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Abstract 

A co-flow structure, with a built in table function based on cumulative distribution properties, is 

used to disaggregate a perfectly mixed stock into two sub-stocks. This requires knowledge of 

the distribution of an allied co-flow attribute, presumed to be a random variable, and the 

specification of critical fractile threshold (Z value) for this attribute around which the stock can 

be split. This structure is tested for a variety of conditions. The goal of these tests is to examine 

whether the co-flow based partitioning is robust to variations in (i) different structural 

parameters (e.g. time needed for departure) and (ii) the distribution properties of the co-flow 

attribute.  The analysis yields an approximation with less that 5% error, as long the attribute is 

distributed exponentially and the Z value is between 0 and 90%. Implications of the findings for 

comparing system dynamics models against agent based models, and for Monte Carlo 

simulations involving aging chains are discussed. 
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1. INTRODUCTION 

System dynamics models are based on continuous time formulations such that the evolution of 

any state variable is governed by a differential equation (DE).  Each state variable aggregates 

data. Modelers assume perfect mixing within the stock of such a state variable (Sterman 2000).  

This paper develops an approximate method for the disaggregation of a perfectly mixed stock 

into two sub-stocks based on a known distribution of an allied attribute for the relevant flow 

variable. 

             The need for disaggregation of a stock arises in certain, somewhat special, system 

dynamics modeling situations. In these special situations, a planner (or a modeling team) is 

provided with a time series dataset on an aggregated stock.  Related input flow is associated 

with a random variable drawn from the distribution of a quality attribute.  The mean and the 

standard deviation, as well the type (e.g. either normal or uniform) of the underlying 

distribution function for this quality attribute are also known. For instance, the production 

planners at a semiconductor firm, such as Intel, track the time series of the aggregate 

production volume for microprocessors. They also track a co-evolving data set on the yield in 

terms of the speed the microprocessors produced by this process. That is, the yield may be 

normally distributed with a known mean and standard deviation. The aggregate production 

volume is then divided into two or three different groups based on this yield. These groups are 

priced differently, and/or are sent into different markets based on a practice known as binning 

(Wu et al. 2010). Thus, the planners at Intel must disaggregate a perfectly mixed production 

stock into two or more groups based on its attribute (i.e. yielded speed) distribution. Table 1 
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lists several example situations, drawn from a variety of contexts, where such disaggregation 

may be necessary. This table also lists exogenous thresholds for allied disaggregation decisions.    

       The examples listed in Table 1 do not form an exhaustive list.  There are other situations 

when a system dynamics model is required to disaggregate a perfectly mixed stock suitably.  

For instance, analytical paradigms such as agent based (AB) modeling do not aggregate data 

and track the state space associated with varying attributes in terms of separate agents.  With 

the recent advent of computational capability there has been an increasing interest in 

comparing and contrasting the efficacy of DE and AB methods. Appropriate disaggregation and 

design of a testing strategy using random variables become important steps in setting up such 

comparisons (Rahmandad and Sterman 2008). Some applications, such as the analysis of 

aerospace systems, have deployed hybrid models (Mathieu et al. 2007) by combining AB and 

DE formulations, wherein a SD stock variable has to be disaggregated to match the modeling 

requirements for an AB sub-sector. The ability to disaggregate stocks in from the DE 

formulation into suitable sub-stocks can be a key modeling choice while building a hybrid 

model.  

            The approximate method developed in this paper disaggregates a perfectly mixed stock 

into two sub-stocks based on a co-flow structure. Accumulated stock is assigned to two sub-

stocks based on an exogenous and known threshold level associated with the cumulative 

distribution properties of co-flow attributes. In the rest of this paper, these sub-stocks are 

termed as the Above Threshold (AT) and Below Threshold (BT) stock respectively. We conduct a 

systematic study of the performance of this co-flow structure using Monte Carlo simulations. 
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The error in assigning the co-flow sub-stocks is computed by comparing them against two 

reference stocks that are separated before mixing them.  

         Our findings indicate that for a practical range of values (i.e. thresholds associated with 0-

90% range of the cumulative distribution for the attribute), the co-flow structure provides 

outcomes with less than 5% error, both for the AT and BT sub-stock time series, if the attribute 

is exponentially distributed.  Outcomes show similarly low errors for the AT stock if these arrival 

are computed based on normal distributions and the threshold is between 0-90%. For higher 

thresholds, between 90-99%, a formulation based on Gumbel distribution (i.e. extreme value 

distributions) is recommended.  The computation of BT stock using this structure, on the other 

hand, is associated with sizable errors unless the attribute is exponentially distributed. 

