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Abstract: 

This paper proposes a novel statistical sensitivity analysis for dynamic models, which is based 

on an enhanced maximal information coefficient (MIC) method. We enhanced the MIC method to 

handle multivariate sensitivity analysis; rather than just univariate analysis. The main 

motivation of this enhancement is overcoming the research gaps in the current state of the art of 

eigenvalue analysis. We postulate that this novel sensitivity analysis represents a solid 

foundation to study the multivariate complex nonlinear non-monotonic relationships between 

behavior modes – expressed by eigenvalues – and the model parameters. The experiments 

conducted corroborate our postulation.  
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1. Introduction and Theoretical Background: 

Eigenvalue analysis studies the sensitivity of behavior modes (eigenvalues) – or their associated 

weights – to the gains of feedback loops. In general, the gains of feedback loops are functions of 

the gains of links; which in turn are functions of parameters, in the model. Hence one can link 

parameters (independent variables) to a certain eigenvalue (the dependent variable). Eigenvalues 

are computed from the Jacobian matrix J. Moreover, for each eigenvalue, λi, there is a distinct 

sensitivity matrix, Si, which is equal to the product of the left-eigenvector and the transpose of 

the right-eigenvector. 

 

 

 

 

 

The majority of previous works in this area (Forrester 1983; Güneralp 2006; Kampmann and 

Oliva 2008; Gonçalves 2009; Saleh, Oliva et al. 2010; etc…)  utilized the traditional univariate 

sensitivity (or elasticity) measure, which is based on the first order partial derivative of the 

eigenvalue with respect to an independent variable. This univariate measure represents only the 

marginal contribution of the independent variable – assuming that all other independent variables 

are constants. However, as Sterman put it: "In nonlinear systems, the sensitivity of a system to 

variations in multiple parameters is not a simple combination of the response to the parameters 

varied alone" (Sterman, 2000, p.561).   

 

Some scholars adopted multivariate linear regression analysis (Hekimoğlu and Barlas 2010; 

Tøndel, Vik et al. 2012).  Regression analysis is under the umbrella of multivariate analysis; i.e. 

can study simultaneous changes in more than one parameter (Esbensen, Guyot et al. 2002). 

Linear regression analysis aims to find a linear relationship between the dependent variable and 

independent variables.  The core algorithm of linear regression is the least squares errors 

algorithm, which is used in data fitting (Rencher and Christensen 2012). Yet, the main limitation 

here is the assumption of linear relationship between the dependent variable and independent 

variables. 

 

Nonlinear regression analysis can be used when linear regression fails. However, the analyst 

must try different functions; e.g. exponential, logarithmic, etc ... In addition initial values for the 

coefficients are needed; and in general, the solution changes according to initial settings. That is, 
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there is no guarantee to reach the global minimum (least squares errors);   as there might be 

several local minima.  Moreover, the solution of complex nonlinear regression equations might 

not converge. Finally, nonlinear multivariate regression is not well suited to handle non-

monotonic functions (Rencher and Christensen 2012).  

To finalize this section, we present the summary table about different methods of sensitivity 

analysis, provided by Bier (Bier, 2011)  

Method What is measured 
Comparison and 

implications 
Limitations 

Scatterplots 

Subjective 

relationship 

between inputs and 

outputs 

•Good first method 

for identifying 

patterns 

•No very obvious 

patterns 

No quantitative 

measure 

Correlation 

Coefficients 

Strength of linear (or 

monotonic) 

relationship 

•Useful in ranking 

inputs 

•Static results similar 

for different 

types of CC, dynamic 

results 

differed for one input 

univariate analysis; 

i.e. not multivariate 

sensitivity analysis 

Stepwise Regression 

Coefficients for linear 

model 

that best predicts 

output 

•Most inputs were 

significant 

•Results similar to 

correlation 

coefficients 

Assumes linearity 

Elementary Effects 

Average derivative 

when one 

input is perturbed 

over 

different points in its 

domain 

•Little variation in μ* 

between 

inputs 

univariate analysis 

that only measures the 

marginal contribution; 

it does not measure 

the strength of the 

relationship (i.e. the 

total contribution) 

