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Abstract. In system dynamics modeling, differential equations have
been used as the basic mathematical operator. Using difference equa-
tion to build system dynamics models instead of differential equation,
can be insightful for studying small organizations or systems with micro
behavior. In this paper we explain how we can use difference equations
to build system dynamics models. We illustrate the use of this method
through its application to a case study in supply chain management.

1 Introduction

In the field of social sciences, simulation is accepted as a powerful tool that
helps researchers to get more insight into the system, especially in cases where
practical experiments are not feasible. However, depending on which approach
and tool we select to model a system, the quantitative and qualitative results of
the simulation may vary.

Dealing with time is one of the main issues that every modeler should think
of, before selecting a tool for simulation. Some researchers see social systems as
continuous-time systems and therefore use differential equation-based tools to
simulate a system. In the contrary, other researchers consider social systems as
discrete time systems. Therefore, they select discrete-time simulation tools.

System dynamics modeling (SDM) takes a continuous-time approach and
constructs models with differential equations. While flows that get in or out
of stocks can be represented continuously or in discrete points of time [14],
system dynamic modelers argue that it is an “acceptable approximation” to
consider individual items as continuous streams that can be divided infinitely
[14]. For instance, in a organization, people are individuals and are hired in
discrete manner, but system dynamic modelers assume that the flows of people
are continuously divisible.

Besides the approximation that is caused by assuming discrete flows as con-
tinuous streams, another source of approximation is using average delay instead
of pure delay. For instance, system dynamic modelers assume that since in a
post office with a large number of letters, all the letter are not delivered at once



and there is a distribution around the average delivery time, it is an acceptable
approximation to use average delay to model such cases.

System dynamics modeling is aimed to study long term behavior of systems
at the macro level. This modeling approach is commonly used to study large
organization or global phenomena. Therefore, these approximations are accept-
able. However, the concepts of stock and flow have the potential to be used for
studying systems at the micro level and to explore behavior of small organiza-
tions or phenomena (e.g, hiring system in a small organization, a supply chain
system constructed by a few people). However, the problem is that the main
characteristic of these kinds of system is that their flows are discontinuous and
most of the time there are not many items in delay. Therefore, using differential
equation to construct these kinds of system can lead to inaccurate quantitative
results. In order to avoid these inappropriate approximation, we propose using
difference equations instead of differential equations as the basic mathematical
operator that determines the relation between a stock and its flows. This method
of constructing system dynamics models allows us to model discrete flows and
pure delay.

The structure of this paper is as follows. In section 2, we look into difference
equation and differential equation modeling. In section 3 we present a example
case which we will be using to illustrate difference between the quantitative
result of both approaches. In section 4, we propose our method. In section 5,
we rebuild the working example with the help of the method. In section 6, we
compare the quantitative results of the working example. In section 7, we will
finish with some concluding remarks.

2 Background

2.1 Difference Equations and Differential Equations

Control theory classifies dynamical systems, whose state varies during time,
into two subdivisions: continuous-time (CT) dynamical system and discrete-
time(DT) dynamical system. In CT-systems, the state of the system changes
after every infinite short interval of time while in DT-systems the state of the
system varies at distinct points in time.

Differential equation is the basic operator for modeling continuous time sys-
tems. A simple population model with the growth rate r in the CT approach is
modeled by the differential equation(integral) as following:∫ t

0

r × p(t)dt (1)

Difference equation is the basic operator for modeling discrete time systems.
The simple population model that we already represent with differential equation
can be modeled by a difference equation in discrete time approach as following.

pn = (1 + r) × pn−1 (2)



Population in time n is equal to population in previous time pn−1 plus r ∗ pn−1.

Difference equation as the main operator of discrete-time modeling has been
used recently, especially after developing digital computers[10].

2.2 Discrete-time modeling in Literature

System dynamics literature rarely addresses discrete-time modeling. [14] empha-
size that instead of first order systems in continuous time modeling which can
not generate oscillated behavior, first order systems in discreet-time approach
can oscillate or even generate chaotic behavior. [2] points out that the equations
which construct a system dynamics model can be either differential equations or
difference equations. [2] argues that although a system dynamics model can be
continuous, discrete or hybrid, in practice, SD takes discrete systems as continu-
ous system since continuous-discrete hybrid model can be cumbersome to build
and analyze. [3,4] point out that by replacing dt of a system dynamics model
with 1 we can have a discrete-time version of system dynamics.