Implications of these findings for the comparison DE and AB models are discussed.  

            This study also offers insights for selecting the arrival distributions and for interpreting 

the findings for aging chain outputs generated through Monte Carlo simulations. In essence, 

Monte Carlo simulations on chains with exponential smooth should be tested using exponential 

input distributions. Other distributions are likely to create distortions, because a fraction of 

their tail gets filtered by the smoothing process, and thus the output of aging chain simulation, 

under random loads, must be interpreted with caution. 

 

2. MODEL STRUCTURE 

The model structure is comprised of two sectors. The basic structure, shown in Figure 1, first 

pipes the arrivals into a single perfectly mixed stock. Then sub-stocks are created based on a co-
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flow structure. A second sector, named as a reference sector in Figure 2, tracks the reference 

sub-stocks, without mixing them into a single stock.   

 

2.1 Basic Structure 

There are four stocks in this sector. They are named basic stock (S), attribute stock (AS), 

accumulated stock above threshold (AT) and accumulated stock below threshold (BT).  

 Basic Stock: d{S(t)}/dt = Arrival Rate(t)– (AT Diversion Rate(t) + BT Diversion Rate(t) )         … (1) 

       AT Diversion Rate = Threshold Correction * S(t)/ Time Needed for Diversion                   … (2) 

       BT Diversion Rate = (1-Threshold Correction)*S(t)/ Time Needed for Diversion               … (3) 

“Arrival Rate” and “Time Needed for Diversion” are an exogenous variables selected based on 

the conditions in the design of an experiment described in the next section. The “Threshold 

Correction” is computed using a table function that is set up using the cumulative distribution 

function for the co-flow attribute. This function is constructed, with zero mean and unit 

standard deviation (e.g. in a standard normal formulation), for four different types of 

distributions. The input for this table function is the threshold “Z” value, i.e.  a non-negative 

multiplier to the unit standard deviation, when the mean is  zero. Values for the relevant 

fractile (Z) and allied CDFs, are provided in the appendix.  Threshold value is set exogenously 

based on the design of numerical experiment described in the next section.  

   Attribute Stock:   d {AS(t)}/dt = Random Attribute Value (t) * Arrival Rate(t) –  

                                    Co-flow Average(t) * (AT Diversion Rate(t) +BT Diversion Rate(t))          … (4) 

   Co-flow Average  = AS(t)/ A(t)                                                                                                     … (5) 
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The “Random Attribute Value” is computed using the random value generator for un-scaled 

mean and standard deviation.  The mean and standard deviation for each distribution are 

selected based on the design of the experiment described in the next section. Negative values 

are truncated to zero.   

   Above Threshold Stock: d{AT(t)} =  AT Diversion Rate(t)                                                         … (6) 

   Below Threshold Stock: d{BT(t)} =  BT Diversion Rate(t)                                                         … (7) 

 

2.2 Reference Structure 

The reference structure has 4 stocks: A, B, Ref AT and Ref BT. 

Stock A:  d{A(t)}/dt = Arrival Rate(t)- Accumulation Rate for A(t),  

                                                             for Random Generated Value > Scaled Threshold             … (8) 

                                = -Accumulation Rate for A(t),  Random Generated Value ≤ Scaled Threshold  

        Accumulation Rate for A(t) = A(t)/ Time Needed for Diversion                                       … (9) 

      Scaled Threshold = Mean  + Stdev * Threshold                                                                  … (10a)  

                                     = Stdev * Threshold (for exponential distribution)                                …  (10b) 

Stock B:  d{B(t)}/dt = Arrival Rate(t)- Accumulation Rate for B(t),  

                                                            for Random Generated Value ≤ Scaled Threshold           … (11) 

                                = -Accumulation Rate for B(t),  Random Generated Value > Scaled Threshold  

        Accumulation Rate for B(t) = A(t)/ Time Needed for Diversion                                       … (12) 

Reference Stock A:    d{Ref AT(t)}/dt = Accumulation Rate for A(t)                                          … (13) 

Reference Stock B:    d{Ref BT(t)}/dt = Accumulation Rate for B(t)                                         … (14) 
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2.3 Performance Measures 

Performance is tracked for the basic sector as a fraction of the reference sector values.  

