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1. Abstract 

Agility is a fundamental characteristic of successful supply chains faced with volatile and 

unpredictable demand, and has been suggested as a promising new paradigm for improving 

healthcare delivery.  Agility is an organization-wide capability that seeks to improve overall 

responsiveness to customer demands, synchronize supply to demand, and cope with 

uncertainty.  However, even if many conceptual models of agility are available, extant literature 

fails to clearly delineate how ‘agile’ can be applied in healthcare services and to what extent 

healthcare systems can benefit from these approaches, nor are there comparisons to current 

healthcare system redesign paradigms.  Given the resource constraints in most hospitals, it is 

useful, if not critical, to develop a good understanding of how, and to what effect, the agile 

paradigm can be applied in healthcare.  We test specific agile operational practices in a 

simulated healthcare environment using system dynamics modeling, establishing the 

comparative effectiveness of changes to system structures that promote market sensitivity, 

demand information sharing, and centralized planning.  This study provides healthcare 

managers and policy makers with concrete guidance to improve system performance through 

adopting agile practices, and opens a new area for service supply chain management research.  

  

2. Keywords 

Healthcare, service delivery, supply chain management, agility 

  

3. Introduction 

Healthcare has long been considered to be among the most complex systems in modern society 

(Longest, 1974), and as healthcare continues to increase in scope and complexity, so will the 

challenges to manage that system effectively.  Present day healthcare delivery is defined by the 

idea that networks of clinicians, rather than individual clinicians, provide patient care, and that 

the success or failure of healthcare delivery is ultimately determined by the ability of those 

clinicians to coordinate their activities.  As healthcare increases in complexity, these previously 

disparate care processes and clinicians become harder to manage and align, resulting in increased 

risk to patients and inefficient use of system resources.  At the same time, increasing 

competition, expanding public health challenges, and decreasing resources create an increasing 

necessity to deliver healthcare services in a more efficient way.  Hence, being able to understand 
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and quickly adapt to the ever-changing needs of patients as they move through networks of 

healthcare providers is crucial to the success of our healthcare delivery system.  Ensuring that the 

proper supply of care can be synchronized to meet the peaks and troughs of demand is clearly of 

critical importance to providing cost-effective, high-quality healthcare. 

  

The ‘old’ solutions of reducing costs by cutting back on staff and services are shortsighted at 

best. Other solutions taken from the manufacturing sector, such as lean or TQM, have yet to 

yield the scale of improvements predicted.  Furthermore, healthcare has been slow to adopt the 

service supply chain management practices that have benefitted other industries (McKone-Sweet 

et al, 2005). Research into supply chain principles applied in healthcare settings is still in its 

infancy; therefore, no operations-level guidelines exist for healthcare managers seeking to 

improve system-wide service delivery.   

 

To address this gap, this paper explores the use of a relatively new management paradigm in 

healthcare.  Taken from custom manufacturing and service delivery, ‘agile’ is a set of 

organization-wide strategies which optimize service delivery in volatile demand environments 

with highly variable customer requirements.  First coined by researchers at the Iacocca Institute 

at Lehigh University, in 1991, ‘agile’ focuses on increasing system responsiveness to customers 

through improved resource coordination and flexibility, by redesigning organizational structures, 

information systems, logistics processes, and management decision heuristics.    

 

Agile has recently been suggested as a means to improve healthcare service delivery (Vries & 

Huijsman, 2011), but specific practices or policies to increase 'agility' have not been developed 

for service chains, including healthcare.  Moreover, the comparative effectiveness of individual 

agile practices is unknown, as are the trade-offs created by individual agile practices on cost, 

service access, and service quality.  While theoretical agile concepts seem perfectly suited for 

improving the management of complex healthcare organizations faced with inherently variable 

demand, practical implementation remains challenging.   

 

We seek to determine how agile principles can be operationalized in healthcare redesign efforts 

to address issues of patient access, service quality, and cost control.  The research questions to be 

answered in this paper are:   

 What are key agile operational plans or practices (structural changes to process or 

information flows or management decision-making) that can be applied or adapted to 

improve performance of healthcare service delivery chains?  

 How do these different agile-derived practices impact cost, quality, and access to services 

under unpredictable, variable demand?  

 

To this end, we uncover operational plans from agile and service supply chain literature, then 

using system dynamics modeling, examine the effectiveness of these operations-level changes in 
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simulation in a generic healthcare service chain.  We present our findings as guidelines 

healthcare managers and policy makers to improve system performance through adopting agile 

practices.  This study opens a new area for service supply chain management research and 

provides recommendations for future empirical field tests.  