Besides system dynamics literature, social simulation literature addresses dif-
ferent approaches for modeling discrete time systems with the help of difference
equations. Inspiring from control theory studies, some researches use Z-transform
to build and analyze discrete-time models. [5] analyze a discrete-time model of
a four echelon supply chain system with the help of Z-transform. [7] study the
dynamic stability of a vendor managed inventory supply chain by constructing
a discrete transfer function of the system.

Besides the Z-transform approach to study discrete-time systems, some re-
searcher use mathematical representations and state space approaches. Math-
ematical representations of a system is mostly used when the system is con-
structed by one equation. [6] develop a mathematical model of a simple popula-
tion model called Logistic model. [1] develop a discrete-time version of epidemic
model. [9] study pattern formation of the discrete-time predator prey model.
The state-space approach is a mathematical representation which is used where
the system is constructed by a few number of difference equations. [13] applied
the state-space approach to study bullwhip effect in a simplified supply chain. [8]
represent a generalized order-up-to policy in supply chains using the state-space
approach.

Discrete event simulations (DES) may also be considered as discrete time
methods, as they are suitable for modeling the systems in which variables change
in discrete-times [12]. DES view systems as discrete sequence of events in time.
In other words, DES is an event-based modeling approach that is different from
the other mentioned approaches that are equation-based.

So far, we mentioned changing dt of system dynamics modeling, z-transform,
mathematical and state-space approach as the main approaches for discrete-time
modeling. We will later explain that although the first approach: changing dt = 1
in system dynamics modeling, seems a acceptable way to model a system with
discrete time, it may result in inaccurate behavior of system. Using Z-transform
and mathematical representation of discrete time system are suitable for linear



system. However, constructing system dynamics models with difference equa-
tions can be used for both linear and nonlinear system. Besides, our proposed
method takes the advantage of the diagramming aspect of the formal system dy-
namics modeling which can be more powerful than Z-transform or other math-
ematical approaches for participatory modeling and for giving insights to the
clients.

3 Working Example

As a running example, we take a one-echelon supply chain adopted from beer
game distribution [14,15] to present the innovative aspects of our method. The
reason for selecting this example is due to the fact that in the beer game dis-
tribution model we study the micro behavior of a small group of individuals.
Therefore, we can show how difference equation can benefit the result of simu-
lation. Figure 1 depicts the stock and flow diagram of this case.

Description of System The system under study is a typical cascade production-
distribution system consisting of one retailer. Customer demand is exogenous
and retailer must supply the amount of product requested by the customer.
If there is insufficient product in stock, the retailer will keep surplus order in
backlog until delivery can be made. All the retailer’s orders will be fully satisfied
after delay (4 weeks) and there is no limitation for the wholesaler to supply the
retailer.

Order Policy The retailer tries to keep the level of inventory at the desired level
(1.5 times of order received). Every order is determined by the number of orders
that the retailer has received and two adjustments (correction) for inventory and
supply line.

OrderP lacedRate = MAX(OrderReceivedRate + DesEffectiveInventory

Correction + DesOrderP lacedCorrection, 0)

(3)

DesEffectiveInventoryCorrection = (DesiredInventory − Effective

Inventory)/DelT ime

DesiredInventory = OrderReceivedRate× InventoryCoverage

EffectiveInventory = Inventory −Backlog

(4)

DesOrderP lacedCorrection = WeightOnSupplyLine× (DesiredOrderP lac

ed−OrderP laced)/DelT ime

DesiredOrderP laced = OrderReceivedRate×DelT ime

(5)



Fig. 1. Beer Game Example

Shipment and Demand Policy The desired shipment rate is the accumulation
of the backlog and the order that the retailer has received. Due to limitation in
inventory, it is not always possible to satisfy desire shipment. Shipment rate is
determined by the minimum of desired shipment rate and inventory. It means if
inventory is lower than the desires shipment rate, the retailer will support a part
of order and backlog equal to the level of inventory. Otherwise, he can satisfy all
the order and backlog.

In order to put the model in the steady-state, we set OrderReceivedRate to
4 and InventoryCoverage to 1.5. The initial amount of inventory is 6 equal to
DesiredInventory. The initial amount of OrderP laced would be 16. At time 4
we increase OrderReceivedRate to 8 in order to analyze the behavior of model.

ShipmentRatemin(DesiredShipmentRate, (Inventory/dt) + AcquisitionRate)
(6)



4 System Dynamics Modeling with Difference Equation

Although, differential equation is traditionally used as the mathematical opera-
tion that determines the relation between stocks and flows, difference equation
is also compatible with the concept of stock and flow [11]. Therefore, it can also
be used as the basic operator of SDM.