Error Fraction Above Threshold:  EFAT (t) = AT(t) / Ref AT (t)                                                 …. (15)  

Error Fraction Below Threshold:   BTEF(t) = AT(t) / Ref AT (t)                                                 …. (16)  

 

3. DESIGN OF EXPERIMENT 

The goal of the numerical study is to test if the co-flow based partitioning is robust to variations 

in (i) different structural parameters (e.g. time needed for departure) and  (ii) to the distribution 

properties of  the co-flow attributes.  Ideally, the performance ratios computed by equations 

(15) and (16) should be 1.0. We set an arbitrary range of 0.95-1.05, (i.e +/-5 %) as acceptable.         

         Rahmandad and Sterman (2008) have explored epidemic data and find that the DE and 

mean AB dynamics differ for several metrics relevant to public health, including diffusion speed, 

peak load on health services infrastructure, and total disease burden. They have set up 

numerical experiments where in the key arrival attributes in an aging chain are exponentially 

distributed. We generalize these idea by selecting four kinds of distribution functions to setup 

our numerical work: exponential, normal uniform, and Gumbel (i.e. extreme value) distribution.  

The experimental design covers 8 cases, termed as Base Case and Conditions A through G.  In 

the conditions A though G, either one (or two) parameters are varied systematically, as 

described below, while keeping the rest of the parameters at the base case settings. Conditions 

A, B and C test the robustness of the base case parameters, and conditions D through G are 

designed to compare the impact of changing the threshold (Z) for the base case (ie normal 

distribution) against other relevant distributions. 
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(i) Base case is set up for a constant arrival rate (set at unit arrival per day), with attribute 

values distributed normally (with mean = 100, and standard deviation of 33, i.e +/- 3 

standard deviations can go through, allowing up to 99.9% variation in mean to be tracked). 

The critical threshold (Z) is set at “0” meaning exactly half of the arrivals are above and 

below this threshold respectively. The time needed for departure at 5 days, and the model 

is run for 200 days. The update time (dt) is 0.05 days and the simulation uses Euler (i.e 

stable) integration scheme. For the Monte Carlo simulation, we use a random seed (random 

uniform between 0.01 and 100) and average across 200 simulations.   

(ii) Case A:  The time needed for departure is varied from 5 day to 0.05, 0.5, and 50 days 

respectively. Since the time step (dt) is 0.05 days, and the simulation horizon is 200 days, 

0.05 and 50 are deemed to be extreme conditions in term of allowable order of magnitude. 

(iii)   Case B:  The arrival rate is varied systematically from unity to the following five conditions: 

STEP(1,50), RAMP(0.005,0), Exponential Distribution (standard deviation = 0.33, Normal 

distribution (with mean = 1, standard deviation = 0.33), and a PULSE (50,0.05) of height = 

20. 

(iv)  Case C: The attribute distribution is varied systematically from N(100,33) to N(150,33), 

N(50,33), N(100, 66) and N(100, 16.5). 

(v) Cases D through G correspond to Normal (100,33), Uniform (100,33), Exponential (100), 

Gumbel (100,33) distribution where the thresholds (i.e.) are selected as follow 
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Normal Uniform Exponential Gumbel 

Z CDF Z CDF Z CDF Z CDF 

0 0.500 0 0.500 0 0.000 2.5 0.921 

0.5 0.691 0.5 0.644 1 0.632 3 0.951 

1 0.841 1 0.789 1.5 0.777 3.5 0.970 

1.5 0.933 1.5 0.933 2 0.865 4 0.982 

2 0.977 1.66 0.979 2.5 0.918 4.5 0.989 

2.5 0.994 1.73 0.999 3.0 0.95 5 0.993 

 

The values in grey get picked implicitly through the table functions. Since Normal and Uniform 

distributions are symmetric, the selected Z values correspond to cumulative distribution 

ranging from 50% to 99%. Since Exponential and Gumbel distributions are skewed to towards 

and away from the mean their values are selected to range from 0 to 95% and 92 to 99% 

respectively. Thus, the entire range of relevant fraction of Z values between 0 and 99% is tested 

for symmetric and skewed distributions.    