 

The paper is organized as follows.  Section 4 briefly details the current trends in increasing 

healthcare delivery complexity, difficulty with demand and supply synchronization, and resultant 

service quality and patient safety impacts.  In section 5, an ‘agile’ literature review and summary 

of current knowledge gaps are presented.  Sections 6 and 7 report the methodological approach 

and formal mathematical conceptualization of the healthcare service chain and agile strategies, 

respectively.  Section 8 is devoted to describing performance measurement and ‘base case’ 

simulation analysis.  In Section 9 the experimental design is presented and results are discussed.  

Finally, Section 10 provides the conclusions.  

 

 

4. Problem Description 

With the growing complexity of healthcare, providers are increasingly dependent on sharing care 

delivery activities with other, specialized healthcare professionals to provide adequate patient 

care.  Patients are now treated in service chains or service networks that combine interventions 

into serial encounters with specialized providers and link theses encounters into clinical 

pathways.  Moreover, the redesign of hospital services and the implementation of integrated care 

programs are frequently cited as being critical strategies to decrease resource utilization and 

improve healthcare quality (Aptel and Pourjalali, 2001). Clearly, from both a theoretical and 

practical point of view, the health service operations are in the process of changing significantly. 

 

However, the variability and unpredictability inherent to healthcare demand and internal 

operations render this network approach to care delivery difficult to manage (Li et al, 

2002).  Individual patient cases are variable and work cannot always proceed according to 

schedule or plan.  New developments in a patient’s condition, unexpected diagnostic findings or 

surprising reactions to medication may call for sudden changes in planned processes with ripple 

effects throughout the service supply chain.  The growing interdependence of healthcare 

delivery, coupled with pressure to reduce costs and serve greater numbers of patients, makes 

these delivery chains increasingly difficult to manage and coordinate.  

  

There is also evidence of healthcare service chain generate internal increased demand variability.  

Similar to the ‘bullwhip effect’ (Forrester, 1958, 1961; Lee et al, 1997) in manufacturing, 

research on healthcare service chains has identified structural tendencies toward demand 

amplification as a key cause of  supply chain stress, and leads to reduced access to services (as 

measured by the distribution of service delivery time), and subsequent degradations in service 

quality and increasing employee fatigue.  Even with significant external variation, internal 
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variation is clearly introduced by system structure and dynamics.  For example, a case study 

conducted in a 127 bed hospital in Uttar Pradesh, India revealed dynamic system behavior 

equivalent to the bullwhip effect (Sameul et al, 2010).  The bullwhip effect was similarly 

identified in the a study of a UK hospital: Based on interviews with hospital staff and data from 

hospital's EHR system, analysis of emergency patient arrivals and discharges revealed 

amplification of demand variability downstream in the service chain (Walley, 2007).  In this 

case, distortions in demand clearly led to performance degradation, as downstream services 

reported reduced resource availability and greater probability of exceeding desired utilization 

and occupancy rates. These are similar consequence to the effects seen in manufacturing 

systems, where the bullwhip effect has been a suggested cause for increasing stock-outs and 

higher costs.  A study of a large hospital in Australia also directly identifies the bullwhip effect 

in the patient pathway for elective surgeries (Sethuraman & Tirupati, 2005).  The increasing 

variation in demand for services as elective patients move to downstream clinics creates the need 

to make more beds available in post-operative care wards than indicated by the initial 

demand.  On peak days, when the bullwhip effect causes the number of elective surgeries to be 

artificially high, there is a shortage of beds in the patient wards, which restricts the number of 

surgeries and reducing the theater utilization and hospital throughput on subsequent 

days.  Demand for nursing services is directly affected by higher variability, resulting in higher 

labor costs.  Higher demand variation amplification is also associated with increased dependence 

on part-time or temp agency staff.  Increasing demand variability inside the patient care pathway 

generally results in greater stress on employees, higher operating costs, and lower hospital 

revenues.   

 

There is mounting evidence that the US healthcare system has difficulty matching supply of 

services to patient demand, coordinating transfer of patients between providers in healthcare 

service chains, and managing demand variability.  Each of these issues adversely affects care 

quality and patient health outcomes.  Kane et al (2007) find that the mismatch between resources 

and peaks in demand is the major source of provider fatigue and reduced quality of care in most 

healthcare services.  With the management systems currently in place, this variation leads to 

mistakes in care delivery and increased patient safety risks.  Specifically, the stresses placed 

upon a healthcare system by variability have been found to lead to more medication errors, 

hospital-acquired infections, sicker patients, and are a leading cause of adverse patient outcomes 

(Needleman et al, 2002; Berens, 2000; Pronovost et al, 1999).  

