
 
Estimation of Unknown Parameters in Dynamic Models Using the 

Method of Simulated Moments (MSM)  
 
Abstract: We introduce the Method of Simulated Moments (MSM) for estimating unknown 
parameters in dynamic models. The MSM is useful when there are empirical data related to the 
behavior of different entities and error terms do not follow any well-established distribution. 
Statistical moments such as mean and variance of empirical data can be matched against the 
moments of model-generated data in order to estimate some structural parameters of the model. 
The major value of the MSM for estimating dynamic models is in its flexibility to be used with any 
type of data, including cross-sectional data, to estimate dynamic models.   
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Introduction 
Increasingly, dynamic modelers face problems where estimating model parameters from 
numerical empirical data is a requirement. This trend is partly motivated by increasing availability 
of numerical data from a large number of ongoing and one off data collection projects that survey 
different concepts of interest to dynamic modelers, from individuals and firms to disease 
incidences and measures of economic performance, just to name a few. Another driver of this trend 
is the increasing application of dynamic models, beyond case specific corporate projects, to 
theoretical and academic problems (Repenning 2003, Sterman 2006). In these cases generic 
models for a category of objects (e.g. individuals, firms, countries) are desired. Parameterizing 
such models requires specifying the different parameters that quantify similarities and differences 
across different objects, a goal often dependent on using robust and replicable parameter 
estimation procedures. In fact, in light of rapid growth and dissemination of improved parameter 
estimation methods for model calibration, hypothesis testing, and policy recommendation in social 
and behavioral disciplines, continued relevance of any modeling sub-discipline may partially be 
tied to its ability to remain up-to-date with the best available tools in this domain. 
When formal parameter estimation procedures are used, modelers typically compare time series 
data against the same variables in a model, and minimize the weighted sum of a function of the 
error term by changing the uncertain parameters until best fitting estimates are found through a 
nonlinear optimization algorithm (Oliva 2003). The error function is frequently defined as the 
squared error but absolute error and absolute percent error terms are also common (Sterman 2000). 
Weights for different data points are usually given based on the confidence the researcher has in 
the accuracy of the data and its relevance to the problem at hand. When reported, confidence 
intervals are calculated using normality and independence assumption for error terms which, with 
weights proportional to the reciprocal of error variance, would turn least squared error estimates 
into maximum-likelihood estimates (MLE). Bootstrapping methods are also sometimes used for 
estimating confidence intervals (Dogan 2007). While these approaches cover many important 
estimation challenges, they each include some shortcomings. Ad hoc selection of the error term 



and the weights for different data points reduces the consistency of the methods and their ability to 
provide confidence intervals. Normality and independence may regularly be violated which negate 
the benefits of MLE when using squared errors. Bootstrapping, while flexible, increases the 
computational costs significantly and as a result may prove infeasible for many realistically-sized 
problems. Finally, all these methods rely on having time series data, and cannot extract from 
distributions in cross-sectional data the dynamics that have led to those distributions. 

In this paper we offer an introduction to the Method of Simulated Moments (MSM) for application 
to dynamic modeling problems. The basic idea of this method is to define appropriate moments of 
data and, by changing uncertain parameters, minimize the difference between those moments and 
their simulated counterpart coming from the model. Moments could be any function of data points 
available. However for analytical confidence intervals to be available, one needs these moments to 
be normally distributed, often meaning that each moment is an average across a function of 
multiple independent observations coming from the same underlying distribution (then normality 
follows from the central limit theorem). In practice those observations (that feed into the moments 
calculations) are picked either from time series data when a system is in steady state (e.g. stock 
prices over time), or at similar points in the life of similar units of observations (e.g. all 5-year old 
individuals in a country).  
 

