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Abstract 

The Myelogenous Leukemia (ML) is a neoplastic disease involving hematopoietic cells. A 

natural way to model its dynamics is by means of capturing cell cycle kinetics. In this work 

we develop a formal mathematical model where variables capture quantities involved in the 

cell cycle phases. It is in some of these phases that medications such as killing agents and 

recruitment agents can intervene to combat the neoplastic cells. Our work combines system 

dynamics, optimal control theory and Analytic Hierarchy Process to yield a chemotherapy 

optimized treatment protocol for instances of ML, tackling in a systematic way the 

subjectivity involved in the choice of the cost function coefficients. 

 

 

1 Introduction 

 

Many mathematical studies related to cancer chemotherapy have been published in 

recent years (Swierniak 2005, Fister 2000, Swan 1990, Agur et al. 1988, Dibrov et al. 1985). 

In particular, differential equation modeling and optimal control theory has been applied to 

design improved treatment schemes. One of the difficulties with this approach is the 

subjectivity when one is required to choose the performance indices to be adopted. This work 

concerns the application of Analytic Hierarchy Process (AHP) to help in a systematic way the 

selection of the weights in performance indexes. 

Leukemia is a malignant disease of the blood that has as the main feature the abnormal 

accumulation of blasts (precursor cells) in the bone marrow. Because the bone marrow is 

responsible for the development of blood cells from stem cells, several clinical conditions, 

such as anemia, infection and bleeding, can develop due to leukemia.  

The disease can progress rapidly, requiring an intensive intervention. As soon as 

leukemia diagnostic is available, a treatment scheme must be started. The pace of evolution of 

the disease defines if it is acute or chronic, and the affected cell type determines if it is 

myeloid (or myeloblastic) or lymphoid (lymphocytic or lymphoblastic). 

In the chronic phase, there is a relative equilibrium between populations of normal and 

abnormal cells; this situation can last for years. Chronic leukemia progresses slowly, allowing 

the growth of a large number of differentiated cells which may be able to exert some of their 

normal functions. However, at some point, this balance may break down, causing instability 

that leads to an increased number of affected cells.  

The acceleration phase corresponds to a transition between the chronic and the acute 

phase. The system becomes unstable and the affected cells proliferate at a very high rate. 

Acute leukemia progresses fast and affects most the immature cells. Those immature cells 

then lose their ability to perform normal tasks, and multiply uncontrollably, preventing the 

production of normal blood cells. 
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The basic treatment aims to destroy the leukemia cells so that the bone marrow can 

return its production of normal cells. The drug intervention is comprised of stages. The first 

stage aims to achieve complete remission: a state of apparent normality in which 

examinations show no more leukemia cells. However, there remain many undetectable 

leukemic cells in the body, which requires further treatment in order to avoid relapses of the 

disease.  

The following stages of the treatments depend on the type of the leukemia and may 

range from less than one year in myeloid type and more than two years in lymphoid type. But 

in general there are three more stages. The consolidation phase, in which an intensive 

treatment is carried out with substances not previously employed. The re-induction phase, in 

which the treatment with drugs used in the induction of remission is repeated. And the 

maintenance phase, in which the treatment is milder and continued for several months. 

In some cases, bone marrow transplantation may also be a necessary treatment, 

however, this type of intervention with transplant is not considered in this work, which is 

focused on the chemotherapy optimization for acute myeloid leukemia. A main problem 

arising due to treatment is that high doses of drugs cause devastating side effects, whereas 

small doses are not effective to control the disease. To inform specific drug dosage to be used, 

quantitative approaches can be of value in the establishment of specific chemotherapy 

protocols. In this research, we use differential equation modeling (and system dynamics) and 

optimal control to achieve a compromise between therapeutic impact and its side effects. 

We follow medical priorities to balance the relative importance of side effects and 

clinical results of chemotherapy through the definition of a cost and proper fine tuning of its 

coefficients. The Analytic Hierarchy Process (AHP) can aid in this balancing process by 

consistently choosing the weighing factors that respect the preferences suggested by medical 

priorities. 

 

 

2 Dynamic Model of Leukemia 

 

The Myelogenous Leukemia is a neoplastic disease involving hematopoietic cells. In 

this study, we develop a mathematical model capturing cell cycle kinetics. The dynamic 

model requires variables representing the cells in the characteristic cycle phases, specifically 

G0, G1, S, G2 and M (Swierniak 2005). The cell cycle is a very well understood phenomenon 

with wide literature about it. The Fig.1 is a schematic summary of the cell cycle. It is in some 

of these phases that medications can intervene to modify the model dynamics. 

