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Joint project conducted by GM and Sandia National Laboratories is the first true 
value-chain approach to future large-scale biofuels  

• Purpose:  Assess feasibility, implications, limitations, and enablers of producing 90 
billion gallons ethanol (~60 billion gallons of gasoline-equivalent) per year by 2030 

– Ethanol used to illustrate biofuel potential without ruling out alternatives 

 
• Scope:  Focus on ethanol production from residues and energy crops for 2006 to 

2030; corn ethanol capped at 15B gallons per year under 2007 Energy Independence 
and Security Act (EISA); cellulosic ethanol production accelerated beyond EISA to 
enable 90B gallons total production. 

 

Distribution Conversion Storage and Transport Feedstock 
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What questions did we seek to 
answer? 

 
• Are biofuels an economically and environmentally sustainable solution at 

large scale? 

 

And specifically … 

• What key enablers would be required? 

• What technology levels could get us beyond the tipping point? 

• What capital investment is needed across the supply chain? 

• What barriers/roadblocks need to be overcome? 

• Are there unintended consequences we can proactively foresee? 

• Could policy drivers mitigate risk and accelerate biofuels development and 
use? 
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• Study targeted 90B gallons = 60B gallons gasoline equivalent 
– 2006 EIA projections of 2030 demand: 180B gal of gasoline – displacement 1/3rd 

• 90B gallons can be reached with enduring government commitment 
 

Today’s Focus: RFS2 
• Part 1: RFS (EISA 2007) to 2022 

– Produce 36B gal total by 2022 
– 15B gal from corn ethanol 
– 21B gal from advanced biofuels  

(assumed here: cellulosic ethanol) 

• Part 2: beyond 2022 to 2030 
– Continue ramp up to 60B gal 
– 45B gal advanced biofuels 

(assumed here: cellulosic ethanol) 
– * Corn ethanol production does not  

incorporate yield improvements, 
fractionation, new enzymes, etc.) 

 
 
 
 

 

What is “Large-Scale?”   Selecting 
Target Production Levels 
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Key Findings – RFS2 36B gal by 2022 
ramping to 60B gal by 2030 

• RFS2 (1/5th of US gasoline from biofuels) – could be achieved by successful 
deployment of cellulosic biofuels (in addition to corn ethanol), without displacing 
current crops grown 

• Domestic investment for biofuels production is close to the investment required to 
develop new long-term domestic petroleum production 

• Cellulosic biofuels can compete with oil at $90/bbl assuming:  
– Average conversion yield of 95 gallons per dry ton of biomass 
– Average conversion plant capital expenditure of $3.50 per installed gallon of nameplate 

capacity 
– Average farmgate feedstock cost of $40 per dry ton 

• Sensitivity analyses varying these assumptions individually gave potential cost-
competiveness with oil priced at $70/bbl to $120/bbl 

• Policy incentives such as carbon taxes, excise tax credits, and loan guarantees for 
cellulosic biofuels are important to mitigate the risk of oil market volatility 

• Large-scale cellulosic biofuel production can be achieved at/below current water 
consumption levels of petroleum fuels from on-shore oil production and refining 
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Model limitations: 

 No modeling of markets 

 Several real world constraints are not explicit in the model, but were analyzed separately 

limitations on the availability of capital and distribution constraints 

 Difficulty accurately assessing key costs and other values, especially for technologies that do not 
currently exist 

sensitivity analyses were conducted to account for leading uncertainties 

We built a ‘Seed to Station’ system dynamics model to explore the feasibility of 
90 billion gallons of ethanol 

Key constraints: 
• Timeframe considered: 2006 to 2030 
• State-level granularity 

Volumes 
Costs (2006 Dollars) 
Greenhouse Gas Emissions 
Energy Use 
Water Use 
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Conversion technologies are linked with specific 
feedstocks  

  

Biochem       

(e.g. Mascoma)

BioThermal 

(e.g. Coskata)

Thermochem

(e.g. Range Fuels)

For each new plant constructed, the Biofuels Deployment Model (BDM) 

selects a feedstock/conversion pair resulting in lowest cost of ethanol 

Forest Residue 

Inputs: 

Resource supply 

Cost of harvest 

Short Rotation 
Woody Crops 

Inputs: 

