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Abstract 

 

This article deals with the analysis of large or complex system dynamics (SD) 

models, exploring the benefits of a multimethodological approach to model 

analysis. We compare model analysis results from SD and social network 

analysis (SNA) by deploying SNA techniques on a pertinent example from the 

SD literature—the world dynamics model. Although SNA is a clearly distinct 

method from SD in that it focuses on social actors and their interrelationships, 

we contend that SD can indeed learn from SNA, particularly in terms of model 

structure analysis. Our argumentation follows renowned system dynamicists 

who acknowledge the potential of SD to synthesize and advance theories in 

social science at both the conceptual and technical levels. 
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Introduction 

 

This article deals with the analysis of large or complex system dynamics (SD) 

models, exploring the benefits of a mixing methods approach towards model 

analysis. For this reason, we compare model analysis results achieved by SD and 

social network analysis (SNA) when both methods are applied to the world dynamics 

model (Forrester, 1971), an example from the SD literature. We assert that, even 

though SNA distinguishes itself from SD by focusing on social actors and their 

interrelationships, SD can indeed learn from SNA. This is particularly true in terms of 

model structure analysis. We argue in the vein of Hovmand and Pitner (2005) and 

Schwaninger (2006) by acknowledging the potential of SD to synthesize and 

advance theories in social science. 

Scholars in the systems field have shown increasing interest in mixing methods or 

hybrid modeling to more effectively manage complex, real-world problems. The most 

prominent example of this are the combinations of SD with cognitive mapping (Eden, 

1994; Ackermann et al., 1997; Stotz and Größler, 2007), soft systems methodology 

(Lane and Oliva, 1994; 1998; Rodriguez-Ulloa and Paucar-Caceres, 2004; 2005), 

cybernetics (Schwaninger et al., 2004; Schwaninger and Pérez Ríos, 2008), and 

multicriteria analysis (Brans et al., 1998; Santos et al., 2002; Pruyt, 2007). All of 

these demonstrate the power and utility of a multimethodological approach. Greene 

et al. (2001, p.27) believe “that the fundamental uncertainty of scientific knowledge—

especially about complex, multiply-determined, dynamic social phenomena—can be 

better addressed through the multiple perspectives of diverse methods than through 

the limited lens of just one.” 

However, mixing methods must be done carefully and with a clear purpose. 

Combining methods from different paradigms can cause serious problems—

philosophically with respect to “paradigm incommensurability,” theoretically with 

respect to effectively fitting methodologies together, and practically with respect to 

the wide range of knowledge, skills, and flexibility required of practitioners (Burrell 

and Morgan, 1979; Mingers and Brocklesby, 1997). We argue that, in our case of 

mixing SD and SNA, theoretical coherence can be achieved with thorough 

argumentation. According to Lane (1999), the social theory underlying SD is not fully 

explicit and must be deduced from practice, revealing “functionalist sociology” as the 

prevailing paradigm. In contrast, SNA is a “structuralist” paradigm, conceptualizing 

social life in terms of the structures of relationships among actors (Carrington and 

Scott, 2011).  

Both methods share a strong affinity towards mathematical formalization. At the heart 

of SNA is graph theory—a set of axioms and deductions that originated in the work of 

the famous Swiss mathematician and physicist Leonhard Euler (Harary and Norman, 

1953). SNA is a specific application of Euler’s graph theory in which individuals and 

other social actors such as groups or organizations are represented in a graph by 
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vertices or nodes and their social relations by edges or lines (Carrington and Scott, 

2011). SD also has strong ties to mathematics. Forrester himself (1961) stated in his 

seminal and enduring book, Industrial Dynamics, that simulating realistic 

mathematical models by means of computers is one out of the four foundations of 

SD. Consequently, it does not come as a surprise that both SD and SNA belong to 

the social sciences mathematical methods.    

In practice at least, the two methods have come very close. Famous system 

dynamicists have applied graph theory to better understand the structural complexity 

of large SD models and to identify structures that predominantly drive behavior 

(Oliva, 2004; Kampmann, 2012). This is a reasonable step because SD models can 

be easily described as digraphs composed of vertices and edges. These digraphs 

encompass entire SD models, while the vertices and edges represent variables and 

causal relationships respectively.  

