Multi-Method Modeling with AnyLogic

- System Dynamics
- Agent Based
- Discrete Event

Dr. Andrei Borshchev Scott Hebert System Dynamics Conference Boston 2013

Workshop agenda

- About AnyLogic
- Modeling methods quick intro
- Building a multi-method model
- Q&A

The AnyLogic Company

- We are:
 - Simulation software vendor (80%)
 - Consulting company (20%)
- Users
 - ~700 commercial and ~1000 educational organizations
 - Several thousands of users
- Applications
 - Logistics/Transportation/Supply chains
 - Healthcare (from hospital capacity planning to policies & epidemiology)
 - Manufacturing
 - Service industry
 - Military/Defense
 - Strategic planning (Market/HR/Project management/Urban/...)

Our locations

Selected commercial clients

The three methods in simulation modeling

- The three modeling methods are the three different viewpoints
 - ...the modeler can take when mapping the real world system to its image in the world of models

Why multi-method modeling?

- Sometimes, at the beginning of the project it is not clear which abstraction level and which method should be used
 - The modeler may start with, say, a highly abstract system dynamics model and switch later on to a more detailed discrete event model
- Frequently, the problem cannot completely conform to one modeling paradigm
 - Different components may be best described by using different methods.
- Using a traditional single-method tool, the modeler inevitably
 - Either starts using workarounds (unnatural and cumbersome language constructs), or
 - Just leaves part of the problem outside the scope of the model (treats it as exogenous).
- If we want to capture business, economic, and social systems in their natural complexity and interaction, "thinking single-method" becomes a serious limitation

AnyLogic

- Support all three modeling methods on a single modern objectoriented platform
- The modeler can choose from a wide range of abstraction levels/methods and can efficiently vary them while working on the model
- The modeler can combine different methods in one model

Model architectures

Agents + SD environment

(e.g., population + city infrastructure)

SD inside agent (e.g. consumer's individual decision making)

Agents + process model

(e.g., clients + service)

Process model inside agent

(e.g. business process in a company

in a bigger supply chain model)

DE (Process model)

SD + process model (e.g., demand + production)

Agents become entities

(e.g., patients with chronic diseases return to hospital)

and so on in any combination...

Now we will build a multi-method model in AnyLogic

Customer Satisfaction

- Modeling customer satisfaction slippery and elusive
 - However, it is crucial to many business—particularly service applications.
- Models do exist in a variety of methods—SD and AB primarily.
 - Assumptions of the methods and models

Specific Scenario

- This model is based on an actual model built for a client.
- This client offered a service that was subject to interruption, downtime, and similar issues. (E.g., an Internet provider)
- When the service is interrupted, the users of this service submit requests for the service to be restored. These requests are processed and the service restored on an individual level.
- The users have a varying level of Satisfaction for the service based on the service's performance.

Model Specifics

- This model will:
 - Create User agents that interact.
 - Create their behavior and attitudes towards the service.
 - Create the process to handle service restoration requests
 - Model each user's Satisfaction towards the Service.
 - Show the impacts of various level of request processors on the overall user market.

To AnyLogic!

• The model source file (User Satisfaction.alp) is available in the supporting materials section

Feedbacks in the model

Feedbacks inside an agent

Visual languages of AnyLogic

Stock & Flow Diagrams

Statecharts

Action charts

Process flowcharts

Open tool: Java "extension points"

- All objects have places to insert Java code
 - to be executed when the corresponding events occur

Unloading	Entry action:
	<pre>stock.set_OutFlow(UnloadingRate);</pre>
	Exit action:
*	<pre>stock.set_OutFlow(0);</pre>
verifvAndFixBills	
	On enter?
	On enter delay ^D
à	On exit ^D entity.setShape(groupBillOK);

Do I need to have programming skills?

© The AnyLogic Company | www.anylogic.com

Classes, interfaces, inheritance,

Input and output data visualization

2

0

-1

-2

0:

1

2:

12

24

Constant

0

10

- 1 + Sinus

14

0: Sin +

16

20

30

— 1 + Cosinus

40

50

24

- Bar, stack, pie charts
- XY and time plots
- Time stack & color charts
- Histograms
- 2D Histograms

14

Sin pos

16

18

Cos pos

20

6

4

2

0 -

© The AnyLogic Company | www.anylogic.com

18

1: Cos +

20

22

2: Dataset Title

Exporting models from AnyLogic – applets

AnyLogic Model Development Environment Remote users run models in web browsers No need to install any software!

Exporting models from AnyLogic – apps

AnyLogic Professional Model Development Environment AnyLogic model runs on target machines No need to install AnyLogic Model DE

Embedding AnyLogic models into other apps

Thank you!

- Questions?
- Links:
 - AnyLogic website: <u>www.anylogic.com</u>
 - AnyLogic models online: www.runthemodel.com