 

 
Figure 1: Outline of the cell cycle. 

 

 

In the mitosis, one mother cell originates to two daughter cells. A cell prepares for 

mitosis (M phase) through three primary phases: G1, S and G2. After the M phase, the cell 

can return to G1, thus preparing another mitosis, or can stay at G0 a resting phase in which 

there is no mitosis-related activity. These phases comprise the basic cell cycle.  
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In the G1 phase, the cells produce proteins that are essential to the synthesis of DNA. 

In the S phase, the parent cell replicates its DNA so that each cell will have its genetic 

material. Afterward, in the G2 phase, proteins that are necessary to the M phase are produced. 

Then, with two copies of DNA separated on opposite sides of the mother cell, it divides itself 

in a half yielding two daughter cells and the cycle is complete. After mitosis, the daughter 

cells can reenter the G1 phase, preparing for another division, or may stay resting in the G0 

phase.  

Let 
1 2 3( , , )TN N N N  be a state-vector in which 

1N  is the number of cancer cells in 

the G0 phase, 
2N  is the amount of cancer cells in the G1 phase and 

3N  is the quantity of 

cancer cells in the phases S, G2 and M, which are lumped into a single stock for the sake of 

simplicity. With these definitions it is possible to characterize the stocks-and-flows as well as 

the equations describing the cell cycle dynamics, which are important to describe the optimal 

control problem. The stock and flows diagram is shown in Fig.2. 

 

 
Figure 2: Stock Flow diagram of leukemia. 

 

 

The cells in the phase G0 can remain in this situation or can move to the phase G1, 

according to transition rate  . Similarly, the cells in the phase G1 can turn into cells in the 

phase S, G2 or M, with transitions that occurs at rate  . Finally, the cells which end the 

mitosis process leave this phase at rate  , becoming cells in the phase G0 with probability 
0P  

or restarting the cycle in the phase G1 with probability 
0 11P P  . Let the control vector be 

1 2 3( , , )Tu u u u , in which, each component represent the drug dosages of the killing, the 

blocking and the recruitment agents, respectively. One can see in Figure 3, the new stock flow 

diagram, now with inputs u.  The state equation is, therefore, of form 

 



 

4 

 

1 1 2 2 3 3( ) ( ( ) ( ) ( ) ) ( )N t A u t B u t B u t B N t            (1) 
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Figure 3: Stock Flow diagram of leukemia under treatment. 

 

 

 The structural validity was checked with the tests of boundary adequacy, structure 

verification, parameter verification and dimensional consistency (Qudrat-Ullah 2005). These 

procedures were omitted since this is not the focus of this work. 

 

  

3 Optimization of Drug Administration Schedule 

 

Let the performance index be the same as used in (Swierniak 2005) 

 

0
( ) ( )

T

J rN t su t dt    
(4) 
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The vectors 
1 2 3( , , )r r r r  and 

1 2 3( , , )s s s s  contain weights to be chosen with the 

AHP assistance, since they express subjective preferences about the relative importance of the 

side effects, and the final therapeutic results. 

The coefficient 
1r  expresses the relevance of the diminution of cancer cells in the G0 

phase at the final moment of the treatment. Similarly, 
2r  and 

3r  express the importance of the 

reduction of cancer cells in, respectively, the G1 phase and S, G2, M phases at the final 

moment of the chemotherapy.  

Additionally, the coefficient 
1s  indicates the relative importance of the side effects, 

due to the accumulated action of the killing agent. The factor 
2s  is related to the blocking 

agent relative relevance, due to its toxicity in the non-cancer cells. Finally, the recruitment 

agent negative interference on healthy cells is virtually null, since this kind of drug does not 

kill any healthy cell. Therefore, its relative importance in terms of side effect is also null, 

which is represented by the coefficient 
3s  = 0. 

It can be shown that for the model adopted here, the optimal controls are not singular 

on any subinterval contained in the time horizon (Swierniak 2005). Thus the natural 

candidates are bang-bang controls. The restrictions on non-negativity of the state variables are 

naturally satisfied due to the structure of the system (Swierniak 2005).  

The solution to the optimal control problem can be obtaining by applying the 

Pontryagin’s Maximum Principle, i.e., minimizing the Hamiltonian 
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1
( ) ( ) ( ) ( )( ( ) ( ))j j jj

H t t AN t u t s t B N t 


    (5) 

 

subject to  

 

1 1 2 2 3 3( ) ( )( ( ) ( ) ( ) )t t A u t B u t B u t B       

( )T r   

(6) 

1 1 2 2 3 3( ) ( ( ) ( ) ( ) ) ( )N t A u t B u t B u t B N t     

0(0)N N  

(7) 

 

where   is the co-state and N0 is the initial condition.  