For these two reasons—their common affinity for mathematical formalization in 

models and the initial steps already taken towards merging two methods in practice—

we believe that SD and SNA can be combined without losing theoretical consistency. 

The purpose of this paper is to show that a combined approach can contribute to 

model structure analysis, particularly to the rigor and effectiveness of SD-based 

model diagnosis for finding effective intervention points. Figure 1 presents the basic 

area of application for both SD and SNA. While SD explains the relationship between 

model structure and behavior, SNA is limited to characterizing model structure only.    
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Fig. 1. Contribution of SD and SNA to model analysis   

 

Our paper is organized into four interrelated sections following this introduction. The 

first section illustrates and discusses the power of SD and the type of results that can 

be gained with such an approach by reviewing the world dynamics model. The 

ensuing section presents the main concepts of SNA and demonstrates how this 

method can aid to model structure analysis. We show this by converting the 

previously introduced SD model into a graph and calculating various SNA measures 

and metrics. In the third section, we discuss the potential benefits of integrating SNA 

into SD for system dynamicists. The final section provides conclusions and 

recommendations for future research. 
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The power of system dynamics: reviewing the world dynamics 

model 

 

In 1970, the Club of Rome planned a project on “the predicament of mankind” with 

the primary objective of fostering understanding about the transition from world 

growth to world equilibrium. In a meeting convened that same year, discussion 

among club members revealed that an appropriate methodology for dealing with the 

broad spectrum of human affairs and the ways in which major elements of the world 

ecology interact could not be identified (Forrester, 1971). It was time for Forrester’s 

system dynamics to unfold its entire methodological power and beauty by addressing 

this particular issue—a task that seemed insurmountable due to the inherent level of 

complexity generated by world dynamics.  

Forrester built a 43-variable world model without counting the coefficients, 

interconnecting concepts from demography, economics, agriculture, and technology. 

He decided to use five stock variables as the cornerstones of his model: population, 

capital investments, natural resources, fraction of capital devoted to agriculture, and 

pollution. The model is capable of generating a variety of alternative behaviors 

depending on the policies that mankind installs to control world growth. In the 

following, we list the specific strengths of SD by carefully reviewing the world 

dynamics model.      

1. SD takes the attitude of embracing complexity rather than fearing it. It has the 

means to effectively reduce complexity, concentrating on core elements and 

their interactions. While other methods are simply overwhelmed by the 

complexity of modeling the world system, SD is not. 

2. SD generates systemic insights that lead to more fundamental problem 

solutions by investigating the underlying problem causes. This is in sharp 

contrast to other methodologies that provide only symptomatic solutions. For 

example, Forrester warns that industrialization may be a more fundamental 

disturbing force in the world ecology than population growth, and that 

population explosion is perhaps best viewed as a result of technology and 

industrialization (Forrester, 1971). 

3. SD considers problems holistically. While other methodologies had only dealt 

with partial aspects of the world system such as demographic change or 

pollution, the SD model integrates several major system-driving forces into a 

single model. This holistic approach is an indispensable requirement for 

revealing unintended and probably destructive consequences. In the case of 

world dynamics, these unintended consequences arise from hitting against a 

natural barrier or limiting condition such as the depletion of natural resources.     

4. SD adopts a feedback view. All processes of growth and equilibrium occur 

within feedback loops: growth is generated by positive feedback loops and 

equilibrium by negative feedback loops. Since exploring world dynamics 
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requires analysis of growth and equilibrium processes, it is inevitable that an 

appropriate method for such an analysis would take a feedback perspective. 

5. SD displays results as behavior over time graphs. The methodological focus is 

on behavioral trends such as the identification of disruptive changes, rather 

than on point-precise results. Forrester (1971, p.110) recognizes that “one 

should not expect models of the kind discussed in this book to predict the 

exact form and timing of future events. Instead, the model should be used to 

indicate the direction in which the behavior would alter if certain changes were 

made in the system structure and policies.” Figure 2 shows the behavior of the 

four stock variables—population, capital, pollution, and natural resources—

simulated over a 200-year period according to Forrester’s (1971) model 

specifications (original model). Population peaks in the year 2020 and 

thereafter declines due to rapidly falling natural resources. In this mode of 

world behavior, the stock of natural resources is the limit to growth.   