Sensitivity Indices 

Proportion of output 

variance 

attributed to input 

variance 

Interactions were 

significant 

Especially important 

at the 

beginning of the 

simulation 

only measures the 

marginal contribution; 

it does not measure 

the strength of the 

relationship (i.e. the 

total contribution) 

 

Table 1: Different methods of sensitivity analysis; Source: (Bier, 2011, p.17) 
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The solution proposed, in this paper, overcomes all the above limitations; i.e. it is a multivariate 

sensitivity analysis that simultaneously measures the total contribution of several variables. The 

solution proposed is the enhancement of the MIC method to handle multivariate sensitivity 

analysis; rather than just univariate analysis. This will be explained further in the next section.  

The rest of this paper is organized as follows:  In section 2, we explain the proposed solution. In 

section 3, we illustrate the experiments conducted to test the proposed solution. Finally, we 

conclude, in section 4.  

  

2. Proposed Solution 

Since 2011, when Reshef et al. introduced the Maximal Information Coefficient (MIC), many 

researchers utilized it to detect any complex nonlinear and non-monotonic relationship between 

any two variables (Lin, Canhao et al. 2012; Zhang and Zhang 2012; Kim and Davis 2013). MIC 

outperforms other methods in terms of generality and equitability (Reshef, Reshef et al. 2011). 

Generality indicates the ability to detect a wide range of associations both functional and not; 

while equitability assures that similar scores are given to equally noisy relationships of different 

types. MIC is a univariate method that is based on the information entropy concept (Han and 

Kamber 2006; Saleh 2007; Gray 2011). MIC can detect all forms of associations between any 

pair of variables (pairwise relationship).  

Reshef et al. propose the Maximal Information Coefficient (MIC) to measure the relationship 

between two variables. For a dataset D containing n observations on two variables X and Y, the 

values in X and Y can be partitioned into x-bins and y-bins, respectively, to create x by y grid. 

There are many possibilities of partitioning D into grid structure. Let D|G be the distribution of 

observations in D on the cells of a certain gird G, and I (D|G) denotes the mutual information of 

D|G. For a fixed D, different grids G results in different distributions D|G. Reshef et al. define 

the characteristic matrix of D,  𝑀(𝐷)𝑥,𝑦 as follows: 

 

𝑀(𝐷)𝑥,𝑦 =  
𝐼∗(𝐷, 𝑥, 𝑦)

log   𝑚𝑖𝑛(𝑥, 𝑦)
 

 

Where I* (D; x; y) = max (I (D|G)) over all grids G with x columns and y rows. The 

characteristic matrix is then used in the calculation of MIC as 

MIC(𝐷) = max
𝑥∗𝑦<𝐵(𝑛)

(𝑀𝐷)𝑥,𝑦 

Where B (n) is the upper bound on the grid size 
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In other words, MIC transforms the measuring association problem into a dynamic programming 

optimization problem; i.e. it dynamically searches for the grid distribution that maximizes the 

mutual information of the dataset. 

  

Fortunately, MIC has the following advantages:  

1. MIC can measure linear and nonlinear non-monotonic relationships between any two 

variables. 

2. MIC computes association between continuous, categorical or mixed variables (where 

one variable is continuous and the other is categorical). 

3. MIC takes values in the interval [0; 1]. A value of zero means there is no association 

between X and Y. However, a value of 1 means there is a perfect relationship between X 

and Y. 

4. MIC is symmetric, that is, MIC(X, Y) = MIC(Y, X). 

 

Nevertheless, MIC suffers from the following disadvantages: 

1.  MIC is a novel association measure between a pair of variables. However, it could not be 

used to measure relationships among multiple variables. 

2. MIC has a computational complexity problem; as the search space grows exponentially 

with the size of grid. For this reason, MIC must limit the size of grid. 

