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Abstract

Complex dynamic problems, such as infectious disease spread, have at their core diffusion processes
that are driven by reinforcing feedback loops. System dynamics approaches tend to view such
diffusion problems at an aggregate level, based on the assumption of random mixing within the
population. However, in the public health area, assortative (within-type) mixing is a recognised
empirical phenomenon, and therefore simulation models must disaggregate across key cohorts in
order to maximize engagement with policy makers, and provide more robust and accurate models
of disease spread. This paper integrates key ideas from modern infectious disease modeling
approaches into a system dynamics context, and presents robust formulations to allow for the
disaggregation of SD diffusion models. It also shows how case data can be aligned with SD models,
thereby allowing the model to be calibrated and fit to historical data. The approach is validated
using an SEIR model, and based on a case study of the 1957 flu outbreak.

Introduction

This paper aligns key ideas from the literature of infectious disease modeling to
the system dynamics method, and in doing so, provides an approach to construct
disaggregate models of diffusion processes. The model provides a robust
formulation, and also facilitates accurate calibration against available data
sources. This can be particularly useful during the early stage of an infectious
disease outbreak, where data from previously similar strains can be used to
inform diffusion dynamics. The approach is illustrated using a two-cohort
model, and results are demonstrated against empirical data from the 1957
influenza outbreak. The approach can also be viewed as an alternative approach
to agent-based models, as it can capture non-random mixing dynamics.

Diffusion Models

Diffusion is a fundamental process in physical, biological , social and economic
settings (Rahmandad and Sterman 2008). In system dynamics modeling, the
conventional approach (Sterman 2000) to modeling (chronic) epidemic
processes using the Susceptible (S) - Infected (I) model is via the formulation of
the infection rate (IR) as follows:
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Figure 1:Structure of a simple model of an epidemic - (SD Literature)

IR=c*S*i*(I/N) (D
Where

* cisthe contact rate (person/person/time)

* (I/N) is the chance of meeting an infected person in a population of size N

* iisameasure of infectivity, which is the chance that a contact between an
infectious person and a susceptible person will lead to an infection.

This formulation is robust and intuitive, as an infection will not spread under the
following conditions: (1) there are no contacts, (2) the probability of transfer is
zero, and (3) there are no infectious people in the population. However, a
challenge for modellers is to find good approximations for the contact rate and
infectivity, as these estimates are crucial in order to present decision makers
with realistic models to support policy analysis. In the epidemiology literature
(Vynnycky and White 2010), a different approach (see Figure 2) is used to express
the infection rate of a population. Key to this are the following definitions:
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Figure 2: Structure of a simple model of an epidemic - (Epidemiology Literature)



Effective contact (cg). A contact that is sufficient to lead to transmission if it
occurs between an infectious and susceptible person, and this is simply the
product of the contact rate, and the probability of infection (2).

ce=c*i (2)

Beta (f3). The per capita rate at which two specific individuals come into effective
contact per unit time. Beta is defined as:

B=ce/N (3)

Force of Infection (A). The rate at which susceptible individuals become
infected per unit time.

A=B*1 (4)

Finally, the infection rate - using this terminology and formulation - is simply the
force of infection times the number of susceptible people in the population.

IR=A*S=B*I*S (5)

By a process of substitution, it can be seen that equations (5) and (1) are the
same, and therefore both models capture the transmission dynamics of
contagion.

The strength of equations (2-5) is that they allow for the separation of the
constant 3 (assuming that the population size remains constant), and therefore
facilitates modeling building and parameterization based on historical outbreak
data. The estimation of 8 provides a focal point for the model calibration process,
and its role in equation (4) also supports the development of disaggregated
models of infection transmission.

The case for disaggregate system dynamics models of disease infection is
compelling, given the strong evidence for age-dependent mixing. While
aggregate models have value in terms of elegance and ease of explanation, in
reality their disadvantage is their assumption that contact between individuals is
random. A number of key studies have confirmed non-random mixing in
populations (Vynnycky and White 2010), including data on the transmission of
tuberculosis (Borgdorff, Nagelkerke, and Broekmans 1999), and the recent
extensive study of contact patterns across Europe, which confirmed that contact
patterns are highly assortative (i.e. with-like) with age (Mossong et al. 2008).



