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Abstract 

 
Psychometric research has delivered reliable means for assessing various forms of 
intelligence, yet there has been relatively little success in predicting the human ability to 
solve complex problems in dynamic environments. The present work aims to profile 
dynamic decision making strategies using dynamic simulations in order to predict 
individual complex problem solving performance. We report an experiment assessing 
decision heuristics with the goal to predict complex problem solving ability. We used the 
COmplex DEcision Making (CODEM) system dynamics testbed to assess information 
seeking behaviors and the similarity of decision patterns to different types of heuristics. The 
Democracy 2 serious game is then used as an objective measure of complex problem 
solving ability. Democracy 2 is a realistic government management simulation requiring 
strong planning and systems thinking skills. A set of three new metrics is proposed to 
quantify similarity to different heuristics. Three models are compared on the basis of their 
predictive accuracy: a linear regression model, an artificial neural network and a support 
vector machine. Results show that the support vector machine has the most potential due to 
its superior results in a cross-validation test. We conclude with a discussion on future 
model extensions and generalization tests. 

 
Keywords: Complex problem solving, policy making, decision making, heuristics, 
experimentation, simulation, modeling. 
 
1. Introduction 
 
Given the complexity of the interrelated network of factors in a society (e.g., economy, 
education, health, security, justice and environment), individuals in charge of its 
governance ought to possess strong complex problem solving (CPS) skills to increase the 
likelihood of implementing successful policies. 
 
CPS ability is known to vary considerably across individuals (Fischer, Greiff, & Funke, 
2012; Rouwette, Größler, & Vennix, 2004), yet there is a lack of psychological models able 
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to account for this variability at a quantitative level. A number of studies have found a 
relationship between scores on intelligence tests and decision making performance (Elg, 
2005; Gonzalez, Thomas & Vanyukov, 2005; Goode & Beckmann, 2010). However, these 
results are not consistent across studies (Kluwe, Shilde, Fisher, & Oellerer, 1991; Rigas & 
Brehmer, 1999). Based on a review of experimental research, Wenke, Frensch and Funke 
(2005) conclude that intelligence as a general ability may be an overly broad concept to 
allow reliable prediction of individual differences in complex problem solving. 
Interestingly, CPS ability, as measured using dynamic simulations, has been found to 
predict differences in academic achievement and supervisor ratings beyond those explained 
by intelligence tests (Danner et al., 2011; Wüstenberg, Greiff, & Funke, 2012). 
 
Dörner (1986) introduced the notion of operative intelligence to describe the higher order 
cognitive abilities necessary for CPS. Operative intelligence is essentially about problem 
solving capabilities such as circumspection (e.g., anticipating of long-term and side-effects 
of interventions), strategy selection (e.g., trial-and-error, systematic analysis, adoption of 
heuristics), and the ability to set and manage subgoals.  
 
One potential limitation of using a CPS simulation as a psychometric test is its volatility 
(Rigas, Carling, & Brehmer, 2002). Complex problems can be unforgiving, allowing little 
room for error despite having a generally good approach to problem solving. The duration 
of CPS simulations tends to make it impractical to perform multiple tests to increase 
measurement reliability. We therefore suggest that a more robust measure of CPS ability 
(i.e., operative intelligence) may be the overall decision making process as measured in a 
diagnostic scenario. Accordingly, the goal of the present work is to characterise such a 
pattern over the course of a scenario in a generic way and to determine if it can reliably 
predict CPS performance in a different scenario (i.e., better than mere performance on the 
first scenario). The proposed approach combines the use of information acquisition 
behavioural markers and of newly defined metrics that indicate the overall similarity of the 
decision pattern to three high-level heuristic signatures. 
 
The present paper is organised as follows. Following this introduction, Section 2 presents 
the apparatus and methodology used for data collection. Section 3 presents the data analysis 
procedure and model selection results. Section 4 discusses the implications of our findings 
and directions for future work. 
 