3. MIC is sensitive to parameter values (used internally,  in the MIC algorithm) 

 

The core contribution of this paper is enhancing the MIC to become multivariate. We will denote 

the original MIC (developed by Reshef et al., in 2011) by MIC1(Y, X1). MIC1(Y, X1) measures 

the association (dependency) level between the two variables Y and X1; and gives a score 

between 0 and 1. Now, in this paper, we define MIC2(Y, X1, X2) as follows: 

MIC2(Y, X1, X2) = E[MIC1(Y,X1)|X2] 

The above expected conditional formula measures the dependency level between Y and X1 given 

the available information (values) about X2; i.e. MIC2(Y, X1, X2)  is the result of averaging  

MIC1(Y,X1)|X2=x2 over all possible values x2 that X2 may take. In general, the four steps 

procedure to compute MIC2 is as follows:  

I. Sort the variables Y, X1, X2 according to X2.   

II. Split the sorted data into bins of equal percentile range (with respect to X2).   

III. Compute MIC1(Y, X1) in each bin.  

IV. MIC2(Y, X1, X2) is equal to the average MIC1 score over all bins.   
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Similarly, in this paper, we define MIC3(Y, X1, X2, X3) as follows: 

MIC3(Y,X1,X2,X3) = E[MIC2(Y,X1,X2)|X3] 

 

And in general, we define MICn(Y, X1, X2,..,Xn) as follows: 

MICn(Y,X1,X2,..,Xj,..,Xn-1,Xn) = E[MICn-1(Y,X1,X2,..,Xj,..,Xn-1)|Xn] 

Where j = 3, ..., n-2 

 

In Appendix A, we list the Matlab code of MIC1 function. Note that this function is a Matlab 

wrapper for the original MIC (developed by Reshef et al., in 2011). In Appendix B, we list the 

Matlab code of MIC2 function. And in Appendix C, we list the Matlab code of MIC3 function. 

 

In practice, MICn should be computed in a stepwise fashion (like stepwise regression). The 

process should begin by determining which input, by itself, would lead to the highest MIC1 

value. Then after the first, most important, input is found; the next most significant input is 

searched for and added to the model -- i.e. the one which would lead to the highest MIC2 value. 

The process goes on until the MICn value would not be significantly improved by adding any of 

the remaining inputs. 

 

We postulate that by applying MICn to eigenvalue analysis, we can overcome the research gaps 

identified in the previous section. The experiments conducted, in the next section, corroborate 

our postulation.   

Finally, we define the sensitivity of the eigenvalue, λi, to the parameter Xq as follows: 

S(λi, Xq) = MICn(λi,X1,X2,..,Xj,..,Xn-1,Xn) - MICn-1(λi,X1,X2,..,Xk,..,Xn-1,Xn) 

Where j = 3, ..., n-2  

  k = 3, ..., n-2 & k ≠ q 

The above sensitivity indicator measures the reduction in the association level (i.e. the MIC 

value), which occurs when removing   parameter Xq from the set of input variables.  
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3. Experiments 

 

3.1. The Experimental Plan 

This section presents the comparative experiments we conducted to test our proposed solution.  

Specifically, we compare MICn vs. multiple linear regression. In the rest of this section, MREGn 

will be used as an abbreviation for multiple linear regression with "n" independent (input) 

variables.  

The experimental plan is as follows: 

 Test the following number of input variables: 1, 2 & 3 (i.e. X1, X2 & X3) 

 X1, X2 & X3 are uniform random variables [0,1] 

 Test various correlation levels between the input variables  

 Test various sample sizes. As specified by the following equation, the number of samples 

of MICn “#Samples_MICn” is linked to both the number of samples of MIC1 

“#Samples_MIC1” and the number of bins “#Bins”. Recall, from the previous section, 

that the number of bins is a parameter required for MICn. Moreover, from our various 

experiments, we concluded that the sufficient sample size of the original MIC1 

“#Samples_MIC1” varies with the complexity of the relationship; however, in general, it 

has to be greater than 10.   