 

 

Fig. 2. Basic behavior of the world dynamics model, showing how capital 

accumulation and population growth are suppressed by falling natural resources   

 

Forrester (1971) observed that the stock of natural resources is the prime limit to 

growth. However, if mankind succeeded in reducing the usage rate of natural 

resources, another more severe restraint appears—a pollution crisis. For Forrester 

this finding was a fundamental lesson about complex systems. When one pressure or 

difficulty to the system is removed, the result may be just to replace the old problem 

for a new, often less desirable one. Collectively, Forrester (1971) identified four limits 

to growth: (1) natural resource depletion, (2) pollution, (3) crowding, and (4) food 

shortage.  
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6. SD produces high-leverage and long-term solutions, respecting the objectives 

of the whole system. The focus is on long-term system consequences and not 

on short-term system improvements. Additionally, SD solutions explicitly 

consider the goals of the larger system, thereby avoiding the overestimation of 

local goals.     

In chapter six of World Dynamics, Forrester (1971) proposes a set of changes that 

lead to a transition from growth to global equilibrium. He suggests the following 

changes: (1) reduce the usage of natural resources by 75%, (2) reduce the pollution 

generation rate by 50%, (3) diminish the generation of capital investments by 40%, 

(4) diminish food production by 20%, and (5) to lower the birth rate by 30%. These 

modifications mean an end to population growth and rising standards of living. Figure 

3 presents this altered world scenario.  

 

 

Fig. 3. Behavior of the world dynamics model after reducing pollution generation, 

natural-resource-usage, capital investment generation, food production, and birth 

rate   

 

The world dynamics model shows that a philosophy of growth and a rising standard 

of living for everyone cannot be sustained. Forrester (1971, p.125) writes that “new 

human purposes must be defined to replace the quest for economic advancement. 

Nature must be helped rather than conquered. Civilization must be restrained rather 

than expanded. Social pressures probably must increase rather than decline, until 

those pressures can be transformed into a change in social values that take 

satisfaction from an equilibrium society.”  
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Social network analysis: exploring patterns of connections 

 

Freeman (2004) characterizes SNA as an approach with four defining properties: (1) 

the intuition that links among social actors are important; (2) grounding on the 

collection and analysis of data that record social relations linking actors; (3) drawing 

substantially on graphic imagery to uncover and display the patterning of those links; 

and (4) developing mathematical and computational models to describe and interpret 

these patterns. The modern field of SNA, in the sense of Freeman’s definition, 

emerged in the 1930s when different researchers in the U.S. simultaneously 

engaged in SNA. One of these researchers, Kurt Lewin, a German psychologist, 

developed a structural perspective and conducted social network research inter alia 

at MIT. By the 1970s, 16 centers of social network research had appeared, however 

none of these centers succeeded in providing a generally accepted paradigm for the 

social network approach to social science research (Freeman, 2011).  

In the early 1970s, this all changed due to the research of Harrison C. White and his 

students at Harvard University, which anchored SNA into the social sciences as a 

structural paradigm. In the late 1990s, physicists began publishing on social networks 

and triggered a revolutionary change in the field. Watts and Strogatz (1998) initiated 

this change when their article collective dynamics of ‘small-world’ networks was 

published in Nature. They discovered that many biological, technological, and social 

networks are seldom completely organized or random but lie somewhere between 

these two extremes. Watts and Strogatz (1998) call these networks “small world” 

networks according to the terminology used by famous American social psychologist 

Stanley Milgram (Milgram, 1967). Watts and Strogatz (1998), together with two other 

physicists, Barabási and Albert (1999), opened the door for natural scientists to 

explore all kinds of networks.  