 

Studies of variation in the patient to provider ratio, a key measure of service supply chain 

coordination, find that variability is the norm in healthcare services (De Vries et al, 

1999).  Higher patient to provider ratios have been correlated with increased patient mortality 

and failure-to-rescue (deaths following complications) rates within 30 days of admission (Aiken 

et al, 2002).   Large, multi-state studies frequently report inverse relationships between the 

number of nurses per patient and common nosocomial complications, such as urinary tract 
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infections, pneumonia, thrombosis, and pulmonary compromise (Kovner & Gergen, 

1998).  Ensuring that the proper supply of care resources can be synchronized to meet the peaks 

and troughs of demand is clearly of critical importance to providing cost-effective, high-quality 

healthcare. 

  

The common management practice in healthcare is to accommodate fluctuations in demand with 

‘mandatory’ overtime.  Driven by the need to maintain competitive advantage and minimize 

costs, the common practice in healthcare is to set staff levels equal to the average demand for 

services as opposed to setting staff to accommodate peak demand (Litvak et al, 2005).  Although 

such staff management strategies help to reduce labor-related costs, this staffing trend leads to 

the undesirable consequence of care units being increasingly understaffed during periods of peak 

demand, which limits their ability to match services with patient demand.  This results in the use 

of excessive overtime as a management solution to demand variability.  Excessive overtime is a 

pervasive problem in healthcare; for example, in a national survey of hospital staff nurses, more 

than one-quarter of respondents reported working unpredictable, ‘mandatory’ overtime during 

the 28-day study period (Rogers et al, 2004).  A more recent survey of critical care nurses 

reported that over 60% worked ten or more overtime shifts during the 28-day study period (Scott 

et al, 2006).  This capacity management trend leads to higher turnover rates (some estimates of 

nurse turnover rates in the US are as high as 20% per year, see Hayes et al, 2012), which leads 

hospitals to incur excessive training costs and to lower average staff experience 

levels.  Excessive ‘mandatory’ overtime is also one of the key drivers of increased provider 

fatigue and error rates, further reinforcing the argument that current healthcare management 

strategies need improvement, and currently contribute to patient safety risk and deterioration in 

quality of care.  

  

These reported pressures and adverse feedbacks to care quality all indicate that current service 

supply management strategies are failing in healthcare.  The healthcare sector is far behind other 

industries with respect to successful service supply chain management.  As currently managed, 

the average healthcare delivery system exposes patients to unnecessary risk and provides sub-

optimal use of system resources and personnel.  However, with healthcare expenditures currently 

18% of GDP and climbing, hospitals cannot return to past practices of setting staff levels based 

on peak demand; nor, with the near-exponential increase in the number of clinical trials and the 

medical evidence-base (NIH, 2013), can they effectively simplify care delivery.  Healthcare 

managers need new service management strategies to be able to respond effectively to changes in 

patient demand and to mitigate the adverse effects of demand variability on patient care. 

  

Other sectors are able to harness the insights developed by industrial supply chain management 

research, where firms have faced similar challenges of demand variability and the need 

for increasing supply chain integration.  With minimal abstraction, it is possible to align most 

healthcare service performance improvement or care coordination questions with those from 
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industrial supply chain management, mostly relating to how a high resource utilization can be 

matched with a high customer service level.  Recent empirical studies show that a significant 

portion of the costs associated with service chains in the health care sector could be reduced by 

implementing effective supply chain management principles (Burns, 2000; Dacosta-Claro, 2002; 

Oliveira & Pinto, 2005).  The current discourse in the service supply chain management 

literature supports the assumption that existing concepts, models and supply chain management 

practices can be extended to service chain management in health services (Vries & Huijsman, 

2011).  The healthcare managers should be able to benefit from the lessons learned in the 

industrial sector. 

 

However, improving healthcare service delivery chains cannot be done by simply transferring 

product and manufacturing knowledge and models (Ellram et al, 2004; Sengupta, Heiser & 

Cook, 2006).  Service chain management in a healthcare setting is characterized by some unique 

features, which make it difficult to apply knowledge gleaned from the industrial sector to the 

healthcare sector in a direct way.  The unpredictable, stochastic demand for services, individual 

patient attributes driving the need for customized services, the inability to maintain physical 

buffers of finished inventory, the inherent uncertainty in the duration of care processes, and other 

distinctive characteristics of health service operations impede a straight forward application of 

industrially-oriented supply chain management practices.  In practice, Bohmer (2009, p. 