 

#Samples_MICn  =  #Samples_MIC1 * #Binsn-1 

i.e.  #Bins = √ 
#Samples_MIC𝑛  

#Samples_MIC1

𝑛−1
    

 

 The measures of dependency (between the output variable and the input variables) are as 

follows: 

o R2, in the case of MREGn 

o The MIC score, in the case of MICn.  

o Note that “unity” is the best value for both MICn and MREGn (i.e. full 

dependency) 

o While “zero” is the worst value for both methods (i.e. no dependency)  

 

The rest of section 3 is organized as follows: In section 3.2, we conduct experiments on various 

nonlinear algebraic equations. Note that we have also tested several multidimensional linear 

equations; where we found that, in all cases, the measures of dependency for both MICn and 

MREGn are equal unity (or very close to it). Finally, in section 3.3, we develop a simple 
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hypothetical dynamic model; then test the sensitivity of the dominant eigenvalue (associated with 

this simple model) to the input parameters (in the model). Note that in this model (for 

simplicity), the eigenvalues are always real numbers (i.e. not complex numbers) – whatever the 

values of the parameters.  

  

3.2. Experiments on Nonlinear Algebraic Equations 

In this section, we describe the five experiments that we conducted on several nonlinear 

algebraic equations.   

The first experiment has the following settings:  

  1 input variable 

  The nonlinear equation used in the experiment is: 𝑦 = 2 ∗ 𝑥1
2 

  Sample sizes: 10k, 50k & 100k (k=1000) 

  Notice that there is no correlation between the input variables, in this experiment (as 

there is only one input variable) 

Results of the first experiment are shown in figure 1. MIC1 outperformed MREG1, for this simple 

nonlinear equation; i.e. the dependency score associated with MIC1 is greater than the 

dependency score associated with MREG1.   In fact, the curve of MIC1 is a horizontal line at 1 

(i.e. full dependency). 

 

  Fig. 1:   Results of Experiment #1 – MIC1 vs. MREG1 
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The second experiment has the following settings:  

  2 input variables 

  The equation used: 𝑦 =  𝑥1
2 ∗ 𝑥2 +  √10 ∗ 𝑥2 

This equation was designed to make 𝑥2 more significant than 𝑥1; recall that 𝑥1 is a 

random fraction; therefore  𝑥1
2 is always less than 𝑥1 

  The sample size is fixed to 100k. 

  Test various correlation levels between the input variables    

Results of the second experiment are shown in figure 2.  The curve of MIC2(Y,X2,X1) is a 

horizontal line at 1 (i.e. full dependency). MIC2(Y,X2,X1) slightly outperformed  MIC2(Y,X1,X2); 

because x2 is more significant than x1. As we stated in section 2, MICn should be computed in a 

stepwise procedure to detect the best order for the input variables. This stepwise procedure will 

be tested in section 3.2 (i.e. the experimentations on the simple dynamic model). Despite the fact 

that MIC2(Y,X1,X2) is slightly inferior to MIC2(Y,X2,X1); nevertheless, MIC2(Y,X1,X2) 

outperformed  MREG2, except for high correlation values. As when the correlation value   

(between the two input variables) is high, the two input variables tend to be almost the same 

variable. So, in these cases, MREG2 is simplified to MREG1. This explanation is not applicable 

to MIC2, because it is calculated via MIC1 (which only processes one input variable). 

 

Fig 2:   Results of Experiment #2 – MIC2 vs. MREG2 – Fixed Sample Size. 
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The third experiment has similar settings to the second experiment; the differences are as follows: 

 The correlation level between the input variables is fixed to 0  

 Sample sizes: 10k, 50k & 100k 

Results of the third experiment are shown figure 3.  Again the curve of MIC2(Y,X2,X1) is a 

horizontal line at 1. MIC2(Y,X2,X1) slightly outperformed  MIC2(Y,X1,X2), which in turn 

outperformed  MREG2.  

 

Fig 3: Results of Experiment #3 – MIC2 vs. MREG2 – Fixed Correlation Level 

 

The fourth experiment has the following settings:  

 3 input variables 

 The equation used is: 𝑦 = 𝑥1 ∗ 𝑥2 ∗ 𝑥3 +  √𝑥1 ∗ 𝑥3 

This equation was designed to make 𝑥2 the least significant input variable. 