2. Method 
 
Participants. 22 adults (12 women and 10 men; mean age: 23.0 y, SD: 7.73) participated in 
a 4-hour experiment split in two 2-hour sessions.  
 
Design and Procedure. Participants were all assigned to the same experimental condition. 
This group constitutes a baseline condition for upcoming work on CPS training. Session 1 
includes a tutorial, a familiarization scenario, a practice scenario, and the diagnostic 
“Stability Operations” scenario, all played within the COmplex DEcision Making 
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experimental platform (CODEM) system dynamics testbed. Session 2 involves a tutorial 
and test scenario in the Democracy 2 simulation. 
 
Apparatus. The experiment was run on a standard personal computer in a laboratory 
setting, using CODEM (Defence R&D Canada) and Democracy 2 (Positech Games). 
 
2.1 CODEM 
 
The CODEM system dynamics simulator is a “microworld” or “interactive learning 
environment” platform for the design and administration of complex problem solving tasks. 
The underlying problem structure is defined using stocks (situation variables) and flows 
(relations between variables). CODEM provides extensive experimental manipulation and 
data logging capabilities for research purposes. It controls dynamic decision making 
scenarios where players (individuals, teams, or adversaries) can allocate their resources 
amongst different possible interventions in order to influence the state of the system. The 
flexible scenario editor allowed creating a highly challenging fictional stability operations 
scenario (Lafond & DuCharme, 2011). In this scenario, participants are in charge of 
stabilizing a failing state in the midst of a rising insurgency. Participants can allocate 
resources called “action points” into seven different intervention types (Table 1, left 
column). Furthermore, the state of the situation in a given turn is described through nine 
variables ranging from 0 to 20 (Table 1, right column). 
 
Table 1. Possible interventions and situation variables in the stability operations scenario. 

Possible Interventions Situation Variables 
 
Security operations 

 
Host-nation governance  

Influence operations Population allegiance 
Cultural training Local media 
Humanitarian aid Criminality suppression 
Training of local forces Socio-economic welfare 
Infrastructure development Local forces 
Governance capacity building Infrastructures 
 Cultural understanding 
 Insurgency suppression 

 
 
In the simulation, the nine situation variables mutually influence each other so that each 
decision results in a chain of effects within the system. Depending on its current value, each 
variable can be in a desirable or undesirable state as described by a three-color scale that 
goes from green to orange to red (for simplicity, higher values correspond to more 
favorable states for all variables). Feedback on the changes occurring in the situation is 
provided during the transition from one turn to the next.  
 



Paper presented at the 32
nd

 International Conference of the System Dynamics Society:  

Good Governance in a Complex World. Delft, Netherlands, July 20-24, 2014 

4 

 

The goal of the participant is to bring all eight dimensions (cultural understanding is a 
mediating variable but not a sub-goal) outside of the “critical” (red) state in seven turns or 
less (this goal can be achieved in four turns). The mission has failed if the allegiance of the 
local population falls to zero. The underlying model captures several key characteristics of 
complex dynamic systems (reinforcing and balancing feedback loops, delayed effects, 
uncertainty, partial opacity, etc.). Figure 1 illustrates the different tabs of the CODEM 
interface. 

 
Figure 1. CODEM interface (Stability Operations Scenario) 

 
The Situation tab (upper left of Fig. 1) shows the current value of system variables. White 
boxes are for standard variables, dark boxes refer to agents, and grey boxes indicate 
mediating variables. The Relations tab (upper right of Fig. 1) shows the interactions 
between variables. Double-bars indicate delayed effects. The Decision tab (lower left of 
Fig. 1) shows the different intervention options available, the current amount of resources 
(action points) available, and factors influencing action points that will be available in 
future turns.  
 