In recent years, two main research foci have emerged: (1) cohesive groups or 

communities within networks, and (2) the positions that nodes occupy in networks—a 

concept called centrality (Freeman, 2011). In this paper, we focus on the latter 

research strand by investigating the meaningfulness of applying different centrality 

measures on an SD model—the world dynamics model. The remainder of this 

section is organized as follows: first, we give a short introduction into graph 

theoretical descriptions of directed networks and present the four centrality measures 

used in SNA; second, we transform Forrester’s world dynamics model into a digraph 

and calculate the four centrality measures for all nodes (variables) and third, we 

examine if the results achieved by SNA are valuable for SD modeling and analysis.     
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Centrality in directed networks 

A directed network or directed graph, called a digraph for short, is a network in which 

each edge has a direction, pointing from one vertex to another (Newman, 2010, 

p.114). One of the most convenient and compact representation of a network is the 

adjacency matrix. The adjacency matrix A of a directed network has the following 

matrix elements:  

 
     

                                  

            
   

(1) 

 

Centrality is one of the key topics in SNA and deals with the question, “which are the 

most important or central vertices in a network?” Scholars in SNA have defined 

differently the notion of importance in networks and correspondingly many centrality 

measures for networks exist (Newman, 2010). We will present the four most 

prominent measures: (1) degree centrality, (2) eigenvector centrality, (3) closeness 

centrality, and (4) betweenness centrality.  

Degree centrality of a vertex in a network is simply the number of edges connected to 

it (Nieminen, 1974; Newman, 2010, p.133). In a directed network of n vertices, 

however, the degree of vertex i,   , can be further sub-divided into in-degree   
  and 

out-degree   
   . In-degree refers to the number of ingoing edges connected to a 

vertex i, and out-degree refers to the number of outgoing edges so connected 

(Newman, 2010, p.135). In- and out-degrees are defined as 

 

  
       

 

   

             
        

 

   

  
 

(2) 

 

Eigenvector centrality is a more sophisticated version of the degree centrality 

explained previously in this paper. Eigenvector centrality takes into account that not 

all neighboring vertices of a vertex i are equivalent. One can argue that, in many 

circumstances, it is reasonable to assume that the importance of a vertex in a 

network is increased by having connections to other vertices that are themselves 

important (Bonacich, 1972; 1987; Newman, 2010). Mathematically, eigenvector 

centrality is defined as 

      
      

 

    
 

(3) 

 

where   is the largest eigenvalue of adjacency matrix A.  

Thus, the reason for a vertex i to have large eigenvector centrality is either because 

this vertex has many neighbors or because it has important neighbors (or both). For 

example, an individual in a social network can be important, according to eigenvector 
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centrality, both because he or she knows a lot of people or because he or she knows 

a few, people who are very influential (Newman, 2010). 

Closeness centrality measures the mean distance from a vertex to all other vertices. 

Suppose    is the length of a shortest path from vertex i to j, then the average 

shortest path from i to j over all vertices j in the network is (Sabidussi, 1966; 

Newman, 2010, p.181) 

 
   

 

 
     

 

  
 

(4) 

 

The average shortest path,   , is not a centrality measure in the same sense as 

degree centrality: it gives low values for more central vertices and high values for less 

central ones. For this reason, SNA researchers commonly calculate the inverse of    

rather than    itself. This inverse is called the closeness centrality,   , and is defined 

as 

 
    

 

  
 

 

     
  

 
(5) 

 

Betweenness centrality measures the extent to which a vertex i lies on paths 

between other vertices (Freeman, 1977; Newman, 2010, p.185). This centrality 

measure is based on the network flow model (Borgatti and Lopez-Kidwell, 2011), 

where information or a resource flows from vertex to vertex along paths. Freeman 

(1977) made the simple assumption that every pair of vertices connected by a path in 

the network exchanges information with equal probability per unit time and that 

information always takes the shortest path—or randomly chooses one of equal 

shortest paths—through the network. This assumption implies that if we wait a 

suitably long time until a lot of information is exchanged between vertex pairs, the 

amount of information passing through each vertex is simply proportional to the 

number of shortest paths on which the vertex lies. This number of shortest paths is 

the betweenness centrality (Newman, 2010). In mathematical terms, let    
  be 1 if 

vertex i lies on a shortest path between vertex s and t and 0 if it does not or if there is 

no such path, then the betweenness centrality    is defined as 

        
 

  

   
(6) 

 

Equation (6) can be normalized on a logical scalar with n as the number of vertices 

as follows 

 
        