 The sample size is fixed to 250k. 

  Test various correlation levels between the input variables    
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The fifth experiment has similar settings to the fourth experiment; the differences are as follows: 

 The correlation level between the input variables is fixed to 0.5 

 Sample sizes: 100k, 250k & 500k 

Results of the fourth experiment are shown in figure 4; while results of the fifth experiment are 

shown in figure 5.  

 

Fig 4: Results of Experiment #4 – MIC3 vs. MREG3 – Fixed Sample Size 

 

Fig 5: Results of Experiment #5 – MIC3 vs. MREG3 – Fixed Correlation Level 
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In both experiments (fourth & fifth), MIC3(Y,X1,X2,X3) ≈ MIC3(Y,X3,X1,X2) ≈ 1.  And despite 

the fact that MIC3(Y,X2,X1,X3) is slightly inferior to the other two plotted MIC3 (because 𝑥2 is the 

least significant input variable); nevertheless, it outperformed  MREG2 – most of the time.  These 

experiments illustrate the importance of computing MICn in a stepwise fashion, in order to assure 

obtaining the best results for MICn. This stepwise procedure will be demonstrated, in the next 

section.  

 

3.3. Sensitivities of Eigenvalues  

In this experiment, we used the simple hypothetical dynamic model shown in the following 

figure. The model has two stocks: S1 and S2. R1 is the inflow associated with stock S1; and R2 is 

the inflow associated with stock S2. Moreover, there are three auxiliary variables: g11, g12, g21.  

The equations of the model are as follows: 

 X1, X2 & X3 are uniform random variables [0,1] 

 g11 = X1 * X2 * X3 

 g12 = X1 * X2  

 g21 = X1 * X3  

 R1 = g11*S1 + g12*S2 + 1 

 R2 = S1*g21 

 

Fig 6: The Stock & Flow Diagram of the Model used in the Eigenvalue Experiment. 
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Given a set of specific values for the three random input variables (X1, X2 & X3), the two 

eigenvalues of this model can be computed via the Jacobian matrix.  In this case, the two 

eigenvalues are always real numbers. Hence, the dependency between the dominant eigenvalue and 

the three input variables can be identified using either MIC3 or MREG3. The settings of this 

experiment are as follows: 

 The correlation level between the input variables is fixed to 0 

 Sample sizes: 100k, 150k & 250k 

 

To apply the stepwise procedure, we will start by plotting MIC1 associated with every input 

variable, as shown in the following figure; i.e. MIC1(λ
*,X1), MIC1(λ

*,X2) & MIC1(λ
*,X3) – 

where λ* is the dominant eigenvalue.  

 

Fig 7: MIC1 between the dominant eigenvalue and input variables. 

 

It is clear from the above graph that X1 has the highest impact on the dominant eigenvalue; 

while X2 and X3 have the same impact. Now, the coming step is to search for the next most 

significant input -- i.e. the one which would lead to the highest MIC2 value. Hence, in the 

following figure, we plotted MIC2(λ
*,X1,X2) vs.  MIC2(λ

*,X1,X3); moreover, we plotted  

MIC2(λ
*,X2,X3) to make sure that it is an inferior option.  
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Fig 8: MIC2 between the dominant eigenvalue and input variables. 

 

It is clear from the above graph that MIC2(λ
*,X1,X2)  ≈  MIC2(λ

*,X1,X3). Hence, we are free to 

choose any order; arbitrarily, we selected the "X1, X2" order. The next step is to add the only 

missing input variable – i.e. X3. The following figure shows MIC3(λ
*,X1,X2,X3)  vs. MREG3. 

 

Fig 9: MIC3 between the dominant eigenvalue and input variables. 
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It is clear, from the above graph, that MIC3 significantly outperformed MREG3.  Moreover, 

MIC3 ≈1. 

