A System Dynamics Study of the Uranium Market and the Nuclear Fuel Cycle Matt Rooney, Nick Kazantzis and Bill Nuttall

Project overview

Objective: Simulate the nuclear fuel cycle and uranium price for a range of scenarios for the time period 1988-2048 in order to understand the dynamics of the market, particularly looking at its response to shocks.

Methodology: System dynamics (Vensim PLE) coupled with time series analysis, regression, and expert interviews.

Rationale

Graph from World Nuclear Association [http://www.world-nuclear.org/info/inf23.html]

Uranium price spike of late 2000s

Graph: Intersect Insight [http://www.intersectinsight.com/2012/03/uranium-prices-to-firm-up-in-2013/]

Full system dynamics model

Uranium stocks and flows

Based on: (a) Generic commodities model from Sterman (pp. 799)

Based on: (b) Naill's natural gas model

Image: http://www.systemdynamics.org/DL-IntroSysDyn/ch6_f.htm

Illustrative causal loop diagram

Price drivers

- Ratio of demand to mine capacity
- Ratio of inventory coverage to desired inventory levels
- Ratio of demand to identified uranium resources

Amplified by traders' short term price expectations

IAEA Demand scenarios

	2010			2020			2030			2050 (a)		
Country Group	Total Elect. TWh	Nuclear		Total Elect.	Nuclear		Total Elect.	Nuclear		Total Elect.	Nuclear	
		TWh	%	TWh	TWh	%	TWh	TWh	%	TWh	TWh	%
North America	4687	892.6	19.0	5017 5054	939 994	18.7 19.7	5262 5382	875 1171	16.6 21.8	5809	967 1612	16.6 27.7
Latin America	1206	26.2	2.2	1932 2138	48 48	2.5 2.2	3220 4835	70 144	2.2 3.0	6820	121 484	1.8 7.1
Western Europe	3050	811.7	26.6	3540 3728	692 935	19.6 25.1	4015 4781	658 1109	16.4 23.2	5851	484 1370	8.3 23.4
Eastern Europe	1821	330.6	18.2	2255 2348	491 594	21.8 25.3	2664 3235	646 853	24.2 26.4	3857	645 1128	16.7 29.3
Africa	642	12.9	2.0	1278 1534	13 13	1.0 0.9	2499 3593	39 126	1.6 3.5	9314	81 383	0.9 4.1
Middle East and South Asia	1654	23.0	1.4	2246 2967	91 153	4.1 5.1	4949 6127	238 417	4.8 6.8	18080	403 1128	2.2 6.2
South East Asia and the Pacific	750			1025 1074			1630 1893	0 47	0.0 2.5	4317	40 161	0.9 3.7
Far East	5732	533.0	9.3	6985 8262	965 1218	13.8 14.7	9210 12209	1420 2009	15.4 16.5	18971	1773 3627	9.3 19.1
World Total Low Estimate High Estimate	19542	2630.0	13.5	24279 27104	3240 3955	13.3 14.6	33449 42056	3946 5878	11.8 14.0	73021	4513 9893	6.2 13.5

Notes:

(*) The nuclear generation data presented in this table and the nuclear capacity data presented in Table 3 cannot be used to calculate average annual capacity factors

for nuclear plants, as Table 3 presents year-end capacity and not the effective capacity average over the year.

(a) Projection figures for total electricity generation are the arithmetic average between low and high estimates.

Data sources

- Primarily OECD/NEA Red Book (both the "retrospective" and the 2009 version).
- World Nuclear Association and IAEA, but also citing relevant journals and experts as necessary.
- Expert interviews: Ideally using Delphi Method, but time limitations prevented this.

Potential secondary supplies

Included:

- Downblending of HEU from nuclear weapons
- Drawdown of stockpiles
- Uranium as a by-product of phosphates production
- Uranium from seawater

relative price of secondary supply levels supplies + demand for conventionally mined uranium ore

Excluded:

- Uranium from coal ash or carbon sequestration
- Uranium "cleaned" from other metals

Potential demand reduction strategies

Included

- Balancing of tails assays and enrichment level
- Recycling and reprocessing
- High burn-up fuel innovation

Excluded

- Fast reactors or fusion
- Thorium
- Higher load factor

Delays

- Average mine development time (8 years)
- Uranium from phosphates delay (10 years)
- Uranium from seawater delay (10 years)
- Recycling delay (10 years)
- Increased burn-up innovation delay (10 years)
- Uranium discovery delay (1 years)

Potential shocks to the industry

Scenario 1: Major fall in supply

- (a) Mine or country stopping production due to accident or political strife.
- (b) US-Russia weapons down-blending agreement coming to an abrupt end.

Scenario 2: Major fall in demand

- (a) Large country stops nuclear power production.
- (b) Innovation in the area of fuel efficiency.

Resource discovery

Base case – comparison with historical spot price

Scenario: US-Russia agreement abruptly ends

Scenario: High burn-up fuel innovation

Sensitivity analysis – importance of time delays

	% change of max. uranium price given			
	25% increase	25% decrease		
Mine development time	689	-64		
Time to adjust short-run expected price	-12	378		
Elasticity of uranium demand	-42	30		
Resource-demand ratio	16	-16		
Inventory coverage ratio	14	-15		
Demand-capacity ratio	-15	13		
Time to adjust long-run expected price	-2	-2		

Project conclusions

- System dynamics is a useful tool for studying the nuclear fuel cycle.
- Resource scarcity should not be a problem before 2050.
- Uranium price is highly sensitive to supply side shocks and the length of time taken to bring new production online. *Time constants are very important.*