    

           
  

 
(7) 
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The world dynamics model as a directed graph 

We have slightly simplified Forrester’s world dynamics model by eliminating the 

lookup variables (time tabs) from the model. The resulting model contains 59 vertices 

and 88 edges (see appendix for the list of variables used). We compiled the 

adjacency matrix with the corresponding data and used Gephi, an open-source graph 

visualization and manipulation software, to display the directed network (see Figure 

4). Next we calculated all four centrality measures introduced in the previous section 

for each vertex and sorted the results in descending order. In the following, we 

present only those 10 vertices for each centrality measure that have achieved the 

highest centrality score. For this analysis task we used R, a free software 

environment for statistical computing and graphics together with the free software 

package igraph (see appendix for the R code). Table 1 shows the 10 most important 

vertices according to the degree centrality. For vertices having the same degree, 

those with a higher out-degree are assumed to be more important. The vertex 

numbering in Table 10 corresponds to the vertex numbers in the adjacency matrix in 

the appendix.  

Table 1. 10 most influential vertices with respect to the degree centrality (S = stock, F 

= flow, A = auxiliary variable; italicized vertices represent intervention points 

proposed by Forrester to reach world equilibrium) 

Vertex Name Degree Out-degree In-degree 

1 Population (S) 9 7 2 

17 food ratio (A) 9 4 5 

28 material standard of 
living (A) 

7 5 2 

57 pollution ratio (A) 7 5 2 

8 crowding (A) 7 4 3 

36 Capital Agriculture 
Fraction (S) 

7 3 4 

15 births (F) 7 1 6 

2 deaths (F) 7 1 6 

31 capital ratio (A) 5 3 2 

30 effective capital ratio (A) 5 1 4 

 

Owing to the purpose of this model—transition from world growth to world 

equilibrium—it is not surprising that population is the most influential vertex according 

to the degree centrality and all other centrality concepts (shown in Table 2). Although 

food ratio has the same degree as population, it probably has less influence on the 

world dynamics model due to the smaller out-degree. The 10 most influential vertices 

related to degree centrality include only two of the intervention variables suggested 

by Forrester to stabilize population growth—food ratio and births—meaning that the 

other three intervention variables do not exhibit adequately high degree. Table 10 

shows that both material standard of living and pollution ratio have significant impacts 

on the model, and might also serve as effective leverage points to influence world 

growth.   
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Fig. 4. The world dynamics model converted into a directed network 

 

Table 2 presents the 10 most important vertices with respect to eigenvector, 

closeness, and betweenness centrality. In contrast to simple degree centrality, 

eigenvector centrality reveals in the first 10 vertices four out of five of the intervention 

points chosen by Forrester: births, capital investment, pollution generation, and 

natural resource utilization.  
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Table 2. 10 most influential vertices with respect to the eigenvector, closeness, and betweenness centrality (S = stock, F = flow, A = 

auxiliary variable; italicized vertices represent intervention points proposed by Forrester to reach world equilibrium) 

Eigenvector Closeness Betweenness 

Vertex Name Centrality Vertex Name Centrality Vertex Name Centrality 

1 Population (S) 1 1 Population (S) 0.3892617 1 Population (S) 0.7307925 

15 births (F) 0.675780 15 births (F) 0.3452381 28 material standard of 
living (A) 

0.5290381 

2 deaths (F) 0.675780 2 deaths (F) 0.3452381 30 effective capital ratio 
(A) 

0.5102843 

8 crowding (A) 0.444859 31 capital ratio (A) 0.3452381 15 births (F) 0.3563218 

31 capital ratio (A) 0.388921 8 crowding (A) 0.3372093 2 deaths (F) 0.3563218 

25 capital investment (F) 0.313388 17 food ratio (A) 0.3222222 45 Pollution (S) 0.3200242 

46 pollution generation (F) 0.308412 28 material standard of 
living (A) 

0.3186813 17 food ratio (A) 0.3106473 

54 natural resource 
utilization (F) 

0.282348 30 effective capital ratio 
(A) 

0.3186813 57 pollution ratio (A) 0.3079250 

11 births crowding 
multiplier (A) 