 

4. RESULTS 

Table 1 tabulates the results of the numerical study. The variation in the control parameters 

(based on the design of the experiment) is highlighted in gray. Input variables created by the 

test (i.e. attribute mean and standard deviation) are captured, along with the intermediate 

variables created by the structure (i.e. co-flow mean and standard deviation) in next four 

columns.  The system performance is tracked in the last two columns as a fraction of the 

reference sector values (error fraction above threshold EFAT and error fraction below threshold 

EBAT). Recall that, ideally, this ratio should be 1.0 and that we have set an arbitrary range of 

values 0.95-1.05, (i.e +/-5 % error) as acceptable.  Acceptable performance is displayed in white 
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back ground, and performance outside the acceptable range is highlighted in white with a black 

background.  

        The first three conditions (i.e. A, B, C) show that the base case is robust in terms of varying 

the time needed to adjust the co-flow, the arrival rates, and the choice of distribution 

parameters when Z is set at 0 (i.e. when 50% of the attribute variation falls above the threshold 

and below the threshold respectively), even when perfect mixing and filtering based on the co-

flow structures smoothed the outflow. In these data, the standard deviation of the co-flow is 

reduced up to 8% of the attribute co-flow value (i.e. when the attribute variance is 32.2 and 

comparable co-flow variance is 2.6, while the mean value of the attribute and the co-flow 

remain constant: 99.7).  Thus, it is easy to see that the co-flow smoothing process does not 

affect the symmetric partitioning of the mixed stock in the base case.  

       The results change considerably, when the partitioning threshold is increased as shown 

under conditions D through G. The results for Errors below threshold (EFBT) and above 

threshold (ATBF) are in the acceptable range only when the Z values vary between 0 and 90% 

and the attributes are distributed exponentially.  When the attributes are distributed normally, 

partitioning with Z=1 (ie CDF =84%) or beyond, creates a large error in the above threshold (in 

EFAT) stock. When the attributes are distributed uniformly, things get worse, and partitioning 

with Z= 0.5 (CDF=64%) or beyond creates a large error in the above threshold (in EFAT) stock. 

Gumbel distribution, that is skewed away from the mean, does poorly in most conditions for 

EFAT, however its performance does improve for EFBT (i.e. below threshold) when the Z value 

increase beyond 90%.   
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5. DISCUSSION  

This section offers an explanation for the reported results through post-hoc examination of 

data.  Then, implications of the findings are discussed for applications involving (i) Comparisons 

of SD and AB models, and (ii) Monte Carlo simulations on aging chains. 

 

5.1 Post Hoc Analysis 

In the post hoc analysis, the effect of smoothing created by the co-flow structure has been 

examined. In essence, the smoothing amounts to a low pass filter, that passes low-frequency 

signals and attenuates (reduces the amplitude of) signals with frequencies higher than the 

cutoff frequency. The cutoff frequency depends on the time constant (i.e. Time Needed for 

Departure).  This works in the favor of exponential distribution that is skewed on the right hand 

side and thus has a lower amount of coverage at high frequency than a comparable symmetric 

distribution (i.e. either normal distribution or uniform distribution). In the case of symmetric 

distributions, the mean is preserved, but a reduction in standard deviation signals attenuation 

of very high and very low values of the attribute.  These attenuations can be verified by 

comparing values of co-flow standard deviation in Table 1.  It is worth recalling that in the case 

of exponential distribution the mean equals its standard deviation, and thus by reducing 

(increasing) the mean the scaled threshold is also reduced (increased).  Finally, in the case of 

Gumbel distribution, the distribution is skewed away from the mean, and thus the CDF values 

do not provide a good approximation for low values of threshold (Z), and they provide a good 

approximation for EFBT for higher values of Z.   
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5.2 SD and AB Model Comparison 

Yücel & van Daalen (2009) have shown that the behavior of AB systems converges to the 

aggregate model as the network gets denser. However, even a simple structure as shown by 

this study illustrates that in order to compare these two ways of modeling the reality, one must 

make assumptions about the distributions of relevant attributes. Rahmandad and Sterman 

(2008) are prescient in their analysis, because they argue that “DE SEIR model assumes 

populations within each state are well mixed. Consider the recovery process (emergence is 

analogous). Perfect mixing implies that the hazard rate of recovery for an infectious individual 

(the transition from I to R) depends only on the expected duration of the infectious phase, 1/δ, 

and is independent of how long that particular individual has been in the I state. Consequently 

residence times for infectious individuals are distributed exponentially.” While this logic is 

sound, this paper offers an alternative explanation for using exponential input while comparing 

SD and AB models, namely the possibilities of smoothing out higher frequency data due in the 

relevant SD structure.   