The details of the solution can be found in (Swierniak 2005) and the optimal solution 

can be written in a convenient manner by defining the switching functions ( )j j jt s B N   , 

1,2,3j  :   

*

max

0 ( ) 0
( )

( ) 0

j

j

j j

if t
u t

u if t

 
 

 
 (8) 

 

 

4 Performance Index Weighting 

 

 The values of the five coefficients (
1r , 2r , 3r , 1s  and 

2s )  ought to be defined with the 

appraisals of experts so that the treatment optimization can be well designed. There are 

several manners to deal with group assessments and decisions (Saaty 2008), but here it is 

considered that the evaluations are already a final outcome of the potentially collective 

observations, debate and conclusion about an assessment at the beginning of a treatment. 

It is necessary that the variables of interest are in comparable units so that the 

weighing factors values can indeed express the relative importance of each variable’s 
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behavior. A normalization of the variables is then a solution to put all the variables in some 

equivalent scale.  

Nevertheless, there are many norm measures and manners of normalizing the 

variables, so that again some subjectivity returns to the problem. For the sake of simplicity, 

here the normalization adopted is the division of the variables by the arithmetic mean of their 

uncontrolled trajectory values. In other words, the system is simulated without any control 

during the defined time horizon, then the arithmetic mean of each variable is calculated and 

used as denominator for the normalization. The time horizon adopted is the same of the work 

showed by Swierniak (2005), so that the studies can be directly compared. 

Using the initial values (0) (6.50,0.15,0.10)TN   the system response is found, 

depicted in Fig. 4 and the mean values are 
1 2 3( , , ) (6.43,0.45,0.19)TN N N  . 

 
Figure 4: Leukemic cells evolution without treatment. 

 

 

As the controls are of the bang-bang kind, their maximum values are readily known, 

and can be used as denominators to normalize the control variables. Finally, using the 

temporal interval to compensate for the medication time accumulation effect on the 

magnitude of the integral, the final instant value also ought to be used as divisor to the control 

variables normalization. Thereby, the normalized performance index can be written: 

3 31 1 2 2 1 1 2 2

0
1max 2max1 2 3

' ( )' ( ) ' ( ) ' ( ) ' ( )1

ˆ ˆ ˆ

fT

f

r N tr N t r N t s u t s u t
Jnorm dt

T u uN N N

 
     

 
  

With the variables adjusted to comparable magnitudes now it makes sense to use the 

Analytic Hierarchy Process to come up with the values of the relative importance of each 

element involved in the performance index. By virtue of an organizational matter, it is 

convenient to represent each criterion considered in the performance measure by the factors 

F1 to F5. 
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Aiming at this purpose, it can be written 1

1

( )
1

ˆ

N t
F

N
 , 2

2

( )
2

ˆ

N t
F

N
 , 3

3

( )
3

ˆ

N t
F

N
 , 

1

0
1max

( )1
4

fT

f

u t
F dt

T u
   and 2

0
2max

( )1
5

fT

f

u t
F dt

T u
  . With this simplified letter representation it is 

easier to carry out the assessments about the relative importance of each element. The values 

used in the comparisons follow the fundamental scale of Saaty (2008) for pairwise 

comparisons. 

 

 Comparison between 1F  and 2F , 1F  and 3F , 2F  and 3F : As the effects of the 

cancer cell on the body are similar, it can be considered that the decrease of the cancer 

cells in any of the cell phases have the same relative importance. 

 Comparison between 1F  and 4F , 2F  and 4F , 3F  and 4F : The killing agent has 

severe interference with healthy cell of the body. Many tissues can be affected and the 

clinical picture of a patient can become worst if the dosages of killing agents are too 

high. Nevertheless, it is not reasonable to allow high cancer cells multiplication while 

trying to lower doses. Thus, the importance of the cancer cells (whatever the phase 

they are) reduction can be considered slightly higher, with relation to the reduction of 

the killing agent’s side effect. 

 Comparison between 1F  and 5F , 2F  and 5F , 3F  and 5F : The drugs of the kind of 

blocking agents have, in general, little cytotoxic effect in the non-cancer cells. 

Therefore, the relevance of the reduction of cancer cells with respect to the reduction 

of the side effects of the blocking agents can be considered moderately higher. 