0.252337 46 pollution generation (F) 0.3085106 31 capital ratio (A) 0.284634 

7 deaths crowding 
multiplier (A) 

0.252337 54 natural resource 
utilization (F) 

0.3085106 46 pollution generation (F) 0.2758621 

 

 

 

 



12 
 

It makes sense that eigenvector centrality attaches more importance to Forrester’s 

leverage points, because four of them are flows that are by definition connected to 

highly influential neighbors—the stocks. As eigenvector centrality values vertices with 

important neighbors more highly than those with less influential neighbors, vertices 

representing flows in the world dynamics model receive a higher score than with 

simple degree centrality. The eigenvector centrality concept recognizes that both 

births and deaths occupy very central positions in the network and are effective 

levers for controlling world growth. This finding is not surprising to system 

dynamicists at all, since it is common sense among SD practitioners that every stock 

is controlled by its inflow (births) and its outflow (deaths). In addition to Forrester’s 

leverage points, eigenvector centrality suggests that crowding and capital ratio also 

exert a substantial influence on the model and may be suited for intervention. 

As mentioned in the preceding section, the closeness centrality of a vertex is the 

inverse of the average shortest path of this vertex to all other vertices in the network. 

Thus, a central vertex is one that, if changed, transmits those changes very quickly to 

the entire network. The 10 most central vertices in the network with respect to 

closeness centrality again include four of the leverage points proposed by Forrester. 

This time they are births, food ratio, pollution generation, and natural resource 

utilization. The first five vertices calculated with closeness centrality are exactly the 

same as the ones calculated with eigenvector centrality, except that capital ratio and 

crowding have switched places. Furthermore, the closeness centrality concept 

considers material standard of living and effective capital ratio to be important 

vertices in the network.  

Betweenness centrality is a very different measure of centrality than the others 

presented before. It specifies the extent to which a vertex lies on paths between 

other vertices. Vertices with a high betweenness centrality may have extensive 

influence within a network by virtue of their control of information flowing between 

others. The removal of these vertices more than any others will disrupt 

communication between other vertices because they lie on the largest number of 

paths taken by information flows (Newman, 2010). Among the 10 most important 

vertices according to betweenness centrality, three intervention variables indicated by 

Forrester appear: births, food ratio, and pollution generation. In contrast to 

eigenvector and closeness centralities, betweenness centrality attributes a higher 

influence to material standard of living and effective capital ratio. 

The results of these four different centrality analyses are very promising. They 

confirmed many of Forrester’s intervention variables as being also central vertices in 

a directed network, and pointed to variables such as capital ratio or crowding that are 

suited for intervention but were not in the spotlight in Forrester’s book (1971).   
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Integration of SNA into the SD modeling and analysis process 

 

We believe that the centrality measures from SNA are a good complement to the 

formal model analysis techniques of SD. Centrality analyses can serve as a first 

screening of large SD models to identify potential levers in the model. SNA 

techniques might be integrated into the SD process after system mapping and before 

the formulation of a simulation model. Such an additional structural analysis can be 

very helpful for system dynamicists for the design of alternative policies and 

structures (step 5). Traditionally, these alternatives come from intuitive insights 

generated in preceding steps of the SD process, from the experience of the modeler, 

from people operating in the system of interest, or by an exhaustive automatic testing 

of parameter changes (Forrester, 1994). Thus, the design of effective alternative 

policies is difficult—particularly for novice modelers—and a strategy for preliminary 

centrality analyses will be much appreciated. Figure 5 shows the SD modeling and 

analysis process extended by a model structure analysis step (step 2). The SD 

process is highly iterative, with many feedbacks on preceding steps. For reasons of 

clarity, we neglected to show these feedbacks in Figure 5.     