From Method of Moments to Method of Simulated Moments (MSM) 
The MSM is an offspring of a classical estimation method in statistics, the Method of Moments 
(MM). The MM is based upon finding unknown parameters of a certain distribution by relating 
these parameters to the moments of the distribution and then using empirical moments (obtained 
from data) to back up the unknown distribution parameters. While for certain probability 
distributions the MM can be used to recover parameter values through analytical expressions, it 
faces two major challenges:  

- We need to know the true functional form of the distribution of outcomes.  
- We should be able to express the parameters of the distribution in terms of the data 

moments, a task only feasible for a small set of probability distributions.  

For many distributions we cannot find an analytical (close-form) solution to relate moments to 
parameters. Structural models in general and systems dynamics models in particular usually do not 
have an analytical solution to relate the output of the model to its structural parameters. 
Mcfadden (1989) was the first who proposed using simulation instead of trying to solve the 
moment conditions analytically. His paper was focused on discrete-response models 
(multi-nomial Probit) however he provided theoretical foundations for more general models. 
Mcfadden (1989) believed that an unbiased simulator is used in the MSM where the simulation 
errors are independent across observations, and the variance introduced by simulation will be 
controlled by the law of large numbers operating across observations. Lee and Ingram (1991) and 
Duffie and Singleton (1993) extended the framework and provided a rigorous treatment of the 
MSM estimators for time-series and panel-data cases and provided relevant statistics for making 
tests. Since then the MSM has been widely used in various sub-fields of economics such as finance 
(both asset-pricing and corporate finance), macroeconomics, Industrial Organization (IO), 
international trade and labor economics.  

 



An example from the dynamic modeling literature 
While the MSM has become a major econometrics tool for the past two decades, it has been rarely 
applied in the system dynamics literature. Barlas (2006), in the design of Behavior Pattern Testing 
(BTS II) approach and software, uses some of the basic ideas of the MSM, to match moments of 
model against data, but does not draw on the MSM literature or discuss issues related to 
confidence levels. Rahmandad and Sabounchi (2011) adapt the MSM to estimating the parameters 
of an individual weight gain and loss model. In this section we provide a brief overview of this 
application to provide a more concrete example of MSM use. A simple model of individual’s body 
mass, consisting of fat mass and fat free mass, is developed. The model included a few uncertain 
parameters. In absence of time series data, those parameters were estimated from cross sectional 
data on individual weights coming from the National Health and Nutrition Examination Survey 
(NHANES). NHANES 2005-2006 population of 5,971 subjects was categorized into 110 
subpopulations based on different ethnicities (5 ethnicities), genders (2 genders) and age (11 age 
groups). For each population group two moments, average body weight and variance of body 
weight, was calculated as the moments to be matched, leading to a total of 220 moments to match. 
On the other hand, the model was replicated (using subscripts in Vensim software) for 5971 
instances that matched the demographic characteristics (Age, Gender, Ethnicity) of the NHANES 
sample in year 2006. Initial body weight and fat fraction for these individuals was drawn from 
distributions of another NHANES sample in 1999-2000. Note that each round of NHANES uses a 
sample different from other rounds, thus we cannot track the same individual over time and the 
data is cross-sectional. The model was then simulated to grow this synthetic population from their 
initial age in year 2000 to their final age (consistent with NHANES sample) in year 2006. Mean 
and variance of weight for different subpopulations in the simulated population was calculated in 
year 2006, and compared against the 220 moments coming from the data. Weighted sum of 
squared errors was calculated using weights of reciprocal of variance in each moment, itself 
calculated using variance and kurtosis of different moments. This error was minimized by 
changing 17 uncertain parameters using the Vensim internal optimization engine. The estimated 
parameters provided the minimum error. As a result, the authors were able to estimate a dynamic 
model, including individual growth mechanisms, from cross sectional data with individuals in 
different age groups. 

While this application follows the basic ideas of the MSM, it has some differences from the 
canonical MSM procedure. First, in this application the number of moments (220) is larger than 
many typical applications, in which the number of moments and parameters to be estimated are in 
the same order of magnitude. Second, given the computational costs in this setting, each moment 
was only simulated once whereas typically multiple simulations, using different noise seeds, shall 
provide the estimation for the moment, before it is compared with data.  

