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Abstract 

While calibration is an important element of the System Dynamics modeling process, traditional 

calibration techniques exhibit significant limitations. Many such techniques are limited to providing point 

estimates of calibrated values, sometimes together with information on uncertainty around such estimates. 

Such techniques also impose assumptions concerning the error distributions and privilege a specific 

dynamic model structure. Markov Chain Monte Carlo (MCMC) techniques offer a powerful, general, and 

versatile alternative approach.  Bayesian MCMC approaches eschew point estimates, and instead provide 

a means of sampling from a full (“posterior”) distribution of parameter vectors.  Such techniques can 

further express the relative likelihood of different model structures.  Finally, MCMC approaches allow a 

modeler to explicitly specify a general probabilistic model giving the likelihood that observed empirical 

data would be produced by a certain parameter vector.  While MCMC approaches offer strong benefits, it 

can be daunting for System Dynamics modelers to secure even a basic understanding of the MCMC 

process, and there is only a small extant literature concerning applications of MCMC to simulation 

models, largely using language unfamiliar to most System Dynamics practitioners. Within this paper, we 

seek to provide a gentle introduction to the use of Bayesian MCMC techniques for System Dynamics 

parameter estimation. 
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Bayesian Parameter Estimation of System Dynamics Models 

Using Markov Chain Monte Carlo Methods: An Informal 

Introduction 
 

This paper describes a Bayesian approach to estimation of the parameters of System Dynamics simulation 

models. 

The context of this work lies in limitations associated with a key component of the dynamic modeling 

process – calibration. Classically, calibration of a simulation model seeks to estimate little-known model 

parameters by comparing the emergent behavior exhibit of that model with corresponding behavior 

observed from the external world. For example, we may be seeking to use calibration to estimate the 

values of parameters concerning contact rates on which we have limited data directly from studies or from 

surveys that had been conducted. Within this calibration, we will observe how the simulation model as a 

whole – or large subpieces thereof – behaves in terms of its emergent behavior. With simulation models, 

the complexity of such behavior is generally such that we can’t simply “back-calculate” the values for 

parameters such that model output will match the empirical data. Instead, we compare the emergent 

behavior of the model against empirical data on corresponding quantities to which we have recourse to, 

and try to use an optimization algorithm to estimate the values of model parameters that yield model 

behavior most closely corresponding to that empirical data. 

The calibration process traditionally gives us point estimates for parameter values, that is, it gives us a set 

of values, one for each of the less well known parameters, whereby the model best matches the empirical 

data that we have at hand.  In more advanced forms of calibration, the approaches we use may seek to 

additionally yield confidence intervals. Such confidence intervals help characterize the degree of 

uncertainty in the point estimate. 

While a very important and powerful component of the modeling process, this traditional form of 

calibration does exhibit some important limitations. One of the most fundamental limitations is that we 

are performing the calibration on a single dynamic model at a time. That is, we are assuming for the point 

of view of deriving model parameters that we know the model structure exactly, and we are trying to 

identify the values of the parameters such that, conditional on that assumed model structure, the model 

behavior best matches our empirical data. This is a strong assumption. Often we are not exactly sure 

about the underlying structure. Perhaps there are several competing hypotheses as to the nature of that 

underlying structure involves. And yet for the purpose of calibration, there is an important set of strictures 

that limits us to calibrating one model at a time. 

A second important limitation of traditional calibration is that – in many but not all cases cases – we are 

emerging with just a single point estimate for parameter values, an investment that doesn't really capture 

the degree of variance associated with model parameter in isolation, or the covariance between the 

calibrated value of multiple parameters.  For example, such point estimates don’t capture systematic 
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variation in the uncertainty associated with, say, one parameter versus another – the fact that, for example, 

this model may closely match the empirical data either if both parameter A and parameter B are high 

together, or parameters A and B are both low together, but exhibits poor matches otherwise. Or, for 

example, the fact that the model can only match the empirical data closely if either parameter A is high 

and parameter B is low or vice versa. These sort of systematic variations – which may be associated with 

“valleys” in the error function – in the uncertainty are not really captured within single point estimates 

that emerge through many calibrations – despite the fact that these uncertainties (variances and 

covariances in parameter estimates) may have important searing on the outcomes of interventions.  

Even when we do have estimates of covariance for parameters within the underlying system, these are 

local estimates, traditionally around the single point estimate – around, for example, the maximum peak 

(mode) of the distribution.  There is thus limited understanding of the global shape of the distribution.  

Such local estimates will not, for example, capture the fact, for example, that there is another peak nearly 

as high somewhere else within parameter space, where some other combination of parameters offers 

emergent behavior nearly as good, and that may have quite significant implications for interventions for 

example we may seek to design.  In some cases – such as when calibrations are being simultaneously 

performed on many parameters – computation of the covariance matrices around the point estimate may 

be highly challenging.  It can also be very challenging go from a covariance estimate for the parameters 

themselves to an estimate for functions of those parameters of particular interest (most notably, for model 

output given those parameters). 

Some assumptions associated with classic methods of optimization are often less well articulated or less 

explicit. For example, the discrepancy metrics whose value is optimized will incorporate assumptions 

about the distribution of discrepancies between the model results and the empirical data.  Our imposition 

of these assumed distributions for errors may come with significant challenges for particular practical 

problems when those distributions are not appropriate – that is, when the actual error distribution does not 

accord with what was implicitly assumed to obtain during calibration. 