 

Step 1 
 

Step 2 
 

Step 3 
 

Step 4 
 

Step 5 
 

Step 6 
 

Step 7 
 

describe 
the 
system 
(system 
mapping) 

model 
structure 
analysis 
(e.g., 
centrality 
analyses) 

model 
formulation 

model 
simulation 

design 
alternative 
policies 
and 
structures 

educate 
and 
debate 

implement 
changes in 
polices 
and 
structures 
 

 

Fig. 5. Extended SD process based on Forrester (1994) 

Conclusions 

 

This article argues that the integration of SNA techniques into the SD modeling and 

analysis processes can be very valuable, in particular for inexperienced modelers. As 

system modeling is a highly demanding task, novice system dynamicists can be 

easily overwhelmed and lose perspective in an SD project. Every modeler, 

experienced or not, is confronted with two basic problems: how to best describe or 

model the system, and where to change the system to produce more favorable 

system outcomes. We argue that centrality analyses can help modelers address the 

latter problem by providing a screening tool for finding effective levers in large SD 

models. We think that such an additional structural analysis integrated early in the SD 

process increases the effectiveness of designing alternative polices and structures.   
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By representing an SD model as a directed network, we limit ourselves to its 

structural complexity and neglect the dynamic complexity that emerges from its 

nonlinear relations and accumulations. It is clear that SD is most interested in system 

behavior and not in structure per se. However, one of the core presumptions of SD 

emphasizes that system behavior arises from underlying system structure (Meadows, 

1989; Oliva, 2004). Often, changing the system structure is the only way to alter 

undesired or pathological system behavior. Having better tools available to 

understand and simplify structural complexity permits a more efficient policy design 

process (Oliva, 2004).   

This article discusses the value of centrality analyses in the SD process by means of 

one prominent case. Future research should be directed towards a more systematic 

investigation of the benefits of such model structure analyses by evaluating multiple 

SD models.  
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Appendix 

 

Table A. Variable list 

Number Variable name Number Variable name 

1 Population 31 capital ratio 

2 deaths 32 capital ratio agriculture 

3 death rate normal 33 capital agriculture fraction normal 

4 deaths pollution multiplier 34 quality material multiplier 

5 deaths material multiplier 35 capital investment from quality ratio 

6 deaths food multiplier 36 Capital Agriculture Fraction 

7 deaths crowding multiplier 37 capital agriculture fraction adjustment 
time 

8 crowding 38 quality of life 

9 population density normal 39 quality crowding multiplier 

10 land area 40 quality food multiplier 

11 births crowding multiplier 41 quality pollution multiplier 

12 births food multiplier 42 quality of life normal 

13 births pollution multiplier 43 capital depreciation normal 

14 births material multiplier 44 capital depreciation 

15 births 45 Pollution 

16 birth rate normal 46 pollution generation 

17 food ratio 47 pollution per capita normal 

18 food pollution multiplier 48 pollution capital multiplier 

19 food coefficient 49 natural resource fraction remaining 

20 food per capita normal 50 natural resource extraction multiplier 

21 food per capita potential 51 natural resources initial 

22 capital agriculture fraction indicated 52 Natural Resources 

23 food crowding multiplier 53 nat res matl multiplier 

24 Capital  54 natural resource utilization 

25 capital investment 55 natural resource utilization normal 

26 capital investment rate normal 56 pollution standard 

27 capital investment multiplier 57 pollution ratio 

28 material standard of living 58 pollution absorption time 

29 effective capital ratio normal 59 pollution absorption  

30 effective capital ratio  
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Table B. R code 

# load package in R 
library (“igraph”) 
# data import 
setwd(“C:/Users/Name/Documents/Universität/Network Analysis”) 
edgelist <- read.table(‘World Model.txt’, header=T) 
WorldModel <- graph.data.frame(edgelist, vertices=data.frame(id=1:max(edgelist[,1:2]))) 
summary (WorldModel) 
## local characteristics: 
# degree centrality (In & Out = all, In = in, Out= out) 
degree <- degree(WorldModel, mode=”in”) 
degree 
write.csv(degree, file = "degree.csv") 
# Eigenvector Centrality 
EVcent <- evcent(WorldModel, scale=T)$vector 
EVcent 
write.csv(EVcent, file = "EVcent.csv") 
# Closeness Centrality 
Clocent <- closeness(WorldModel, mode = c("all"), normalized=T) 
Clocent 
write.csv(Clocent, file = "Clocent.csv") 
# Betweenness Centrality 
Betcent <- betweenness(WorldModel, directed = TRUE, normalized=F)  
Betcent 
write.csv(Betcent, file = "Betcent.csv") 

 