A Non-Random Mixing System Dynamics Model

In order to illustrate the method, we present a disaggregation of the SI model to
include two cohorts!: young and adult (Figure 3). The force of infection is also
disaggregated, with one for each cohort, and the beta contact parameters now
cover the four contact pairs in the population, namely young-young, young-adult,
adult-young and adult-adult.
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Figure 3: Disaggregate model of the diffusion process

An important aspect of this disaggregated model are the cohort-interaction beta
values, 3;;, which capture the effective per capita contact rate between a specific
susceptible cohort i and a specific infectious cohort j. Therefore, in our two-
cohort model, the constant (ya models the per capita effective contact rate
between infectious adults and susceptible young. Building on the earlier equations
for the force of infection as shown in equation (4) results in a force of infection
value for each cohort (young and adult), and the corresponding equations for Ay
(6) and Aa (7). Therefore, the overall force of infection (Vynnycky and White
2010) for young people (Ay) is expressed as the sum of the force of infection
attributable to contact with other young people (Ayy) and that attributable to
contact with adults (Aya). Similarly, the overall force of infection for adults (A.) is

1 The approach can accommodate any number of cohorts, in our case, just two have been
selected to simplify the model.



the sum of the force of infection attributable to contact with infectious young
people (Aay), and infectious adults (Aaa).

Ay = Ay + Aya (6)

Aa = }\ay + }\aa (7)

The cohort lambda equations from (6,7) can also be expressed in terms of their
beta values (8,9). Interestingly, these equations be rearranged algebraically in
matrix form, and this isolates the beta terms into a distinct matrix 2x2 structure
that has a special significance in epidemiological modeling.

Ay =By *Iy+*1a (8)

}\a = Bay * Iy + Baa * Ia (9)

The 2x2 matrix, is termed the who acquires infection from whom (WAIFW)
matrix, and this matrix captures the effective per capita rates between (and
within) each model cohort.

Figure 4: Matrix format for force of infection, and the WAIFW Matrix

From a model building perspective, a key challenge is to estimate these beta
parameters, and therefore approximate the rate at which two specific individuals
come into effective contact for each time unit. The general approach used in
Epidemiology is to constrain the WAIFW matrix to N distinct values, where N is
the number of cohorts being modeled (in our case, this would be 2, so we would
identify new parameters 1 and 2). Matrices tend to be symmetric, therefore
the chance of transmission from adult to young would be the same as young to
adult. The range of possible mappings are shown in Figure 5.
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Figure 5: Possible symmetric matrix structures to estimate the contact parameters

In the illustrated example that follows, we will use the WAIFW matrix (with (3
and [32) to estimate contact parameters via a data fitting algorithm. However,
before showing that example in detail, we summarise an additional use of the
contact parameters to estimate the basic reproduction number (Ro) of an
infection in the population.

Ro is defined as the “average number of secondary infectious persons resulting
from one infectious person following their introduction into a totally susceptible
population” (Vynnycky and White 2010), and its formulation is described in
equation (10). It is a key concept for public health officials as they coordinate
action following an outbreak, as it provides the basis for calculating vaccination
proportions in the population and herd immunity values.

Ro=B*N*D=cg*D (10)
In a non-randomly mixing population, such as the example we explore in this
paper, the cohort-to-cohort Ro values are expressed in the Next Generation

Matrix (NGM), which is a matrix of the number of secondary infectious persons
generated by an infectious person in each cohort of the model.

By*NyD  Ba*Ny*D 4 1

Bay *Na*D Baa *Ny*D 1 1

Figure 6: The Next Generation Matrix (Equations) and Illustrative Values

Figure 6 (left hand side) shows the general equations for the NGM, where Nyand
Na. are the population cohort sizes. On the right, we see sample values for an
NGM, and these can be interpreted the following way:



* Ayoung infectious person would infect 4 young susceptible people and 1
susceptible adult (reading down the column of the matrix)

* An adult infectious person would infect 1 susceptible young person and 1
susceptible adult.