Using differential equation (Formula 7) in order to study the micro level
behavior of systems or the short term behavior of small organization in which
flows are not changed in every instance of time, renders the model far from
reality and leads to in inaccurate quantitative results of the simulation. For
instance, when modeling the process of ’making orders by retailers’, if there are
many retailers in the model, assuming that an order takes place every instance
of time is reasonable. However, when there is only one retailer in the system (or
a limited number of them), making the assumption that an order is taking place
in every instance of time is unrealistic. Therefore, for such cases, using difference
equation is a more reasonable option.

Time delays often play an important role in the dynamics of systems. How
we model delay in systems is very crucial in determining the behavior of models.
Using average delay (Formula 8) instead of pure delay to model a system at
the micro level or study short term behavior of a small system or organization
can bring some inaccuracy in quantitative result of simulation. For instance, in
our working example, as we are modeling the behavior of a individual retailer,
there is no distribution of delay time. The retailer will receive his product after
a constant delay of time. Therefore, it would not be appropriate to use average
delay in these kind of cases as it is far from reality.

stock(t) =

∫ t

0

(inflow(t) − outflow(t)) dt + stock(0) (7)

outflow(t) =
stock(t)

D
(8)

In order to avoid the mentioned inappropriate approximation, we propose to
use difference equations to construct system dynamics models. In this approach,
the amount of stock is calculated by Formula 9 which calculates the amount of
stock based on the inflow and the outflow and the previous amount of stock in
every discrete point of time. In order to model D step time pure delay depicted
in Formula 10, the amount of delayed outflow is equal to amount of inflow in
time t − D. The amount of the stock that is linked to the delayed outflow is
equal to summation of all inflow which are in queue to become outflow.

stock[t] = stock[t− 1] + [inflow − outflow] (9)

outflow(t) = inflow[t−D]

stock[t] =

t−1∑
t=t−D

inflow(t)
(10)



Although, in practice, all simulation software use difference equation to cal-
culate differential equation with the help of Rungg Kutta or Euler numerical
method, it does not mean that we can change a system dynamics model con-
structed by differential equation to the difference equation version by setting dt
to 1. Due to the fact that changing the sequence between events in discrete time
modeling changes the numerical result of models, setting dt = 1 may result in
chaotic behavior of formal system dynamics model as we do not consider the
sequence between events during the steps of time. Even if we set dt to 1 in for-
mal system dynamics models because we cannot model pure delay the numerical
result of our model would be different from the difference equation version of
that model.

We will discuss some Characteristics of proposed method in comparison with
formal SDM next.

4.1 Difference Equation Approach Characteristics

Besides the discrete flows and pure delays that make our model closer to reality,
using difference equation give modelers some extra opportunity to build more
accurate and flexible models.

Logical Statements

In system dynamics models that are constructed by differential equation, logical
statements such as if...then...else bring sharp discontinuities in the model and
using them is an issue of debate [14]. However, with our proposed method, we can
take advantage of logical statements. Using logical statements makes our model
more flexible, especially when we want to model decision making processes as a
part of the system.

Memory

System dynamics models constructed using differential equations assume dt as
an infinite short step of time cannot represent the notion of previous time for our
models. However, in reality, the state of system in a previous time is taken into
account to reach a decision. In our working example, since the backlog presents
the accumulation value of surplus order during the simulation, we cannot deter-
mine how much surplus order has been added to backlog during every step of
time. In order to model the decision making process of a retailer who will order
whatever product he could not have supplied during the previous time in his
next order, we need to know how much surplus was added in previous step of
time. SDM constructed by difference equation gives us this opportunity to have
the state of system in every time step to make it possible for us to build more
flexible models.



Real Data

Data gathering from social systems is commonly conducted in discrete points of
time. For instance, the information about the income, profit, and balance sheet
of a corporation are booked every month or year. Using these data as inputs for a
simulation or reference to examine the behavior of simulation is more compatible
by simulating a model in discrete time manner.

In the next section, we will rebuild our working example with the proposed
method.

5 Working Example Constructed by Difference Equation

In Section 3, we described our working example which has been developed with
differential equation. In this section, we will rebuild this model with the help
of difference equation and we will compare the quantitative results of both ap-
proaches. In order to apply this new approach, we developed software in Python
programming language. As in most SD tools, this software supports graphical
definition of equations.

Fig. 2. System Dynamics Supply Chain Example constructed by difference equation

The order, shipment and demand policy of this new model is the same as
the differential equation based model. The only difference is the stock and flow
relation and delay construction. Since inventory and backlog are both stocks that



are not used to model delay, we determine the mathematical relation between
these stocks and their flows using Formula 9.