1.1 A Different Approach 

This paper describes a different approach to seeking to enhance the accordance between System 

Dynamics models and data – one that incorporates elements of both calibration and validation. Within this 

approach, we will be moving beyond the assumption of privileged point estimates and possibly 

confidence intervals centered around such point estimates that measure only local features associated with 

the distribution. Instead, we are going to be dealing with an approach that seeks to understand the shape 

of the probability distribution associated with parameter values – that is, which helps us understand the 

relative likelihood of parameters combinations drawn from across that parameter space. 

1.2 Operational Representation of the Distributions 

The “knowledge” of the posterior distribution that emerges from MCMC using simulation models is not 

characterization of such distribution using explicit functional form (e.g. as a familiar distribution).  With 

nonlinear simulation models (such as are common in System Dynamics – e.g. variants on Bass Diffusion 
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and SIR models), we generally don't have the option of arriving at an analytic form for the output of the 

simulation model, and the shape of the posterior distribution will depend critically on such output.  As a 

result, when using MCMC together with simulation models, there is generally no option for analytically 

(using a formula) representing the posterior distribution.  Moreover, in a high-dimensional space, explicit 

representation can also be awkward.  Instead, we will be working with an “operational knowledge” of the 

distribution – rather than having a reified representation of the distribution, MCMC provides 

“knowledge” of the distribution in the sense that we can draw samples from this posterior distribution, 

such that the values of those samples are (approximately
1
) distributed as given by the posterior 

distribution. And for each such sample, for example, we could sampling from various model outputs, 

compute summary statistics such as the mean, etc.  So the idea is that MCMC provides us a way of 

specifying or arriving at the posterior distribution, not by giving us an explicit reified specification for it, 

but instead by allowing us to numerically sample from it
2
. 

2 Essential Background 
To accomplish the goals laid out here, we will be appealing to classic Bayesian

3
 concepts, but will apply 

them specifically to the MCMC process. That is, we will allow the user to express a “prior” distribution 

and – following incorporation of information relating the model to empirical data – seek to draw samples 

from a “posterior” distribution.  For readers unfamiliar with Bayesian approaches, we attempt here to 

provide some intuition for such terms, and then discuss the application to MCMC. 

2.1 Some Common Notation 

For consistency with the literature, this document will adhere to some common notation conventions from 

Bayesian statistics.  We will use the symbol  to indicate a parameter vector – that is, a vector each of 

whose elements specifies the value to be used for a particular parameter.  For example, perhaps we have a 

model of infectious disease transmission, and you’d like to impose an assumption that the contact rate is 

10 people per day, that the hand hygiene compliance rate is 50%, and that the mean infectious period – 

that is, the mean duration of time until recovery from infectiousness – is 3.2 days. These assumptions 

could be specified using a particular parameter vector maybe 1 – a vector that denotes a particular point 

within the parameter space associated with . Another distinct value of  (call it 2) might be associated 

with the assumption of a contact rate of 20 people per day, handwashing compliance also 50%, and also 

                                                      
1
 This approximation will be achieved as a large number of samples are accumulated, and the distribution of the 

Markov Chain converges to the distribution of the posterior. 

2
 We note that a reified, explicit representation of the distribution is not necessarily to be preferred to this 

operational ability to sample from that distribution.  In some cases, researchers who have an explicit representation 

of the distribution will instead use MCMC to sample from it, as sampling can simplify certain tasks. 

3
 While we have taken a Bayesian perspective here, we note in passing that it is possible to make use of MCMC 

methods in a non-Bayesian context.  This would put aside dealing with a prior distribution, and instead deal only 

with a likelihood function. 
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3.2 days average days of infectiousness.  As noted above, the framework we are describing here is very 

general, in that the parameter values can be parameters within the simulation model, within a probabilistic 

model that's going to express the likelihood that a given set of simulation model output could explain the 

observed data, or even parameters indicating which model structure is to be assumed. 

We will further denote the observed data using a vector y. This would describe the empirical data that we 

have in hand – perhaps time series, perhaps particular data points to which we want the simulation model 

to match.  (This would be the sort of data that we are traditionally trying to match within a calibration 

experiment). A key point here is that while we will denote them using single letters, both  and y are 

generally vectors, and thus can include many components. 

2.2 Understanding Bayes Rule 

Within this discussion, we provide a brief background in Bayes’ Rule, so that the reader can understand 

some of the basics for how the MCMC algorithm operates. As noted above, Bayes’ Rule serves as a 

critical conceptual underlying component of the Bayesian MCMC approach.  Bayes Rule specifies that
4
: 

P(|y)=P(y|)P()/P(y) 

 

Readers may be familiar with the fact that Bayes’ rule relates the likelihood of A given B (i.e. P(A|B)) to 

the likelihood of B given A (i.e. P(B|A)).   

To link expressions in the equation up with the terms introduced earlier, P(|y) is posterior probability of 

, P(y|) is the likelihood function (which would generally take into consideration not only  directly, but 

also the results associated with running the simulation model on ), and P() is the prior distribution.  So 

Bayes’ Rule allows us essentially to take a situation where we know a prior defined over parameter 

vectors (P()) and where we know a likelihood that the empirical y could be explained given a set of 

parameter values and their resulting model output P(y|), and “flip it around” to get an estimate of what 

we want – the relative probability (density) of those parameter values  obtaining in light of the known y, 

the information that describes the posterior P(|y).  While we’ve given them name, here further how each 

of these components functions. 