 Comparison between 4F  and 5F : As the killing agents are more aggressive than the 

blocking agents, then the relevance of the reduction of the killing agents cumulative 

effect can be considered moderately higher than the importance of  the reduction of 

the side effects due to the blocking agents. 

 

Following the AHP methodology (Saaty 2008) briefly described in the appendix, these 

comparisons must now be organized in the as pairwise comparison matrix: 

     

1 1 1 3 4

1 1 1 3 4

1 1 1 3 4

1/ 3 1/ 3 1/ 3 1 1/ 2

1/ 4 1/ 4 1/ 4 2 1

M

 
 
 
 
 
 
  

              (9) 

 

Once this matrix is available, the consistency of the judgments about the preferences 

and the assessments about the relative relevance of each element can be verified. The measure 

adopted here of how much M deviates from consistency is the Consistency Index, defined as 

( max ) /( 1)CI n n   , where max  is the maximum eigenvalue and n  is the order of the 

matrix. Since max 5.119   and 5n  , then 0.0298CI  . 

The Consistency Ratio is defined as /CR CI RI , where RI  is the Random Index. 

Thereby, 0.0269CR  < 0.1. Consequently, the judgments are consistent and the next step of 

calculating the eigenvector relative to the maximum eigenvalue can be carried out. The 

eigenvector is normalized to sum to unity and represents the priority of the variables: 

  [0.2778 0.2778 0.2778 0.0782 0.0885]P       (10) 

 

The relative importance of the elements 1F , 2F , 3F , 4F  and 5F  in the cost 

function is indicated by the weighs, 1 ' 27.78%r  , 
2 ' 27.78%r  , 

3 ' 27.78%r  , 1 ' 7.82%s   
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and 
2 ' 8.85%s  . Unlike the original AHP methodology, here the stage of choosing one single 

option among the alternatives is substituted by the usage of all elements with their respective 

relevancies. 

 

 

5 Simulations 

  

 The values adopted for the parameters here are the same as the found in the literature 

(Swierniak 2005): 0.05   month
-1

; 0.5   month
-1

; 1   month
-1

; 
1max 2max 1u u  ; 

3max 6u  ;
0 0.9P  ; and 

1 0.1P  . The matrix A has eigenvalues 0.0456, -0.50 and -1.0956, 

thus the system has an unstable mode since one eigenvalue is located outside the unitary 

circle. This is in accordance with the strong cancer growth associated with the unstable stage 

of the acute myelogenous leukemia. Besides, as all the eigenvalues are real, the first 

candidates to check as optimal control are extremal controls with one transition per state 

variable (Kirk 1970). 

The switching optimal instant of each control is to be calculated, as well as the type of 

transition, i.e., a beginning or a suspension of a drug application. The optimal treatment 

protocol with the AHP aid was found by heuristic search and is summarized in the Table 1. 

The control applications are compared with the optimal control presented by Swierniak et al. 

(2005). 

 

Table 1. Instants and type of transitions of two optimal treatments. 

Adapted AHP scheme Swierniak et al. (2005) 

Switching time Transition Switching time Transition 

1t  = 0.0087 
1u = 0 to 

1maxu =1 
1t  = 1.96 

1u = 0 to 
1maxu =1 

2t  = 3.4259 
2u = 0 to 

2maxu =1 
2t  = 4.00 

2u = 0 to 
2maxu =1 

3t  = 0.0359 
3maxu = 6 to 

3u =0 
3t  = 0.28 

3maxu = 0 to 
3u =6 

 

 With regards to the cell results and the side effects the data is shown in summarized in 

the Table 2. 

 

Table 2. Cell results and the side effects of two optimal treatments. 

Initial 

state 

Adapted AHP scheme Swierniak et al. (2005) 

Final state Side effect Final state Side effect 

N1 = 6.50 1 5.262N   
1 1

0
1max

' ( )
0.078

fT

f

s u t
dt

T u
  1 2.277N   

1 1

0
1max

' ( )
0.040

fT

f

s u t
dt

T u


 

N2 = 0.15 2 0.708N   

2 2

0
2max

' ( )
0.013

fT

f

s u t
dt

T u


 

2 2.252N 

 

2 2

0
2max

' ( )
0

fT

f

s u t
dt

T u
  

N3 = 0.10 3 0.156N   - 3 1.139N   - 

 0.976Jnorm   3.193Jnorm   

 

The cancer cells in the G1 phase (represented by N2) increased 372%, from the 

beginning to the final state, with the AHP relative importance of 1 ' 27.78%r  , whereas with 

the protocol presented by Swierniak et al. (2005) the rise in the cancer cell in the G1 phase 

was 1401%. This result is due to the weighting factor in the cost function used by Swierniak 
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et al. (2005), in which no normalization is taken into account. The mean value 
1 6.43N   

heavily impacts the relative importance of the cancer cell in the G0 phase. 

