these changes can be found through
formal analysis of the parameter uncertainty in Section 5.
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5 Formal Analysis under Parameter Uncertainty

By varying the grazing capacity for prey alone, several completely different phase portraits
are found for the predator-prey model. If the assumption that the prey population x; is
always lower than the grazing capacity for prey i cap is released, a third and fourth case
can be added to the previously considered phase portraits in Figure 5. This can be thought
of as an effect of deforestation for example, where the plants suddenly get removed and the
grazing capacity for prey drops lower than the prey population. The resulting four phase
portraits are shown in Figure 6. In order to perform insightful classification of behaviour, a
criterion is needed to decide whether two phase portraits are in the same behavioural class
or not. If phase plots differ only slightly, and show similar overall behaviour, they are in
the same class. As long as there is a spiral located between and above two saddle points,
this means that the behaviour is considered similar to that of the base case in Figure 5a.

In order to compare the phase portraits in Figure 6 and to systematically search for topo-
logically different phase portraits, an analytical framework is introduced in the remainder
of this section.

One of the analytic tools is the separatrix, displayed as bold red lines in Figure 6. They
are special solutions leading to and from equilibrium points that split the state space in
two. See Appendix B for a detailed description of separatrices.

5.1 Local Behaviour

To get a better understanding of phase portraits, it is useful to first look at each equilibrium
points separately. Khalil [15] states tbat local behaviour around an equilibrium point z of
a non-linear differential equation is based on the eigenvalues of the linearisation. Consider
the predator-prey system Eq. (3):

Ztl = ax (1 — al ) — bl’ll’z (4&)
ml,cap
i‘g = CT1T9 — d[[‘g (4b)

with parameters a, b, ¢, d, 1 cp > 0 and initial state x o, 2.
With o = [prey, predator]?, three equilibrium points can be found by setting & = 0

0 x d
R S P [a<_d+2x1,cap>] )

bcx1,cap

From these analytic expression, it is clear that the positions of the equilibrium point change
with the parameters. The first equilibrium, z; is the state of total extinction; no predators
nor prey are alive. In Z,, the predators went extinct, but the prey survived to grow until
restricted by the grazing limit, x; cp. Both the first, as well as the second equilibrium
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Figure 6: Phase portrait (in blue) of the predator-prey system for the base case, where 21 cap
is varied. The separatrices that split up the plane into regions of behaviour are in bold red.
Made with CurvesGraphics6. See Appendix B for a detailed description on separatrices.

are not too hard to imagine, but the third equilibrium is the interesting one. All the
parameters in a, b, ¢, d, T cap are present.

With the base parameters as defined in Table 1, these equilibrium points become:

10 _ 1000 _ 1500
T = 0|’ To = 0 ) r3 = 20
These points can be found as either begin or end points of the bold red separatrices in

Figure 6a. To analyse local behaviour, linearisations around these equilibrium points are
made: Y
T

i=Ar, with A" 6

=N ()

For the first equilibrium point, it can be found from Eq. (3) that the linearisation has
eigenvalues Ay = —0.2 and Ay = 0.08. Solely based on the sign and value of the eigenvalues
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of the linearization, a classification of the local behaviour can be made [15, Chapter 2.
This means that z = [0, 0] is a saddle.

Similarly, the second equilibrium point, 7 = [1000, 0]7, has A\; = —0.08 and Xy = 0.2,
which is also a saddle point. The thirds equilibrium point at z3 = [500, 20]7 is stable
focus, because of the complex eigenvalues \; 5 = —0.02+0.08722 with a negative real part.

With this knowledge, the next step is to visualize the neighbourhoods of these equilibrium
points. Their local phase portraits are depicted in Figure 7. Combining these local phase
portraits with the location of the equilibrium points, one can see the resemblance with the
phase portrait of the non-linear system in Figure 6 quite easily.

2
N\

(a) Saddle, z; and Zo for all ~ (b) Stable focus, Z3, base (c) Centre, Z3, suspected for
cases case, T1,cap = 1000 Tl,cap = 108

o

Figure 7: Phase portrait (in black) of the local, linearised behaviour around the equilibrium
points. The separatrices are in bold red. Made with CurvesGraphics6.

The third equilibrium point seems to have changed to a centre for x1 cap = 108 in Figure 6b.
At what value of x1 ¢, does this change occur? Another change is that in the comparison
between Figure 6a and Figure 6¢, an equilibrium point seems to have disappeared. Again,
only 1 ¢ap is varied. For what value of 21 ¢, does an equilibrium point disappear, and what
happens close to that value? These changes are considered bifurcations, and are treated
next.

5.2 Bifurcations

Khalil defines bifurcations as “a change in the equilibrium points or periodic orbits, or their
stability properties, as a parameter is varied” [15, p. 70]. That means that bifurcations
can be seen as the boundaries of behaviour classes. Many well known bifurcations are
described in literature [15, 16, 17].