The likelihood P(y|) is what we bring to the table in terms of our likelihood rules. I have mentioned it 

here, this likelihood formula. We define a likelihood formula that indicate the relative likelihood of seeing 

particular values of empirical data, such as particulars counts of emergency room intake for H1N1 in light 

of particular values for , for the parameters in the corresponding model output.  As noted above, this 

formula typically depends on quantities that emerging from the simulation model on those .  For 

instance, for a particular situation, P(y|) might represent the likelihood that 5 people presented to the 

emergency room in week 2 of the H1N1 pandemic in your city, of this pandemic with H1N1 for a 

                                                      
4
 Within this rule, P(A|B) is read as “Probability of A given B” (for discrete values A and B) or “Probability density 

of A given B” (for continuous values A and B).  By definition, P(A|B)=P(AB)/P(B) 
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particular set of parameter values  that you know – a contact rate of 10 people per day, hand washing 

compliance of 50%, a mean of 3.2 days average infectiousness.  To assess this (relative) the relative 

likelihood, you would here have to run the simulation model because looking at those parameter values in 

and of themselves is not going to tell you the implications for how many incident cases are there within 

that week, for example, because that’s an emergent property of the model. The values of the parameters 

alone are not going to directly tell you the key information you're going to need to assess the relative 

likelihood of the empirical data y.  Instead, a simulation model (possibly one chosen by ) will need to be 

run using any simulation parameters specified by , and we would then obtain the incidence rate (in terms 

of count c of people per week) at week 2.  We would then use a probabilistic model to calculate the 

desired probability P(y|).  For our example, we might consider that each person has a certain chance of p 

of presenting (more or less immediately) for care given H1N1.  The probability model would then 

calculate the likelihood of receiving a value of 5 (the observed count of cases) from a Binomial 

distribution with c trials, each of which has a likelihood p of success.  Thus, in the first step here, we are 

going to run the simulation model. In the second step, we compute the relative posterior where we are 

going to, we are going to take this this assessment, we can compute the likelihood P(y|) of the observed 

y in light the associated simulation model output implied by .  

It bears noting that P(y|) will often be a multiplicative expression that successively multiplies several 

likelihood terms.  A given one of those terms would define the likelihood that a particular component of 

vector empirically observed data y is explained by the simulation model given parameter vector .  The 

multiplication of the terms is a reflection of the treatment of these events as conditionally independent 

(that is, the view that the variability in the occurrence of particular values of y is independent given ). 

As noted above, P() is the prior. In the context of Bayesian MCMC, this reflects the fact that we often 

have some sense as to where parameter values fall, and which of several possible competing model 

structures may be most appropriate.  This varying degree of belief that we bring to the table regarding 

possible values of parameters can be captured within a Bayesian context using the prior.  This is 

something that we specify ahead of time (prior to actually observing the empirical data or considering 

the matching of the model to that data) given our perception regarding the relative likelihood of different 

parameter values. In a Bayesian context, we start with the option of imposing either weaker or stronger 

initial guesses as to the relative likelihood of different parameter values – a weaker or stronger prior.  

Sometimes we just impose an informative prior, or a prior that is – for example –uniform over some 

bounded  space. In other cases, we may come up with rather strong assumptions based on rough 

knowledge confided by experts, or based on observations of ranges of values seen in the literature.  

Generally, the choice of prior should be based on how much priori knowledge is available. When there is 

limited prior information available, one may use the methods described here (running MCMC algorithms 

for different prior) to check how the posterior would be affected by different priors. As well known, if the 

data contains rich information (e.g. large sample size), the posterior will be dominated by the likelihood 

and thus will be insensitive to the choice of priors. However, when the data do not contain much 

information, the posterior may heavily depend on the prior. For cases with small amounts of data, the 

choice of prior is crucial and should be made with caution and exploration. 
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The denominator of the equation contains only P(y) – the likelihood of different empirical data occuring.  

This term is notable because it's just a constant with respect to  – it doesn't vary at all with parameter 

vectors . So when we are assessing the relative likelihoods of different values of , on we don't have to 

worry that this denominator term will favor some  over others.  Instead, it holds the same value across all 

parameter vectors , and one can think of 1/P(y) serves as a sort of coefficient.  While knowing the value 

for this would still be important if we were trying to evaluate the numerical likelihood of P(|y), we will 

just talk about the relative likelihood of  given y, that is, P(|y). To put it in another way, to compute the 

relative value of the probabilities of 2 parameter vectors, 1 and 2 (that is, the relative values of P(1|y) 

and P(2|y)), all we have to do is compute the values of P(y|1)P(1) and P(y|2)P(2) – both values are 

multiplied by the identical constant 1/P(y). Because it's a coefficient in front of both, we don't have to 

worry about its particular value. There are some coefficient in front of it, but as long as we are drawing 

samples from  in a way that's proportional to the relative likelihood of , we will be sampling from the 

P(|y) appropriately. 

The posterior, P(|y), is what we are seeking.  In light of the empirical data y, we want to have some 

understanding of the relative probability that we are dealing with an parameter vector .  And following 

the use of Markov Monte Carlo techniques, we arrive at this updated distribution – the posterior – which 

takes into account the empirical data (in light of model structure(s)).  This posterior distribution (from 

which we sample) considers, as it were, not only our initial sense as to the likely values, but also – 

critically – takes into account the plausibility of different possible sets of parameters values by actually 

running the model and observing the consistency of various model outputs with empirical data. Providing 

that there is sufficient empirical data, the insights from the observed data and its consistency with model 

results will typically overwhelm our initial guesses (in the form of the prior) – our original guesses recede 

into the background in terms of the shape of the posterior.  

2.3 Using the Data from MCMC  

This section builds on the core concepts introduced in the previous section to describe the use of the 

results emerging from the MCMC algorithm, with a particular emphasis on contrasting the deliverables 

from MCMC with those emerging from the traditional calibration widely applied within System 

Dynamics. 