Effects in the relations tab and the decision tab can be visualized in a graph (by clicking on 
a relation or on “show”). The bottom right of Figure 1 shows a graph illustrating the effects 
of a variable or intervention (x-axis) on another variable (y-axis). Effects can include delays 
and can be roughly linear or highly non-linear. Effects can also be conditional and vary 
according to the current situation. Feedback on the changes in the situation is shown after 
each turn. The scenario ends when the desired end-state is achieved or when the maximum 
number of turns is reached. 
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2.2 Democracy 2 
 
Democracy 2 is an award-winning government simulation game that recreates the major 
systems thinking challenges in the areas of welfare, economy, taxes, public services, law 
and order, foreign affairs and transportation that policy makers and society as a whole 
actually face every day. It is a serious game, i.e., a simulation environment designed for 
training and education purposes rather than pure entertainment. Figure 2 shows the main 
game interface. 
 

 
Figure 2. Main Democracy 2 interface. Blue icons are situation variables. Black icons are 
active policies. Red icons are critical problems. The table at the center of the screen shows 
the opinion of different population groups. The top icons, from left to right, refer to action 
points, income, expenses, debt, proportion of the mandate completed, intelligence reports, 
quarterly report, cabinet members, party membership, player achievements, game options, 
budget report, new policies, polls, review of promises, and start next turn. 
 
This serious game models a government’s mandate, from the moment of taking office, to 
the next election, at which time the simulated scenario is either successful or a failure, 
depending on the election results (i.e., the simulation is limited to a single mandate to 
constrain experiment duration). By making choices which influence voters, partisans, and 
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cabinet members, the player must strive to balance the popularity of his or her government 
with the effectiveness of policies which have direct or indirect impacts on matters such as 
economy, social programs, education, and health care. Unexpected events such as natural 
disasters, financial crises, civil uprisings, military conflicts, or even assassination attempts 
can also occur. 
 
Democracy 2 is a turn-based game where resources (the finances of the state of which the 
government is in charge) are used to implement a number of weighted choices (different 
policies organized in categories such as education, health, economy, environment, etc.). 
Decisions impact a number of variables such as pressure groups, voters’ intents, and the 
situation variables targeted by the interventions (health, economy, education, etc.). There 
are also time delays in policy implementations and feedback. The intuitive interface 
facilitates exploration of causal relations to understand the system’s dynamics. The 
system’s causal structure is highly transparent, i.e., the quantitative relationships between 
policies and target variables are accessible to direct observation, and may be leveraged to 
enhance the comprehension of the system’s inner workings. Figure 3 shows an example of 
the relations that appear when hovering the mouse over an icon. 
 

 
Figure 3. Interrelations between variables displayed in Democracy 2. Green/red lines 
indicate that the impact is to increase/decrease the value of the target variable. The 
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green/red lines are dynamic, creating a visual flow effect moving in the directionality of the 
effect at a speed that is proportional to the strength of the effect.  
 
When introducing a new policy or modifying an existing one, the player sees a menu that 
indicates policy effects and allows setting the policy value using a slider bar, as seen in 
Figure 4. 
 

 
Figure 4. Policy introduction/modification menu. 

 
The specific Democracy 2 scenario selected for the experiment is called Malaganga, a 
fictional debt-ridden state where voting is compulsory. Instructions given to the participants 
are to obtain the highest possible number of votes, while keeping debt as low as possible. 
 
2.3 Measures 
 
Several measures are collected in the Stability Operations scenario to be used for prediction 
purposes, while a single performance measure is collected in the Democracy 2 scenario. 
 
Score in the Stability Operations scenario. Performance is measured by the relative 
distance from the eight sub-goals, and is based on the proportion of the seven-year mandate 
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completed, resulting in a scale ranging from 0 to 100. Hence, reaching the mission goal at 
the end of the seventh turn (the last turn) does not yield a score of 100. A score of 100 is 
attributed to reaching the goal in as few turns as possible (i.e., on Turn 4 in this particular 
scenario). 
 
Information seeking frequency in the Stability Operations scenario. CODEM logs the 
frequency of requests for graphs displaying the effects between variables (relations tab) and 
effects of interventions (decision tab). 
 
Decision Pattern in the Stability Operations scenario. CODEM logs the situation and 
decisions made on each turn. This allows the systematic assessment of the similarity of 
each participant’s decision pattern to three types of heuristics.  
 