Recall that in Eq. (5) the three equilibrium points are stated as function of the parameters.
In the case of the base parameters, these equilibrium points are unique. However, for
grazing capacity ., = d/c = 500 it is found that zy = Z3. For x; ., > d/c = 500, the
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position of Z3 is under the z;-axis. This can be seen in Figure 6d. The system now has
two equilibrium points:

)

_ H _ {xl,cap > 500
Y IQ - 0

The first equilibrium point, and its linearisation remain unchanged. The linearisation
around Zo now has eigenvalues A\; < 0 and Ay < 0. That means that the equilibrium point
is a stable node that is approached from all sides. When looking at the phase portrait with
separatrices in Figure 6d, the position of the equilibrium point at the z-axis, absence of
the oscillations, and the shifting of the separatrix of T, are readily observed.

To find the case of Figure 6¢, the eigenvalues have to be checked analytically for changes in
signs and from complex to real-valued. The tipping point between the complex eigenvalues
of Z3 in the spiral and real eigenvalues is found to be at exactly 50(5 + v/35) ~ 545.804.
That means that a new scenario has been found where 500 < 2} cap < 50(5 ++/35). In this
case, both eigenvalues of T3 are negative, which makes it a stable node. Z5 is still a saddle
point, stable in z;-direction and unstable in xo-direction. Still, all initial values converge
to equilibrium point Z3, but the difference with Figure 6d is that the predators do not die
out.

Another observation worth investigating is that Figure 6b might show a limit cycle; un-
damped oscillations. The eigenvalues of the linearised system are A\; o = —2-107740.1265,
which indicate a very slow stable focus. It can be shown that the real part of A, goes to
0 as & cap — 00, Which corresponds with no grazing limit for the prey.

5.3 The Method

It was shown that a classification based on bifurcations results in a set of different be-
haviours and scenarios as a function of the uncertain parameters. This results in closed,
dense sub-sets of the parameter space belonging to each scenario. The procedure that is
used to classify this behaviour is summarized in [4] as follows:

1. Determine the equilibrium points as a function of the uncertain parameters and
determine when they lay inside the boundaries of the states

2. Determine the eigenvalues of the linearised system at each equilibrium point as a
function of the uncertain parameters

3. Find all sign changes in the eigenvalues, and when a switch between real and complex
eigenvalues occurs

4. Determine stability of each equilibrium point based on Lyapunov’s indirect method
for each if possible

13 of 19



Kuipers 2014 Formal Behaviour Classification under Uncertainty

5. Combine the findings under 3. and 4. to form one list with scenarios
6. Compute separatrices numerically
7. Draw a phase portrait with separatrices

8. Determine the region of attraction for each stable equilibrium point and possible
different trajectories that lead there (approach from below or approach from above)

The mathematical details and a more thorough treatment of the example can also be found
in [4].

6 Validation of the Scenarios

In order to validate the scenarios found in Section 5, 100 runs were performed with random
parameters and initial values as in Table 2. They were then classified in the three scenarios
of Figure 6a, 6¢ and 6d.

In Figure 8, it can clearly be seen that the non-oscillatory scenarios differ a lot from the
oscillatory scenario. Also, only six cases of the scenario is Figure 6¢ are present, which
makes it easy to overlook in multi-run and clustering approaches.

all cases casel

Predator (biomass units)
Predator (biomass units)

e —— . — =
600 800 1000 400 600 800 1000
Prey (biomass units) Prey (biomass units)
case2 case3

80
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D
o

Predator (biomass units)

60
40¢

N
o

< __

D n , 0 BN =
200 400 600 800 1000 0 200 400 600 800 1000
Prey (biomass units) Prey (biomass units)

o
o

Figure 8: 100 runs with random parameters, predator vs. prey, sorted per scenario (forward
time is counter clockwise)

The time-plots in Figure 9 show that in each scenario the time factor is not leading for
classification. The proposed classification approach classifies behaviour based on similarity,
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damped oscillation

no oscillations

0 100 200 300 400 500 100 200 300 400 500

1000
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200 300 400 500 100 200 300 400 500
time in weeks time in weeks

Figure 9: 100 runs with random parameters, time plots, sorted per scenario

not on minimal difference. Scaling and translation occurs a lot within each scenario, but
they still behaviour according to the same pattern. Validation has thus shown that the
proposed formal classification method can indeed classify behaviour analytically.

7 Conclusion and Discussion

This study treats formal behaviour classification of deeply uncertain non-linear systems in
the context of System Dynamics (SD). The objective of this study was to develop a more
insightful method to classify model behaviour for exploratory modelling.

A new approach to exploring a system is through formal analysis. In a phase portrait, the
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development over time of the system can be visualized for all initial values within a certain
domain, for a fixed parameter set. Here, separatrices define boarders, separating different
behaviours in a phase portrait.