The posterior distributions which emerge from MCMC are distinctive in several respects from the sort of 

point estimates that often come out of calibration.  Firstly, far from privileging particular points in 

posterior space – as are the point estimates emerging from traditional calibration – the method instead 

allow us to appreciate global features of the distribution.  Secondly – although application of this 

approach can require advanced understanding – such posterior distributions can permit us to express 

confidence in different the likelihood of different models.  Thirdly, we can consider the relative 

probability not only of simulation parameters values, but also of parameters within a formal probabilistic 

model used to express the consistency between the model results and empirical data.  Finally, given the 

capacity to sample from the posterior distribution, it is generally far easier to reason about the 
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distributions associated with other quantities (such as model outputs) than is the case with traditional 

confidence intervals surrounding calibration point estimates. 

This final point reflects the fact that once we arrive at a posterior distribution, there are diverse useful 

things we can do with it.  For example, the capacity to draw samples from the posterior distribution over 

parameters also allows us to draw samples from distributions (either joint or marginal) associated with 

computed System Dynamics model quantities (“outputs”), such as would be of interest for baseline 

projections, policy analyses, system vulnerability assessments, etc.  It is straightforward to sample not 

only from the marginal distributions associated with such outputs, but also the joint distributions – 

allowing us to capture the fact that in situations when one output is low, another is high, etc. 

We can also use the MCMC approach to sample from distributions comparing model results in different 

scenarios – we can sample from distributions over, for example, how much better intervention A is than 

intervention B with respect to some particular metrics – for example, in terms of quality adjusted life 

years lived, cost, deaths averted, etc.  As before, we can sample from such distributions either on a 

marginal or joint basis.  Alternatively, we can ask, for example, what's the posterior probability that 

intervention A is better than intervention B in terms of various System Dynamics model outcome 

measures (e.g. Quality Adjusted Lifeyears Lived, Deaths Avoided, Cost, etc.).    

Another option that is sometimes exercised and which applies to any such distributions is to use the 

capacity to sample from the posterior distribution to derive point estimates. For example, we can derive a 

median or mean value for parameters, or a maximum a posteriori estimate of parameter values (associated 

with the peak of the distribution).  By imposing a “flat
5
” prior or a weakly informative prior (essentially, 

only considering the likelihood function), we could also use MCMC approaches to arrive at maximum 

likelihood estimate.  So the posterior can give us the types of point estimates provided by traditional 

calibration techniques, but the further option of securing other point estimates not traditionally provided 

by calibration (e.g. medians, means, etc.).  

Where we seek interval estimates around the maximum a posteriori estimate of parameters or for diverse 

System Dynamics model output, MCMC makes it straightforward to derive credible intervals.  This 

stands in contrast to the difficulties that can be encountered in trying to go from confidence intervals 

around parameters point estimates arising from traditional calibration to confidence intervals around 

model outputs or other functions of those parameters.  A credible interval is an interval estimate for a 

parameter in Bayesian paradigm that is based on the posterior distribution of the parameter while a 

confidence interval is based on the likelihood. The interpretation of credibility intervals is more 

straightforward than confidence intervals because the coverage level of the former stands for probability 

while not for the latter case.   

                                                      
5
 While the application of uniform priors is limited to parameters exhibiting bounded range of variation (“support”), 

a flat prior is a more general construct that can handle parameters associated with unbounded ranges.  When such an 

“improper” prior (i.e. a prior that does not integrate or sum up to 1) is used, care must be taken to ensure that the 

resulting posterior is itself proper (is integrable). 
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Thus, broadly speaking, Markov Chain Monte Carlo (MCMC) techniques helps us to reliably derive (in 

the form of reliably sampling from) posterior distributions for parameters – parameters over simulation 

model parameters, over probabilistic model parameters, and even over models. What's really notable here 

is that MCMC is a very principled and general way for arriving at these approximations to these 

distributions. We have a very regularized way of generating samples in particular from this distribution. 

And we can use that flexibility to apply the approach to a wide variety of models, and a wide variety of 

types of challenges. 

3 Bayesian MCMC 

3.1 Why “Markov Chain Monte Carlo”? 

What lies behind the name “Markov Chain Monte Carlo”?  MCMC provides us a way of sampling from 

the posterior distribution, and approximations thereto. The fact that we sample randomly from it again 

and again and again places it in a category of algorithms known as “Monte Carlo” techniques.  

And what accounts for the second MC in MCMC – the “Markov Chain” in “Markov Chain Monte 

Carlo”?   One question that a lot of individuals new to MCMC bring to bear when thinking about these 

techniques is confusion about the associated Markov Chain. There is often an assumption that because 

this is “Markov Chain” Monte Carlo technique, that Markov Chain must be reified in very noticeable way 

– e.g. visualized, constructed and laid out. It turns out that the Markov Chain that's involved in this 

process is indeed extremely important, but it's really not typically reified. It's left implicit within the code. 

As we will see, a Markov Chain lies implicitly behind the ability to generate samples – while it does lie at 

the heart of the sampling methodology, there is no reification of that chain.  Specifically, we will be 

hopping from one possible sample probabilistically – in what can be viewed as a type of Markov Chain. 

This implicit Markov Chain offers an extremely flexible means of drawing values from a posterior 

distribution, but is not represented explicitly. 

Now, this may seem like that a puzzling thing. Why do we need a Markov Chain technique to do this? 

Well, it's worth reflecting on the fact that drawing number from general distributions is not easy.  