To demonstrate this, it is convenient to explicitly present the values and relations 

between the weighting factors for the non-normalized cost function used by Swierniak et al 

(2005). It can be written that 
1 1 1 2 3 1 2/( )N r r r r s s     = 6.43*1/(1+0.5+1+1+0) = 1.837. 

Similarly, 
2 2 1 2 3 1 2/( )N r r r r s s     = 0.45*0.5/3.5 = 0.064, and 

3 3 1 2 3 1 2/( )N r r r r s s    = 

0.19*1/3.5 = 0.054. Thus, it is evident that the relative importance given by Swierniak et al. 

(2005) to the cancer cells in the G1 phase was much smaller than the relative importance 

given to the cells in the G0 phase. This is the reason why it is observed that the cancer cells in 

the G0 phase are reduced in 20% of the initial value with the AHP, while with the scheme 

presented in the literature the reduction was around 65% of the initial value. 

A similar situation is observed with regards to the S, M and G2 phase cancer cells. The 

rise of the cancer cells in these phases with the AHP treatment scheme was 56%, while the 

rise reported by Swierniak et al. (2005) was 1039% due to the small relative importance of 

these cells with respect to the cells in the G0 phase. 

 These results show a superiority of the proposed AHP scheme, since the decision 

maker can be aware of his preferences in the optimization process. Although the elicitation 

and preferences standpoint are best address with the AHP scheme, both treatments are optimal 

solutions, so one treatment can not Pareto dominate the other treatment in all the criteria 1F  

to 5F , situation observed regarding to the drug usage.  

As shown in the “Side Effect” columns of Table 2, the AHP proposal has slightly 

worst side effects on the patient than the treatment proposed by Swierniak et al. (2005). It is 

important to recapitulate that there is always a tradeoff between cell results and drug side 

effects as also analyzed by Swierniak et al. (1996). 

 

 

6 Conclusion 

  

The systematic scheme proposed improves the understanding about the problem 

question, since the System Dynamics approach helps to think about the relationship among 

the variables and the parts of the system. A model based on the cell cycle was built so that the 

leukemia could be addressed. Then, the differential equations were written down so that an 

optimal problem could be posed.  

Time behavior of leukemia without treatment is shown and used for normalization 

purposes. The relative weights in a cost function that involves multiple objectives in the 

optimization of drug usage for the chemotherapy treatment of leukemia were assigned using 

an adaptation of the AHP methodology. 

As expected by theory, the numerical results show that the proposed AHP scheme 

surpassed the results of another optimal solution only in some criteria. Nevertheless, the main 

advantage of the proposed method is the elicitation of the preferences of the stakeholders in 

the optimal control problem. 

As future research, it is intended to develop dynamic assessments which will allow 

obtaining continuous functions as the cost functions coefficients. This study has also potential 

to include real clinical data in order to experimentally check the use of different treatment 

protocols. 

 

 

Appendix 

 

 The Analytic Hierarchy Process (AHP) is a decision tool based on mathematics and 

psychology. The name of the method is related to structuring a decision problem as a 
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hierarchy of sub-problems, namely the goal at the top, the criteria at the middle, and the 

alternatives at the bottom of the hierarchy. 

Once the decision hierarchy is structured, a set of pairwise comparison must be 

defined following the fundamental scale (Saaty 2008). These judgments are values related to 

each node of the hierarchical structure and are used to construct a correspondent matrix. In 

any pairwise comparision matrix, the diagonal is unitary and each remaining input is the 

reciprocal of its transpose input.  

The next step is to calculate the matrix´s principal right eigenvector. (A right 

eigenvector is defined as a vector X satisfying MX X , where M  is a matrix and   is a 

scalar called eigenvalue.) 

 Then the consistency of the appraisals must be checked in order to guarantee that the 

judgments are coherent. If the degree of consistency is not acceptable the pairwise evaluations 

must be redone. If consistency is plausible then one can proceed to choose the best alternative 

in accordance with the priority criteria. 

As the AHP is not the focus of this work, we provide only this brief appendix and 

suggest the interested reader to study specific articles on the method, such as the seminal 

Saaty´s article of 1977, or one of the several ones in the AHP literature, as the one cited in the 

references. 
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