Acres available 

Yield vs. time 

Years to maturity 

Costs 

Ag Residue 

Inputs: 

Acres planted 

Yield vs. time 

% harvestable 

Fertilizer makeup 

Cost of harvest 

Herbaceous 

Inputs: 

Acres available 

Yield vs. time 

% harvestable 

Costs 

Biomass 

Syngas 

Ethanol 

Gasification 

Catalysts 

Biomass 

Syngas 

Ethanol 

Gasification 

Microorganisms 

Biomass 

Sugars 

Ethanol 

Enzymes 

Microorganisms 

Above linkages are only representative – other combinations possible 
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Biomass production for 60B gal can rely largely on idle land and residues using 
diverse feedstocks 

44M acres is 100% 
of idle land plus 7% 
of cropland used as 
pasture 

20M acres 
6 tons/acre 
$40/ton delivered 

5M acres 
5 tons/acre 
$67/ton delivered 

50M acres 
1.5 tons/acre 
$49/ton delivered 

2030 Data: 

44M acres 
6 tons/acre 
$49/ton delivered 

No land use 
change for 
residues 
 
 

5M acres is 7% of 
forest land 

49M acres 

2022: 
21M acres herbaceous 
5M acres SRWC 

• Feedstocks should be viewed as representative – we did not include annual crops such as sorghum, 
sugarcane or municipal solid waste (MSW) 

• Regionally diverse feedstocks are spread across the US to nearly all states;  as a whole this reduces risk due 
to regional weather events 

• Costs and land area used per gallon of ethanol decline as new cellulosic feedstocks are developed with 
improved per-acre yield 
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What do these CO2 savings amount to? 
• 60B gallons of ethanol by 2030 provides annual GHG savings in 2030 of  

260 million tons of CO2e per year 

This is equal to: 

•  13% GHG emissions reduction from current fleet of light-duty gasoline vehicles 

•  Removal of 45 coal-fired power plants 

45 coal-

fired 

power 

plants 
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Key findings 

 

• Supportive policies, including well-planned market incentives and carbon 
pricing, that could minimize investment risks in light of oil price volatility and 
periodic economic dislocations 
– Options include greenhouse gas taxes and market incentives (e.g., $50/ton CO2 

tax significantly reduces required incentives) 
 

• Enhanced R&D and commercialization-associated funding, despite current 
declining/low oil prices 
– Conversion investments to increase conversion efficiency and decrease capital 

cost 
– Improved energy crop technology to reduce cost, land use, and water use 
– Decreased timeframe for technologies to reach maturity (lowers investment risk) 

 

• Infrastructure investment to ensure the rail and road network in the US can 
safely support future expanded economic activity, including biofuels 

We did not find fundamental barriers to large-scale production of biofuels (e.g., supply chain or water 
constraints), assuming the technology matures as projected here 
 

However, multiple actions could be taken to enhance the successful build-out of the cellulosic 
biofuels industry: 
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Modeling considerations 

• Scope 

– Geography – USA disaggregated by state 

– Granularity – multiple technologies and feedstocks 

• Constraint versus Consequence – model boundary 

– Outcomes limited by physical constraints, delays, 
assumptions 

– Outcomes show consequences, some not possible to 
achieve 

• Material balance and material flow – ethanol plants 

– Use of aging chains with delay 

– Learning curves and technology costs 
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Geography example 
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GASOLINE AND ETHANOL CONSUMPTION

In the aggregate, totals can be misleading. Activity and decisions are local. 
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Constraint versus Consequence 
example 

Land use changes ('000 acres)
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Balance land by class over the runtime, observe ‘conservation’ of acreage,  
Maintain protected and probably unavailable land classes. 
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Material balance and material flow 
example 
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Understand the ‘fleet’ of ethanol production plants, the initial fleet,  
their aging, and replacement. 
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Summary and conclusion 

• System dynamics is a strong complement to 
other methodologies (GIS, operations 
research) 

• Model boundaries are based upon reasonable 
and defensible assumptions 

• Rigor, standards and peer review pay off 

• Modeling process with collaboration is 
rewarding professionally and in outcome – go 
“under the hood” with your client 
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