Standard pseudo-random number generators make it straightforward to draw a random number from a 

uniform distribution.  This is enough to draw from some other basic distributions.  Specifically, if we 

have a distribution which is associated with some analytic expression, often we can arrive at an analytic 

expression for the cumulative distribution function (CDF). Knowing the CDF allows us to draw a random 

number from the desired distribution.  Specifically, if we know the CDF, we can draw a random number 

from a uniform distribution, and then we can invert the CDF – we can return the parameter value that 

gives accumulative probability that is equal to the value we drew from the uniform distribution.    

The problem is that, while this technique is very powerful, it only generalizes somewhat awkwardly to 

higher number of dimensions, and is also more cumbersome in cases where we only know numerically 

(rather than analytically) the distribution from which we wish to sample.  More fundamentally, this 

approach exhibits severe problems when we don't know the CDF up front. If we can't arrive at a full 

specification of the CDF, we cannot proceed in this manner.  In cases where MCMC is used, it is 
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typically not feasible to numerically depict the “shape” of the distribution we wish to sample – much less 

to identify its CDF. 

So in such cases, we need another way besides this traditional way to draw values from arbitrary 

distributions. This trick that we use with the CDF works great for simple distributions, for the cumulative 

distribution function, the CDF that is, is known exactly, but it does not work well we can't formulate that 

distribution explicitly, the cumulative distribution function. 

Implicit use of an implicit Markov Chain will be key to generate samples from the posterior distribution 

without knowing the shape of that posterior or its corresponding CDF.  

3.2 A Brief Overview of MCMC 

This section provides a glimpse of the high level steps involved in using Markov Chain Monte Carlo 

techniques for parameter estimation using simulation models. This information will be useful to keep in 

mind as a structure for the remainder of this document – perhaps even for reference while reading the 

balance of the document.  For some readers, the information presented here may be all that is sought.   

There is a set of tasks required to initially prepare a simulation model for use with Markov Chain Monte 

Carlo methods.   

One of first task is to decide on the parameter space to be sampled by the MCMC algorithm – that is, over 

what parameters we wish to derive distributions, and the ranges of values to use.  In some cases, we may 

have several choices of parameters from the simulation model which should be calibrated; while it’s not 

always possible, to decrease covariance in the posterior distribution (see Section 5.1), it is ideal to 

examine parameters that have distinct types of impact on the model.  We should be sure to include in our 

plans parameters drawn from the probabilistic model.  We may further encode which model we want to 

use, with a categorical parameter.  Finally, to ease framing the MCMC problem in a fashion suitable for 

existing MCMC packages, we will often create convenience variables that a represent transformations the 

parameters such that these transformed variables vary over an unbounded space (from minus to plus 

infinity rather than over a defined interval). 

Secondly, we need to assign prior distributions for parameters. As noted above, such distributions will 

capture our best guesses as to where parameter values might lie before we actually start rigorously 

comparing the model output to empirical data. These prior distributions for parameters could be specified 

in a parametric fashion – for example, using normal, uniform, log normal, Gamma, Gumbel, etc. 

distributions.  In other cases, we may wish to use nonparametric distributions.   

Thirdly – and this is probably the most novel, critical and conceptually challenging component of the 

work – we need to formulate a likelihood function – an expression for the (relative) likelihood of seeing 

particular values of empirical data in light of values that parameters and – and this is the key component 

when we come to simulation – resultant simulation model output.  This element is the key component of 

what we term the “probabilistic model” associated with the process laid out here.  Because is so critical, 

we will now make further elaborate upon it. 
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Suppose that we have some values of parameters that have yielded corresponding output from the 

simulation model. We need to specify a likelihood function – a formula when given parameter values and 

the simulation model output that comes from assuming those parameter values and that model will return 

the relative likelihood
6
 that such a situation (as depicted by the parameters and model results) could in 

fact yield the empirical data. Suppose, for example, that we have observed data on the number of 

emergency room admissions for each successive week during an H1N1 output, and that we further we 

have a System Dynamics model that simulates the number of incident cases of H1N1 within the 

population over time.  Suppose that when we run that simulation model for a particular assignment of 

parameters values (i.e. for a specific vector  in parameter space) it gives the number of incident cases for 

each successive week. To specify the probabilistic model in this case, we would be seeking a formula that 

would give the likelihood that the sequence of empirically observed cases over time would result from 

those parameter values.  It is critical to recognize that this formula would here consider the System 

Dynamics model’s indicated rate of incidence over time when that model is parameterized with those 

parameter values. In short, we would need to provide an expression for the relative likelihood that we 

would see the empirical data if we were to assume those parameter values – a calculation that typically 

depends critically on the results emerging simulation model when it assumes those parameter values.  

Typically this calculation would also depend importantly on parameters that lie within the probabilistic 

model itself such as the likelihood of a given person who develops flu symptoms would in fact present for 

care at the emergency room rather than convalescing at home. 

Now given these components, we implicitly apply Bayes rule to arrive at a calculation for the relative 

probability of a given parameter vector in terms of the likelihood formula and prior. Specifically, by 

multiplying the value of the likelihood function and the prior at a given point, we can calculate the 

relative probability density of a particular parameter value within the posterior distribution. 

The output of MCMC is dependent samples for the parameters from the posterior distribution. The details 

of how MCMC algorithm can be implemented to draw these samples are presented in Section 7. 

3.3 Understanding the Algorithm 

This section will focus on the internals of the MCMC algorithm – the mechanisms by which we sample 

values from the posterior distribution. 

As noted earlier, we use a markov chain to accomplish the sampling from the posterior distribution.  

There are a number of commonly used algorithms used for Markov Chain Monte Carlo.  In this section, 

we employ one of the simplest algorithms – what is called a random Walk Metropolis Hastings algorithm. 