 

Basics of the MSM 
Suppose you have built a model which captures the dynamics of people’s body weight as a 
function of their initial weight, eating and physical exercise habits, genetics, age, gender and other 
fixed and time-varying characteristics. People differ both in terms of their idiosyncratic 
characteristics (genetics, initial weight, etc) and their environmental factors (e.g. quality of food, 
cost to exercise, social eating habits, etc). By changing initial conditions and model parameters one 
will get different dynamic paths for the agent’s (individual’s) weight as a function of her age. 



Suppose we have data on the weight of several children of age 10 (our initial value) as well as at 
ages 11 and 12. Further assume that we are interested in estimating a structural parameter (e.g. 
average weight growth per year) which determines the weight path as a function of initial weight. 
By fixing this (unknown) parameter to an initial value and simulating the model with all empirical 
values for the initial weight (age 10), we will generate different paths of weight-age for a simulated 
population the same size as the number of subjects in our dataset. Now we can compare the 
distribution of model-predicted weight profiles at ages 11 amd 12 against the empirical 
distributions. Specifically we can compare the mean and variance of weight for simulated 
population at ages 11 and 12 against the mean and variance at the same ages observed in the data. 
It is likely that our initial choice for the structural parameter leads to mean and variance weights 
different from those observed in the data. However these simulated moments are a function of the 
parameter. By changing the structural parameter of the model we will change both the mean and 
the variance of simulated weight values. We can therefore use an optimization method to search 
for the parameter value that minimizes the difference between model generated mean and variance 
and their empirical values over all available moments (i.e. mean and variance of age at ages 11 and 
12). This is the core idea behind the method of simulated moments: we simulate the moments of 
the model to find simulated counterparts for observed data, then change the structural parameters 
until the simulated moments match the observations as closely as possible. 

 

Formal Definitions 
Consider a fully-specified model, i.e. a model that can be simulated given a set of parameter values. 
Assume that there are d  unknown parameters which we are interested in estimating. Let’s 
assume that our empirical data  tx  are observed for T  different agents. There are P  moments 
functions (sometimes called descriptive statistics) that are available in the data for each agent and 
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Notice that since we only have access to a sample of data for estimating moments, the true 
moments of population from which the data sample is collected are approximated by empirical 
moments DM~ . The true functional form of the system’s dynamics which lead to output (.)g  is 
approximated by the model’s output (.)ĝ . The output of the model is a function of known 
parameters vector Z , unknown parameters vector   (to be estimated) and random inputs u . 
Choosing different values for u  will generate different values for g . We assume that the model 
is correctly specified so that (.)ĝ  is an unbiased estimator of (.)g : ),(=)),,(ˆ(  ZguZgE  

This ensures that if we generate a large enough sample of outputs using a true random stream of 
inputs tu  the arithmetic average of the model output should generate a reasonable approximation 
of the real-world processes that generate the observations. 
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Equation 1 can be understood as following. The component )),,(ˆ(
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T

t
uZgm   represents the 

fact that moments may need a number of observations to be calculated. For example, think of 
variance as a popular moment. The standard formula of variance 2))(( XX EE   suggests that we 
should calculate the empirical average of 2))(( XX t E  for all observations Tt 1,..., . As a 

convention the notation of )),,(ˆ(
1= ti

T

t
uZgm   represents all types of averaging operations which 

are required for calculating different moments. A necessary (but not sufficient) condition for being 
able to identify the model is to have more moment conditions than unknown parameters.  
The core of the MSM is to minimize the (weighted) difference between the empirical and 
simulated moments by changing the unknown parameters. The estimated parameter set is the value 
of parameters that minimizes this difference. Specifically, with vector of simulated moments SM  
consisting of (.))ˆ(gmi  elements and the >< PP   matrix W  for weighting the moment 
conditions: 

 )()(argmin=*
DSDS MMWMM   (2) 

If an estimate moment is very sensitive to the random input path, it will generate possibly diverse 
values across different rounds. On the other hand, those moments that are more robust against the 
choice of the sample will show smaller dispersion. Using the inverse of variance for matrix W
helps us give more weight to more robust moments and reduce the importance of those that change 
a lot from one round to another. 
 