To model the delay between OrderP lacedRate andOrderFulfillmentRate,
Formula 9 is used to construct pure delay, depicted in Formula 11:

OrderFulfillmentRate(t) = OrderP lacedRate[t− 4]

OrderP laced[t] =

t−1∑
t=t−d

OrderP lacedRate[t]
(11)

Besides defining mathematical operations for constructing a model, another
issue that is important to determine, is the sequence between the events in every
step of time. Depending on how we define the sequence between events during
the time steps, the quantitative results of our model will change. For instance, in
our case we have three main events: placing new order, shipping and backlogging,
receiving previous order. How we arrange the sequence between these events will
result in different behaviors in the system. The final issue that must be considered
is about the steady state of the system. The steady state of the model must be
determined based on the arrangement between events.

6 Results Comparison

We assume that the retailer at the beginning of the week will receive their pre-
vious order in the supply line. Then, he will calculate the order that needs to be
placed and will satisfy costumer’s order by shipping and will adjust the backlog.
In order to put system in the steady state, we set the initial value of inventory to
2 based on the assumption that a retailer will ship all OrderReceived during the
week and what will be left in inventory would be half of OrderReceived which
is equal to 2.

Fig. 3. Inventory in both approaches



Figure 3 shows the difference between the level of Inventory in both ap-
proaches. As it is depicted, inventory in the first approach shows a smooth
oscillation while in the second approach there is no sign of oscillation.

Examining different WeightonSupplyLine in both approaches shows the fact
that in the differential approach, the more WeightonSupplyLine gets close to
1, the more the system presents behavior with lower oscillation. While in the
difference approach the more WeightonSupplyLine closer to 0.5, the more the
system shows lower oscillation. Figure 4 and Figure 5 present the level of inven-
tory for 3 different values of WeightonSupplyLine parameter of the differential
and difference approach models.

Fig. 4. Inventory with different values for WeightonSupplyLine in the differential
approach

Fig. 5. Inventory with different values for WeightonSupplyLine in the difference ap-
proach



Comparing the results of both approaches indicates that with the same
WeightonSupplyLine setting, in first approach the retailer is placing order more
than what he needs to adjust the inventory and therefore it causes oscillation in
inventory behavior. However, in the second approach the oscillation in inventory
behavior is not as strong as it is presented in the differential approach which
means that the retailer take in to account the existence of delay and the amount
of product in delay more than the retailer in the differential approach.

Besides the different quantitative results, we observe qualitative differences
especially when defining hypotheses for simulations. For example, as it is de-
picted in Figure 3, in the difference equation model with the WeightonSupplyLine
equal to 0.5, inventory does not oscillate. This fact can challenges the hypothesis
that oscillation in the behavior of beer game distribution is because of ignoring
the amount of product in supply line.

7 Conclusion

In this paper, we proposed constructing SDM models with the help of difference
equations instead of differential equations. We illustrated this new approach by
applying it to a supply chain system.

In SDM, the mathematical relationship between stocks and flows is commonly
determined by the differential equation. However,the stock and flow concept is
also compatible with difference equation and therefore, we can use difference
equation as the basic operator of SDM which leads us to more accurate quan-
titative result where we study the micro level behavior of a system or small
organization.

The proposed approach contributes to SDM in several aspects. Firstly, it pro-
vides the opportunity to apply the SDM concept at micro level systems where
individual activities change the flows of systems in discrete points in time. Sec-
ondly, it can result in more accurate quantitative result for cases that are not
large enough to assume their flows as continuous streams. Thirdly, opportuni-
ties to use logical statements and memory as explained in Section 4, enhance
our ability to model complex systems.

Another contribution of this approach is that since we are constructing
discrete-time models with the stock and flow concepts instead of using Z-transform
or mathematical representations, it will contribute to the field of discrete-time
modeling as it gives an opportunity to modelers to construct a model graphically
and allow them to model and analyze nonlinear discrete-time models.

One final contribution of our proposed method is that since our proposed
method and discrete event simulation both study the behavior of systems in
discrete points in time and use queues to model systems, it may be possible
to merge the system dynamics approach with the discrete event modeling. In
discrete event simulation, flows of entities that get through the process are de-
termined by random numbers which means that we are dealing with passive
entities. However, by merging both concepts, we can develop more deterministic



behavior for the flows of entities so that they can be effected by the state of
system due to feedback.

As this method is proposed for the first time, it needs more evaluation process
to be proved as a reliable approach for constructing system dynamics models.
In order to use the ability of this approach for studying the micro behavior of
systems a possible option for future work can be merging this method with agent
based modeling.
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