Bifurcations are changes in the equilibrium points or periodic orbits, or their stability
properties. These changes are induced by varying the uncertain parameters. As such,
bifurcations can be seen as the boarders of the behavioural classes, because if they occur,
an equilibrium point or its stability has changed. That makes the behaviour differ from the
behavioural class under consideration. The conditions on the uncertain parameters that
are found are the boundaries in the uncertainty space belonging to the boundaries of the
behavioural classes.

No literature has been found of the application of this framework in more than two dimen-
sions. It is recommended that further investigation into the applicability of the framework
of behavioural regions on higher dimensions, with more stocks. Scaling up the method to
more stocks and more uncertainties will only be feasible up to a certain level. It should
be investigated where that boundary lies, with the currently available computing power.
Also, it should be kept in mind that formal analysis before, after or in simultaneous with
sampling and clustering could be even more accurate, insightful, or computationally effi-
cient.

Another improvement would be to expand the approach to specifically search for all bi-
furcations, as they form the boundaries of the behavioural classes. This would enable the
method to perform a full classification procedure and not require any other input then the
uncertainties.

In general, formal analysis results in well-defined behavioural classes and class boundaries,
also in the uncertainty space. That alone makes it worthwhile to further investigate the
opportunities that formal analysis offers for behaviour classification under deep uncertainty,
to provide modellers and policy makers with a complete insight into the possible scenarios
to make conscious decisions for integral improvement.
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A Phase Portraits

Khalil [15, p. 33-35] and Brittenham [18, 19] separately treat phase portraits by means of
an example. A two-dimensional non-linear differential equation of the form

il = fl(l’), and Ztg = fg(.’lﬂ')

defines the derivative of the state for each x within a certain domain. The (unique) solution
to this equation, denoted by x(t) = [x1(t), 25(t)]", starting in a given z(0) = o, is a curve
in the xy — xo-plane. This plane is also called the state plane or phase plane. The two
dimensional function f(x) defines the tangent vector & = [i(t), 42(t)]" to the curve z(t).
Therefore, f(x) is the vector field on the state plane; it gives the direction as a vector f(x)
for every point x. This vector field can be visualized by gridding the state plane and plot
the direction of f(x) at every grid point, thus obtaining a vector field diagram. The length
of an arrow is proportional to the magnitude of the derivative at that point +/ f(z)” f(x).

The family of all trajectories along the vector field is called the phase portrait of the differ-
ential equation. A phase portrait is usually visualized by plotting a couple of trajectories
nicely positioned around the equilibrium points. When visualizing phase portraits, the
goal is to get a grasp of the shape of the family of all trajectories.

Because of the fact that the actual solution z(¢) cannot be retrieved from a phase portrait.
Therefore, the data in a phase portrait is qualitative instead of the quantitative data that
would represent a solution over time.

B Separatrix

To guide in the interpretation of phase portraits, some particularly insightful solutions x(t)
are sought. The separatrix is a special solution that has the property to (locally) separate
the state space in regions. Once a system is in one of those regions, it cannot get to the
other region any more. Later, this will help in distinguishing different modes of behaviour.

The Encyclopedia of Mathematics, Weisstein and Ermentrout all use the example of a
saddle equilibrium in two dimensions to introduce the concept [20, 21, 22]. As can be
found in [15], an equilibrium point Z is a saddle if the linearisation has two real eigenvalues
of different sign, A*™ and A\~ . Such vector field has two invariant curves through the
equilibrium point. These trajectories are called separatrices of the saddle.
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A distinction between the separatrices of a saddle point Z can be made in a stable and an
unstable manifold [20]. On the separatrix in the direction of the eigenvector vy~ belonging
to the negative eigenvalue A\~ of the linearisation , z(t) — & as t — oo. This is referred to
as the stable separatrix, and can be found by solving the non-linear differential equations
for zy = = £ evy-. Here, € is an arbitrary small, positive number. Conversely, on the
unstable separatrix in the direction of the eigenvector vy+ associated with the positive
eigenvalue A™ of the linearisation, x(t) — Z as t — —oo. The trajectories belonging to the
unstable separatrix are found by solving the system with o = ¥ + evy+. Here, ¢; is an
arbitrary small, positive weight of the contribution of eigenvector v,.

Sometimes the term separatrix is used for the stable and unstable invariant manifold of
hyperbolic equilibrium points in higher dimensions as well [20]. This implies that, the
manifolds are not necessarily a curve any more, but could as well be planes or higher
dimensional manifolds. This complicates working with separatrices in higher dimensions,
because of the fact that solutions to the non-linear differential equation they belong to are
seldom analytic. This means that the family of all trajectories has to be approximated
by solving the system with, possibly, a very large number of initial states that are linear
combinations of the eigenvectors locally spanning the manifold: zy = ;v\~ + ... + EpUs;
for p stable eigenvalues and xy = e1v,+ +... + EpUxt for p unstable eigenvalues. This make
the separatrix less insightful in higher dimensions.
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