Essentially, we will generate a candidate sample with a random perturbation from the current (last 

accepted) sample. Given this candidate, we will then calculate the relative posterior probability (density) 

                                                      
6
 We note that the calculation of this likelihood makes the assumption that the sampling distribution of the data is 

characterized by the composition of the probabilistic mode and the dynamic model.  Here the dynamic model will 

map the parameter values to a dynamic model outputs that are “closer” in character to the empirical data.  The 

likelihood function would consider that dynamic model output as well as other parameters and return a likelihood.  
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of this candidate value of , P(|y).  Given P(|y), we will accept that sample with a probability that 

reflects the relative posterior for this candidate value of  compared to the (relative) value of the posterior 

at the last generated sample.  If this candidate is not accepted (i.e. is “rejected”), we re-issue the last 

accepted value.  This strategy will yield a sampling pattern that eventually approaches the desired 

posterior distribution. 

We begin the algorithm by choosing an initial point (parameter vector ) in parameter space and assess 

and remember its posterior distribution.  We will then begin the central Monte Carlo iteration.  Firstly, we 

obtain a candidate sample generated by adding a random disturbance  to the current point . We then 

assess P(|y), the relative value of the posterior of that candidate sample, using the technique described in 

the previous section – applying Bayes’ rule by multiplying the value of the likelihood function P(y|) by 

the value of the Prior P().  As noted above, calculation of the likelihood P(y|) will typically involve 

running the simulation model and applying a probabilistic model.  

Having calculated this posterior value for the candidate parameter vector, we will either accept or reject it.  

That is, we either emit it or just throw it out based on the ratio between the relative posterior at the 

candidate parameter vector and the value of their relative posterior of the last generated sample
7
. If we 

accept it, we will release the candidate as our new sample from the posterior distribution, and our current 

location within parameter space will shift to the candidate point. If we instead reject the sample, we just 

emit the previously omitted value as our new sample, and we don't change position. Having generated the 

sample, we then continue on to the next iteration of the loop.  For the algorithm shown here, the idea here 

is that if we find a higher relative likelihood point than the current one, we accept that point (and 

transition there) automatically. If it's higher than our current relative likelihood, we automatically go there 

and emit that sample. If we find a lower likelihood point than the current one, we only use it as a new 

sample with a certain probability as given by the ratio of relative posteriors involved.  

It's important to recognize that the greater the value of the relative posterior at this candidate  (relative to 

the previously emitted sample), the greater the probability that the algorithm will accept it, and emit that 

new candidate as a sample. So if the candidate is extremely likely, we are much more likely to accept it 

and emit it as a sample. Similarly, if the current point , the chances are higher that we will remain at this 

point (rather than drawing a sample from a new candidate point).  As a result of both of these influences, 

these points will tend to be sampled more – that is, emitted more.  By contrast, if our candidate sample is, 

unlikely to occur, then the ratio of posteriors would be typically smaller, we are more typically reject it.  

If (by luck) we do make it to an unlikely point in space, the ratios of many other possible candidate points 

will look favorable compare to this one.  For both of those reasons, we'll tend to sample less likely points 

less frequently. 

So this, this algorithm provides sort of its internal throttling such that it will emit more frequently things 

that are more likely to occur, and less frequently things that are less likely to occur.   

                                                      
7
 You’ll note that the P(y) term in the definition for the formula for P(|y) totally drops out when computing the ratio 

between P(1|y) and P(2|y), as both have the identical term P(y) in their denominator. 
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The algorithm discussed here is guaranteed to (dependently) sample from the posterior distribution.  

However, it frequently starts from an arbitrary point in space – not from particularly high likelihood 

points.  We don't want it to depend on the vagaries of where we happened to start within parameter space. 

In order to apply this algorithm appropriately, we are going to need to run through some burn-in time 

before starting to record the samples.  That is, in order to arrive at confidence that the samples will be 

representative of the underlying posterior we are trying to approximate, we need to run it enough times so 

that it “forgets” about the vagaries of where it started, and begins mixing well within the parameter space 

– in a fashion as given by the underlying distribution. 

 
Figure 1:  Pseudocode for Random Walk Metropolis Hastings algorithm 

3.4 The Implicit Markov Chain  

Where is the Markov Chain in the algorithm? At a given point during the body of the algorithm, we have 

a particular value associated with i, associated with our current point. We then have a certain chance of 

transition to other possible values of . We have many possible values for  we can get to from this state 

(i.e. from this point in parameter space), and we go to a given such possible next states with certain 

probabilities, based on the ratio of posteriors. 

The entire process can be abstracted to transitions along a Markov Chain, where each state of the Markov 

Chain is defined by being at a certain point in parameter space, and the transition probabilities associated 

with a transition from state A to state B is given by the ratio of the posterior at state A and at state B. The 
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Markov Chain is implicit within this algorithm; this algorithm is capturing the behavior of Markov Chain 

even though the chain is not explicitly represented. 

3.5 Brief Comments on Why MCMC Works 

While this paper does not have time to explain it, the reader should recognize that there is an extensive 

theoretical edifice that explains why MCMC work. At a fundamental level, this is a result of two proven 

facts: 

 The actual posterior is a stationary distribution of the algorithm shown above. 

 There is only one stationary distribution for the Markov Chain. 

The implication of these facts is that the actual posterior is the unique stationary distribution of the 

algorithm shown. 

More technical readers may have some interest in understanding the design principles underlying the 

many MCMC algorithms.  When constructing an MCMC algorithm (rather than merely applying one), 

the key thing is to design the transitional kernel (for continuous state space) in a way that the markov 

chain has a unique stationary distribution which is the posterior (or target distribution). An easy way to 

verify this is detailed balance equations. In other words, one wants to have the transitional kernel satisfy 

the detailed balanced equation with the stationary distribution being the posterior.  The Random Walk 

Metropolis Hastings algorithm sketched in Section 3.3 satisfies this properly, as do many other MCMC 

algorithms. 