Choose the Moment Conditions 
Usually the first and second moments of model’s outcomes (mean and variance) are good 
candidates to use. Remember that the number of moment conditions should be (equal to or) larger 
than the number of unknown parameters. Thus, depending on the number of parameters you 
should decide to use informative moment conditions. Figure 1 shows examples of informative and 
non–informative moments.  

 
Figure 1: Informative and non–informative moments 



The moment specified by the solid line moves smoothly as the unknown parameter changes and 
has a unique well–defined extreme point (minimum in this). Therefore, minimizing the distance 
between this function and the empirical moment will generate a unique parameter value. On the 
other hand, the moment represented by the dashed–line is not informative. It is not very sensitive 
to changes in parameter value. We can not even be sure that these small changes are due to true 
response of the model to various parameter value or are the artifact of computational or sampling 
errors (though if the graph is smooth these conjectures will be less valid).  
 

Optimization Routine and Iteration 
This is the most computationally-challenging step of the MSM procedure. We need to minimize 
the weighted distance of model-generated moments from empirical moments. More formally: 

 )()(argmin=*
DmDm MMWMM   (3) 

We need to use numerical optimization routines to find the minimum of the total error function. A 
smart choice of initial values for parameters may facilitate the quicker convergence of the 
optimization routine significantly. Any numerical optimization method requires a tolerance rule to 
stop. This will be given as the error tolerance for the objective function Q

ii QQ  |||| 1  as well 

as for the parameters   ||~~|| 1 ii . 

Similar to any non-linear optimization routine, the MSM estimator may fall into the trap of a local 
maximum. Moreover, if some of moment conditions are not very informative, hence have low 
sensitivity to parameter values the problem may face a flat value function which makes it very 
difficult to progress and converge. To avoid introducing sampling error into rounds of simulation 
we should work with the same random sample of shocks in each period to make sure that changes 
in results are due to changes in structural parameters and not the random sample. 
 

Robustness Checks 
The MSM uses numerical methods to find the minimum of objective function. Therefore, the 
results might be sensitive to initial values, the precision of the search algorithm (the level of error 
tolerance), and the quality of algorithm to distinguish local and global extreme points. We 
recommend to re-run optimization using distant initial values to check if the results are sensitive to 
the choice of initial value. 

 

Conclusion 
over the last three decades the research in system dynamics has largely focused on diverse 
applications of the original toolbox, with limited methodological expansions in parameter 
estimation domain. While formal parameter estimation may not be feasible for many modeling 
problems, expert dynamic modelers should be equipped with the relevant tools when numerical 
data is available, model purpose requires reliable parameter estimates, or the audience requires 
formally estimated parameters.  

Given that most dynamic models do not follow a fixed structural form (e.g. linearity), estimation 
procedures that are independent of model structure are most beneficial. Moreover, independence 



and distributional assumptions on error terms for dynamic models are not always easy to justify, so 
methods such as the MSM with fewer such assumptions are preferred. The MSM is especially 
useful When error terms do not follow any well-established distribution. It could be a good choice 
when models include stochastic processes that drive the model, and their impact on the model 
behavior is reflected in the data against which the model is to be calibrated, e.g. when we are trying 
to match the variance observed across multiple units. 

The MSM is also applicable to diverse data types, including both time series and cross-sectional 
data. It may be the only viable choice for estimating dynamic models when data is cross-sectional 
as it allows us to extract the information about the historical trajectories of units hidden in their 
cross-sectional distributions.  
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