The last step is to compute the sensitivity of the dominant eigenvalue to each input variable. This 

can be done via subtracting the corresponding MIC2 from MIC3 – as specified in section 2.  The 

various sensitivities are plotted, in the following figure.   

 

Fig 10: Sensitivity of the dominant eigenvalue to each input variable 

 

It is clear, from the above graph, that the dominant eigenvalue is most sensitive to X1; while X2 

and X3 have the same impact on the dominant eigenvalue.  
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4. Conclusion  

In this paper, we developed a novel sensitivity analysis for dynamic models, which is based on 

an enhanced maximal information coefficient (MIC) method. This novel sensitivity analysis 

overcomes the research gaps associated with rival methods.  Via this novel analysis, decision-

makers can rank policy parameters according to their impacts on the dominant eigenvalue.  

The core contribution, in this research, is the enhancement of the MIC to handle multivariate 

analysis; rather than just univariate analysis.  This enhancement is useful in many domains 

beyond simulation models. The main caveat is making sure that the required sample size is 

obtainable. Recall that the required sample size grows exponentially with the dimension of the 

multivariate MIC. In many real life applications, obtaining the required sample size may not be 

possible. However, in simulation models, generating a large number of samples is a normal 

practice. More importantly, there is no need to simulate the model.  The proposed solution only 

interacts with a condensed matrix representation of the model; i.e. the Jacobian matrix. In each 

run, the process, which takes time, is the computation of eigenvalues from the Jacobian matrix; 

and there are algorithms that compute eigenvalues very fast.  

In the near future, we will continue the experimental work; and investigate more the time 

complexity of the proposed solution.  

Finally, in many nonlinear dynamic models, eigenvalues depend on the current state of the 

model. For these cases, we plan to devise an innovative framework that links the time trajectory 

of the dominant eigenvalue with parameters. 
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Appendix A:  Matlab Code for MIC1 Function 

 

 

function result = MIC1(v1,v2) 

 

  fid = fopen('file_MINE.csv','w+'); 

  fprintf( fid , '%s, %s\n' , 'v1' ,'v2'); 

  dlmwrite ('file_MINE.csv', [v1,v2], '-append'); 

  fclose('all'); 

  

  system('java -jar MINE.jar "file_MINE.csv"  0'); 

  % Download MINE.jar from http://is.gd/esajuq 

 % You must also install the  Java Runtime Environment (JRE) 

   

  result = csvread('file_MINE.csv,mv=0,cv=0.0,B=n^0.6,Results.csv',1,2,[1,2,1,2]); 

        

end 

  

http://is.gd/esajuq
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Appendix B:  Matlab Code for MIC2 Function 

 

 function result = MIC2(n_bins,y,x1,x2) 

 

  M = [y x1 x2]; 

  Ms = sortrows(M,3);  

  ys = Ms(:,1); 

  x1s = Ms(:,2); 

  

  len = length(ys); 

  sum = 0; 

  idx_start = 1; 

   

  for i = 1:n_bins 

       idx_end = round(i*len/n_bins); 

       sum = sum + MIC1(ys(idx_start:idx_end),x1s(idx_start:idx_end)); 

       idx_start = idx_end+1; 

  end     

  

  result = sum/n_bins; 

        

end 
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Appendix C:  Matlab Code for MIC3 Function 

 

function result = MIC3(n_bins,y,x1,x2,x3) 

 

  M   = [y x1 x2 x3]; 

  Ms  = sortrows(M,4);  

  ys  = Ms(:,1); 

  x1s = Ms(:,2); 

  x2s = Ms(:,3); 

  

  len = length(ys); 

  sum = 0; 

  idx_start = 1; 

   

  for i = 1:n_bins 

       idx_end = round(i*len/n_bins); 

       sum = sum + ... 

              MIC2(n_bins,ys(idx_start:idx_end),x1s(idx_start:idx_end), ... 

              x2s(idx_start:idx_end)); 

       idx_start = idx_end+1;    

  end     

  

  result = sum/n_bins; 

        

end 

 

 

 

 

 

 