3.6 The Role of the System Dynamics Model 

Where does the simulation model fit in to this whole approach?  At base, it serves as a critical mediator 

between the parameters and the observed data, and thereby greatly eases the formulation of the likelihood 

function. Typically, in order to assess the likelihood that a given set of empirical data would have resulted 

from a particular value particular parameter vector, we need to reason about the emergent behavior of the 

model based on . For most models, that capturing emergent behavior is going to require us to simulate 

the simulation model. In many cases, it may be a nonlinear simulation model, perhaps for examples, 

associated with infection transmission, the transition of norms and ideas, etc. And we are not going to be 

able to arrive an understanding of the emergent behavior – or its discrepancy from the observed data y – 

without plugging in a value of data and running it, and then observing the consistency in a probabilistic 

sense – assessing the relative likelihood that that model output together perhaps with considerations of the 

actual values of parameters would yield the observed empirical data. 

So the model helps us project behavioral consequences of parameter assumptions, in light of dynamic 

hypotheses captured by those models.  We typically need the emergent output from the model given 

assumption of parameter values  to assess the likelihood P(y|) that the observed data would occur for 

these parameter values. 



15 

 

4 Computational Effort 
One thing to recognize with regards to this process is that running a simulation model often takes a very 

large amount of computational effort and regardless whether we accept or reject the candidate sample 

(thereby simply repeating the current sample), we are going to be running it. So to calculate these 

quantities, throughout this whole iteration, we are going to be running the simulation model for each 

iteration regardless of whether we accept or reject, and often we may run it hundreds of thousands of 

times to arrive at those sufficient set of samples from the posterior.  

As noted above, we also typically run a burn-in period, which can amount to tens or hundreds of 

thousands of runs.   

Fortunately, much of this work can be done in parallel – for example, by making use of different walkers 

so that we will have several walks of this sort going on in parallel, for example, on different cores, on 

different machines.  This approach takes advantage of the “embarrassing parallelism” associated with 

random walk processes. While there are dependencies within a given use of this walker (i.e. later steps 

depend on earlier), but it is possible to have several walkers operating at different areas of the space 

simultaneously, each yielding samples from the posterior distribution. 

5 Additional Practical Considerations 
This section briefly highlights some practical concerns beyond the raw computational effort. The first 

issue is burn-in time.  Typically we do need to run the simulation for long enough so that starts generating 

values approximately distributed as posteriors before initiating the recording of those values. Some 

insight into the required length can be assessed by examining the autocorrelation in sampled values over 

time.   

A second issue is the acceptance rate.  We don't want to have 1% only if a candidate samples is accepted.  

Now different authors will make different suggestions for what the ideal acceptance rate should be; one 

set of recommendations can be found in [1]. Others will argue for example for higher acceptance rates. 

It's not a correctness issue. This is an efficiency issue. You certainly want the acceptance rate to be high 

enough to explore so you don't just remain in the same space. That is, you do not want the algorithm to be 

stuck in a location that makes it extremely difficult to move anywhere, because you won't be getting 

samples that are representative for the entire space. Instead, you want well mix, with movement around 

the parameter space. But you don't want the acceptance rate to be so high that just going around in one 

area of space, without traveling elsewhere. So in another words, you want a large enough perturbation 

you get out of your comfort zone sometimes. For the algorithm presented – Metropolis Hastings with a 

Symmetric Random Walk – we want to tune the algorithm parameters such as the perturbation size used 

for the random walk, in other words to assess how far this  brings us, how far do we move in , till 

we find an suitable acceptance rate.  Generally speaking, if the acceptance rate is too high, we wish to 

increase the size of the perturbation.  If the acceptance rate is too low, we need to lower the size of the 

perturbation.  
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5.1 Handling High Parameter Covariance 

Another practical concern relates to covariance in the posterior distribution. Such covariance can 

adversely impact the efficiency of the algorithm. If two parameters, for example, exhibit high covariance 

in the posterior distribution, essentially the random walk algorithm may needing to walk along a locally 

1-D ridge in 2-D space, and that's going to take a lot of rejections to stick on that ridge. So there is going 

to be a lot of candidate samples that are found outside of the zone of high posterior probability (density), 

and end of up being rejected. If you have this high covariance between parameters and the posterior 

space, it really can lower the efficiency of the algorithm. There are several strategies that can be 

attempted to address this issue.  The first – and ideal – strategy would be to make use of a different set of 

parameters for analysis.  Often there is some latitude in choosing the set of parameters to consider.  for 

example, there may be a variety of parameters that can be expressed as functions of one another, and any 

identically-sized subset those might be used.  

A second strategy for dealing with such correlation, involves using regression on some initial outputs 

from MCMC on the original (untransformed) parameters to define a new set of transformed parameters.  

For example, if one is considering a parameter space consisting of (p1,p2 ) which exhibits high covariance,  

parameter p2 might be expressed as a function of parameter p1 plus some residual  (that is, p2=f(p1)+ ).  

A subsequent MCMC could then be conducted in a transformed parameter space where some of the 

parameters use residuals from the regression (that is, in a space involving p’2 = p1- f(p1)).  In essence, we 

seek to remove the correlation with p1 from parameter p2 by operating in this transformed space. 