• Flat heuristic. One simple heuristic can be to assign an equal importance to the various 

intervention options. This assumes that a balanced approach is a good general strategy 
to solving complex problems. 
 

• Static heuristic. A strategy to save time and effort is to assume that there is a single 
resource allocation with the best possible trade-offs, that is robust enough to be 
repeated throughout the scenario without the need to adjust to changes in the situation. 
 

• Goal-Distance heuristic. Since there are several well-defined subgoals to achieve in 
the stability operations scenario, it is possible to operationalize a heuristic that 
calculates the goal-distance for each variable on each turn. The heuristic then assigns a 
resource allocation proportional to the expected benefits minus adverse effects of each 
intervention, weighted by goal-distance. 

 
The heuristic similarity metrics are obtained by calculating the root of the mean squared 
error (RMSE), between the observed proportion of resources allocated to each intervention, 
and the proportion corresponding to each heuristic. Since RMSE varies from zero to one in 
the present case, the similarity metric corresponds to 1-RMSE. Note that the heuristic 
similarity metrics described above are seen as non-mutually exclusive dimensions that 
together provide a set of features to characterise the overall strategy used by a participant.  
 
Proportion of Action Points Used (Stability Operations Scenario). Since participants had 
the option to use up all their action points in a given turn or not, this metric simply captures 
that decision. This measure may help differentiate those who understand the severity of the 
initial situation and those who do not see that the system is on the verge of a major crisis. 
 
Score in Democracy 2. For the purposes on the present study, the score in Democracy 2 is 
derived by dividing the accumulated debt by the number of votes. Scores are then 
standardized and the sign is inverted so that positive Z-scores correspond to relatively good 
results and negative Z-scores correspond to relatively poor results, using the average as the 
main reference point. A Z-score of 0 means that the score is the same as the mean. A Z-
score of 1 means that the participant’s result is one standard deviation above the mean. 
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3. Data Analysis and Results 
 
A first analysis involved looking at the correlation between the Democracy 2 score and the 
set of individual predictors considered in the present study. Table 2 shows the set of distinct 
predictors investigated. In the case of the information seeking metric, the first turn is 
considered separately from other turns because it was previously found to be critical in 
predicting success (within the same simulation; Gagnon, Lafond, DuCharme, St-Louis & 
Tremblay, 2012). Indeed, Turn 1 typically includes extensive initial planning on the part of 
the participants. 
 
Table 2. CODEM behavior/outcome markers extracted from the logs. 

Markers 
Score in the Stability Operations scenario 
Information seeking (Relations) total frequency 
Information seeking (Decision) total frequency 
Information seeking (Relations) frequency Turn 1 
Information seeking (Decision) frequency Turn 2+ 
Information seeking (Relations) frequency Turn 1 
Information seeking (Decision) frequency Turn 2+ 
Proportion of action points used on Turn 1 
Closeness to Flat heuristic 
Closeness to Static heuristic 
Closeness to Goal-distance heuristic 
 
The correlation analysis showed that the score in the Stability Operations scenario was not 
significantly related to the score in Democracy 2, r(20) = .027, n.s. However, the analysis 
showed that closeness to the Goal-distance heuristic was significantly related to the score in 
Democracy 2, r(20) = .487, p = .022 (two-tailed). 
 
Model Comparison 
 
Three candidate models were considered in order to attempt to predict CPS performance in 
Democracy 2: a linear regression model, an artificial neural network, and a support vector 
machine. These candidate models were implemented in the RapidMiner (RapidMiner Inc.), 
integrated environment for data mining, machine learning, and predictive analytics. The 
objective of this effort is to come up with a model with a superior predictive accuracy 
compared to a baseline single factor regression model based on the closeness metric to the 
goal-distance heuristic.  
 