The remaining question for policy makers would be what the overall value of Ro
is for the population. The formal definition of the overall Ro vaweis that it is the
dominant eigenvalue of the NGM (Diekmann, Heesterbeek, and Metz 1990), and
we will use this method in the example that follows.

SEIR Example - 1957 Influenza Outbreak

In order to demonstrate the utility of this approach, a model based on the 1957
Asian Flu outbreak is built (Vynnycky and Edmunds 2008). The data is
disaggregated across two cohorts (although the original model has seven
cohorts), and the outbreak data is shown in Figure 7, with infection rate values
shown on the left, and cumulative infection values captured on the right.
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Figure 7: Sample cohort data for 1957 flu outbreak (UK)

Given the dynamics of the influenza pathogen, with a recognised incubation time
estimated at 2 days, followed by an infectious period which is also estimated at 2
days), the SEIR model is the most suitable structure to capture the core virus
dynamics. The disaggregated model is shown in Figure 8, whereby the infection
rate equations are identical to those summarized in the previous section (8, 9).
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In comparison to the model in Figure 3, the addition flow equations are simply
first order delay processes, and these model the exposure delay and the
recovered delay. The SEIR model was subsequently calibrated using Vensim’s
optimizer, and these results show (Figure 9) close alignment when compared to
the original data set, where the blue line shows the actual data, and the red line
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Figure 8: SEIR Model Structure for 1957 Influenza Case Data?
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Figure 9: Visualisation of calibration using Vensim’s Optimizer algorithm

2 The full VENSIM model is included in the conference paper submission




The model fitting results are explored in more detail in

Figure 10, where the results of the optimization process in VENSIM are also
shown. The contact parameters are highest in the young-young cohort, and given
our initial WAIFW matrix assumption, the contact parameter for the other cohort
contacts are the same. It would be recommended to explore all matrix structures
(as presented in Figure 5), in order to provide a sensitivity analysis across the
contact patterns, and also to maximize the confidence of end-users in the model.
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Figure 10: Values for contact parameters and WAIFW Matrix Visualisation

import numpy as NP
from scipy import linalg as LA

a = NP.zeros((2,2))
a[0,0] =1.787 a[0,1] = 0.2805 a[1,0] = 0.5703
a[1,1] =0.5703

1.787 0.2805

0.5703 0.5703

e_vals, e_vecs = LA.eig(a)

>>>e_vals
array([ 1.90670142+0.j, 0.45059858+0.j])

Figure 11: Based on contact rates, calculation of NGM and resulting eigenvalue analysis
(Numpy, Scipy - Python)



Finally, as the model has now calculated estimates for values Byy, Bya, Bay, Baas
these can now be used to estimate the overall reproduction number (Ro) of the
virus in the population. This value is the dominant eigenvalue of the NGM (Figure
11), and using a solver such as scipy (python), this is calculated at 1.906.
Subsequently, this value can be used to inform vaccination policies, and also
which cohorts to target in order to maximize the efficiency of the vaccination
process.

Of course it is also important to remind ourselves of a fundamental of systems
thinking, which requires understanding that all models are wrong (Sterman
2002), therefore model fitting and calibration can yield parameters values that
effectively explain past behaviour, but they will not necessarily project future
outcomes. However, despite these realities, there are situations where model
calibration across different cohorts can enhance the engagement of users in the
modeling process, and therefore this approach has value, when used in that
context.

Conclusion

This paper has aligned key ideas from the literature of infectious disease
modeling to system dynamics, and demonstrates, through an empirically-based
example, how to formulate and calibrate disaggregate (non random mixing)
diffusion models. The approach is scalable in that it can model a high number of
cohorts, and also provides a mechanism to calibrate models and data, and so
improve end-user confidence in models. The approach can be used diverse areas
of diffusion, including infectious disease modeling, market dynamics and
modeling wider contagion effects in an economy.
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