 

5.3 Monte Carlo Simulations with Aging Chains  

A related issue is Monte Carlo simulations with aging chains, either with or without attribute 

based co-flows. For an example of attribute based co-flow in an aging chain, see Figueiredo and 

Joglekar (2007). The key concern here is again that higher frequency content gets filtered out at 

each stage in a simple aging chain, and extreme values of attributes are either filtered or 

retained in a co-flow based aging chain.  This means either variance will reduce across stages a 

regular aging chain (recall the famous Bull Whip Effect, Lee at al. 1997), or attribute 
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distributions will get skewed in a co-flow based aging chain. Statistical inferences using a SD 

structure must be drawn with caution and account for this effect. The time to smooth (i.e. the 

cutoff frequency) in the flow becomes an important consideration. 

 

In summary, disaggregation of a perfectly mixed stock is a desirable feature in special types of 

SD models. A co-flow structure, with a built in table function based on a cumulative distribution 

function, is has been used to disaggregate a perfectly mixed stock into two sub-stocks. This 

structure is tested for a variety of conditions. The analysis yields an approximation with less 

that 5% error, as long the attribute is distributed exponentially and the Z value is between 0 

and 90%.  Limitations of the approximation for a range of relevant distribution functions are 

documented and implications applying it for comparing system dynamics models against agent 

based models, and for Monte Carlo simulations involving aging chains, are discussed. 
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Table 1: Examples of Co-flow Attributes & Stock Partitioning Thresholds 

  
Basic DE Stock 

Co-Flow 
Attribute  Threshold AB Formulation 

1 

Inventory 
from different 
production 
configurations Production yield  

Customer rejects a sub-
stock that has yield below 
an agreed percentage. 

Different configurations 
are modeled separately 
to understand yield in 
detail 

2 

Inventory 
from different 
production 
configurations 

Production 
completion  
or service time 

Customer rejects a sub-
stock that has service 
time above an agreed 
percentage. 

Different configurations 
are modeled separately 
to understand the 
evolution of completion 
time in detail 

3 
Inventory 

Performance 
quality (e.g.      
microprocessor 
speed ) 

Planners direct the stock 
to different markets 

Different Segments are 
modeled separately to 
forecast accurately 

4 
Projects in a 
new product 
pipe line NPV of projects 

Review board rejects 
projects with NPV below a 
defined threshold 

Different projects (e.g. 
therapeutic classes) in 
drug discovery are 
modeled separately 

5 Loan 
Applications Underwriting risk 

Underwriters reject 
applications above a 
defined risk threshold 

Applicants are modeled 
separately by risk type 

6 
Job Applicants 

Likelihood of 
meeting the job 
requirements 

Recruiters reject 
applications below a 
defined  threshold 

Applicants are pooled 
into types based on 
educational needs 
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Figure 1: Basic Structure 
 

 
Figure 2: Reference Sub-System 

 

Stock S

Attribute Stock

Arrival Rate

Attribute

Creation Rate

Co Flow Average

Random Attribute

Value

Accumulated
Diversion Above

Threshold AT

Accumulated

Diversion Below

Threshold BT

Threshold

BT Diversion

Rate

AT Diversion

Rate Time Needed for

Departure

<AT Diversion Rate>

Seed

Scaled Threshold

mean

Stdev

Threshold

Correction

Attribute

Depletion Rate

Stock A

Stock B

<Arrival Rate>

Arrival Rate for

Agent A

Arrival Rate for

Agent B

Ref AT

Ref BT

Accumulation

Rate for A

Accumulation

Rate for B

<Time Needed for

Departure>
<Scaled

Threshold>

<Random

Attribute Value>



16 
 

 

Table 1: Effects of Varying Input Type & Distribution on Errors in AT and BT Stocks 
(Black Background Highlights Output where the Error is > 5%) 
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Appendix I: Table Functions 

 

 

  