The first candidate model was W-Linear Regression. This model employs the M5 prime 
feature selection method which relies on the Akaike Information Criterion (AIC; Akaike, 
1974). The AIC uses information entropy to allow a trade-off between the number of 
factors in the linear regression and the error (i.e., residual sum of squares). Through 
successive iterations, the method selects the attribute with the smallest standardized 
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coefficient, removes it and performs another regression. An attribute is dropped if removing 
it results in an improved AIC. This procedure is repeated until no remaining attribute can be 
dropped. The second candidate model was the W-Multilayer Perceptron, a classic artificial 
neural network using the backpropagation supervised learning technique (Rumelhart, 
Hinton, & Williams, 1986). The third candidate model was a Support Vector Machine 
(SVM; also called support vector regression when used to predict a continuous variable) 
implemented by Rüping (2001). An SVM model represents examples as points in a 
multidimensional space (i.e., defined by the examples’ features), using a mapping that 
separates as much as possible examples with different target values. New examples are then 
mapped into that space in order to predict their target value. The special property of SVMs 
is that by maximizing the geometric margin, they tend to minimize generalization error 
(Drucker, Burges, Kaufman, Smola, & Vapnik, 1997). 
 
The baseline single-factor model was found to account for 23% of the variance in CPS 
ability (using the R2 goodness of fit indicator). Yet more importantly, we performed a 
cross-validation test (using the leave-one-out resampling procedure; see Browne, 2000) in 
order to estimate the average prediction error. The result from the baseline single factor 
model was a RMSE of .707 (i.e., the unit being a standard deviation from the mean). 
 
The resulting linear regression model retained four predictors (plus an intercept of -18.05):  
 

• Information seeking (relations) total frequency (coefficient = .0084) 
• Closeness to Flat heuristic (coefficient = -15.56) 
• Closeness to Static heuristic (coefficient = 8.25) 
• Closeness to Goal-distance heuristic (coefficient = 30.23) 

 
The multilayer perceptron will not be described in detail herein, but suffice to say that the 
two hidden layer nodes in the model relied on exactly the same four predictor inputs as the 
linear regression model. The SVM did not perform any feature selection and therefore used 
all the available predictors to some extent. Table 3 shows results of the three candidate 
models in terms of goodness of fit and average prediction accuracy. 
 
Table 3. Goodness-of-fit and average prediction error of each model. 

Model Statistic 
 R2 RMSE 

 
W-Linear Regression 

 
.44 

 
.777 

   
W-Multilayer Perceptron .94 .764 
   
Support Vector Machine .16 .470 
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The key finding is that the SVM was the only model that achieved a lower prediction error 
compared to the baseline single factor model. The two other models were clearly overfitting 
the data at the detriment of predictive accuracy (Myung, Pitt, & Kim, 2005). 
 
4. Discussion 
 
The objective of the present paper was to use a human-in-the-loop system dynamics 
simulation to collect behavioral markers and investigate whether they could reliably predict 
individual differences in CPS performance using a different scenario. We proposed new 
heuristic similarity metrics to characterise key features of a participant’s overall strategy. A 
correlation analysis showed that the score in the Stability Operations scenario was not 
significantly related to the score in Democracy 2. This result was not particularly surprising 
given the well-known variability in CPS simulations. Indeed, our hypothesis was that a 
greater sensitivity to individual differences can be achieved by taking into account the 
process rather than only the outcome of CPS. We compared three candidate models to 
capture the relationship between the predictors and the Democracy 2 scores: 1) a linear 
regression model; 2) an artificial neural network; and 3) a support vector machine. Results 
indicate that only the support vector machine was able to improve on a basic single-factor 
model due to its superior predictive accuracy ascertained using a cross-validation test. 
 
Future research on the development of a cognitive model of CPS ability could benefit from 
an integration of behavioral markers and assessments of fundamental cognitive abilities 
such as working memory capacity (e.g., Gonzalez et al., 2005), fluid intelligence (Raven, 
Raven, & Court, 1998) and updating ability (Rondeel, 2013). Such a model could help 
identify talented individuals for leadership and advisor positions, and help design better 
education and training procedures through a greater understanding of the factors that 
explain individual differences in complex problem solving ability. 
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