5.2 Providing an Unbounded Space 

Many algorithms implementing Markov Chain Monte Carlo algorithms in libraries such as MCMCpack 

either presuppose or make it much easier if you're operating in an unbounded space. So often what this 

leads to is, if you have a parameter that exhibits only bounded variation, you will transform it so that the 

transformed parameter varies without bounds (that is, between minus and plus infinity).  Such a 

transformation often further allows for exploration of a larger range of dynamic values for the parameter, 

and saves some computational effort when compared to strategies that simply retreat regions outside the 

bounds as being of likelihood 0. 

For example, suppose that we have a parameter only want to vary between 0 and 1 – say, the transmission 

probability beta within an infectious disease simulation model.  In order to transform this parameter that 

so that its transformed counterpart is associated with an unbounded space, one might take a logistic 

transform of it. Or if we have a parameter that can only be zero and higher, one may want to take a log 

transform of it, so that the transformed value will vary from minus infinity to plus infinity.  

5.3 Dealing with Correlated Samples 

Another issue is that – particularly if one is seeking to use the successive samples in some serial way – 

one may really place a premium on reducing correlation between successive samples. If successive 

samples generated from the MCMC algorithm exhibit high degrees of serial correlation, they will not 
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represent legitimate independent samples from the posterior distribution –each successive sample isn't 

going to be telling you a lot independently about the distribution. So the effective sample size will 

generally be much lower than the nominal sample size.  If you have high auto correlation between 

successive outputs from the simulation model, you are typically going to you need to sample further to 

secure the same count of effective samples.  In some cases, we may wish to seek to reduce such 

autocorrelation to acceptable levels by performing a “thinning” the successive samples accepted by the 

MCMC algorithm.  A thinning factor of n will only retain 1 out of every n accepted samples. 

Such thinning is not required in all cases. Generally just you can sample a lot more, just be very aware 

you effective sample size maybe much lower than the nominal size (that is, than the count of numbers 

returned in the vectors). You may be really fooling yourself if you are treating them as independent 

samples.  

How many MCMC samples are enough?  [1] has some nice discussion using, between-walker and within-

walker variance to assess how much will be gained by further sampling. Essentially, if within-walker 

statistics are similar to those between walkers, it can be a sign that you've done a pretty good job 

exploring the space for each walker (that the “mixing” has been fairly complete), and there's not much 

additional need to each walker further.  Please consult with this valuable reference for greater detail. 

The R Package MCMCPack has some nice tools for assessing effective sample size, plotting 

autocorrelations.  The basic mechanism used for the sampling metrop1, also provides a way of thinning 

the results which is very common, only accepting one out of every n samples.  

6 Other MCMC Algorithms 
This article has it only highlighted some of the basics of MCMC algorithms in a highly preliminary and 

non-representative way.  Readers should be aware that there are actually many variants of MCMC 

algorithms.  These different algorithms offer different combinations of generality, simplicity, and 

sophistication. For example, some of the more advanced models – such as reverse jump MCMC – permit 

choosing between models with a different numbers of parameters that are applicable.  Some algorithms 

allow for asymmetric random perturbations (in contrast to assuming symmetric perturbations). Other 

algorithms – such as Gibbs sampling – secure additional efficiencies.  For example, Gibbs sampling can 

be used where you have conditional formulation of the model that you build up, using successive 

conditionals in a way that avoids the risk of rejection of samples. 

7 Batch and Sequential Monte Carlo Methods 
Monte Carlo methods offer different sorts of needs when it comes to incorporating new data. What we've 

been talking about here is an example of a “batch” MCMC method. Such batch methods are what might 

be termed “offline” methods by the standards of other algorithms – they process all required empirical 

data y at a single time to yield the resulting posterior. If new data arrives to be incorporated into y, we can 

run the entire algorithm again. 
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In some cases, data may be arriving on a frequent basis, and the computational cost involved may rule out 

the possibility of running a full batch MCMC on each new data point that arrives.  Within such cases, 

Sequential Monte Carlo methods [3] permit us to more quickly update our previous estimate for the 

posterior to incorporate consideration of the new data. Such algorithms exhibit similarity to Extended 

Kalman Filtering (EKF) [2] in the sense they allow you to incorporate new data into previous estimates in 

a recursive fashion – you don't have to go back and recalculate the entire state estimate from scratch, in 

light of all data. In both techniques, you can use results (for Extended Kalman Filtering, point estimates 

and covariance matrices for states; for Sequential Monte Carlo methods, the posteriors) from the data you 

had earlier, and update those results in light of the new data that's available. However, Sequential Monte 

Carlo methods are far less restrictive in terms of their assumptions and far more extensive in their results 

than is Extended Kalman Filtering. Because they build atop the posterior estimates previously derived 

(rather than re-deriving it from scratch), the Sequential Monte Carlo techniques can be much more 

efficient than the sort of batch MCMC techniques looked here.  The primary downside is that they are 

somewhat more restrictive, and can exhibit different types of pathologies.  We anticipate describing the 

use of Sequential Monte Carlo methods with System Dynamics models in a separate, later, contribution. 

8 Sequential Monte Carlo Methods 
This paper has provided a very brief sketch of Bayesian estimation of System Dynamics modeling 

parameters via Markov Chain Monte Carlo techniques. Use of MCMC with dynamic modelers seems 

likely to rise rapidly over coming years in other areas of the modeling community, and System Dynamics 

modelers would do well to learn from this technique. 

MCMC is a very rich, powerful and flexible technique, and one that's challenging to present in a brief 

fashion, and for brevity this article has had to go light on a lot of details and gloss over many things. 

Interested readers are strongly advised to consult the references below.   

Despite the brevity of this treatment, we hope that you will find this material useful in your evaluation of 

the suitability of this powerful technique for incorporating rich statistical, statistical techniques with your 

dynamic models.  
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