16) finds that “many of the approaches and tools drawn from industrial settings fail to adequately 

account for the residual uncertainty in medical care or explicitly address the experimental nature 

of much care.”  Most manufacturing-based supply chain management paradigms, such as 'lean,' 

Total Quality Management, or Six Sigma do not function effectively in systems with high levels 

of inherent process variability and demand uncertainty (Lee, 2004), but it is precisely these 

context-defining  characteristics that cause most of the present difficulties in healthcare service 

integration and care coordination.   

 

Service chain management in a healthcare context is very much an emerging field, and has not 

yet identified how to overcome these contextual difficulties, nor has the field identified a service 

chain management paradigm suited to the healthcare context.  Subsequent questions of how 

service delivery integration and coordination of care systems regarding patient flows and 

resource management can be best achieved operationally still are a relatively unexplored area of 

service supply chain management, and starting from this question there are only limited 

academic studies addressing the challenges unique to the healthcare setting (Vries & Huijsman, 

2011).  Most service supply chain management research is still theoretical or conceptually-

focused as opposed to operational in nature (Sampson & Froelhe, 2006), currently providing 

little to aid managers in the midst of redesigning their systems and integrating care processes.  

Healthcare managers face a significant gap in knowledge around the optimal design and 

management of complex care delivery systems that ensure effective patient care. 
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If the current trend to integrate patient care through increasingly complex provider networks 

continues, then matching supply and demand throughout the healthcare service chain will 

become increasingly difficult.  As a result, both patients and providers will suffer.  Hospital 

managers need insight from service management researchers that directly address the problems 

arising from the variability and complexity of demand within a hospital and coordination issues 

between healthcare units.   They require guidance on decision structures and designs of service 

chains that create the flexibility necessary for the dynamic nature of health itself and which 

enhance the effectiveness and efficiency of care delivery in the face of complexity.  Service 

supply chain scholars need to identify and develop a new service management paradigm that 

accommodates the uncertainty and variability inherent to healthcare, specifically to conduct 

operations-level research to improve the design and management of healthcare service chains.   

 

 

5. Literature Review 

There is one supply chain management paradigm that does address the context issues which 

separate most healthcare operations from those in industrial or manufacturing settings.  'Agile' is 

a manufacturing paradigm, coined by researchers at the Iacocca Institute at Lehigh University in 

1991, that describes the strategies they observed as crucial to enterprise success in environments 

of rapid and unpredictable change (Iacocca Institute, 1991; DeVor et al., 1997).  In essence, an 

agile manufacturing system is one that is capable of operating profitably in a competitive 

environment of continually and unpredictably changing customer opportunities (Goldman, et al. 

1995).  Similarly, Gunasekaran (1998) defined 'agility' in manufacturing as the capability to 

survive and prosper in a competitive environment of continuous and unpredictable change by 

reacting quickly and effectively to changing markets, driven by customer-designed products and 

services.  An ‘agile’ organization as one that able to compete successfully within a state of 

dynamic and continuous change (Sarkis, 2001), through efficiently changing operating states in 

response to uncertain and the changing demands placed upon it (Narasimhan et al. 2006).  

 

‘Agile’ is more than a description of an ideal supply chain.  Many manufacturing companies 

have experienced high costs associated with holding excess inventories as consumer preferences 

change, or incurring stock-outs and decreased to market share in times of unanticipated demand, 

and have followed agile principles to re-designed their supply chains to better accommodate such 

demand volatility, resulting in increased revenues and market share (see Lee, 2004 for 

discussion).  There are academic journals dedicated to the advancement of theory and practice of 

agility in manufacturing systems (e.g., International Journal of Agile Management 

Systems).  Harvard Business School has published case studies highlighting the principles of 

agile manufacturing (1991).  Since its inception, the agile paradigm has had a profound impact 

on the design and management of manufacturing systems facing the same problems that 

healthcare currently faces: the need to integrate and coordinate disparate units in a delivery 

chain, all in the face of unpredictable, volatile demand.   
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In an operational sense, agile is a set of strategies that solves the problem of demand uncertainty 

and variability through increasing system flexibility (Lee, 2004).  It encompasses re-design of 

organizational structures, information systems, logistics processes, and management decision 

heuristics, all to achieve timely and effective response to rapidly changing demand environments 

(Christopher & Towill, 2002).  Agility involves increasing the capability to quickly identify 

shifts in market demands or external supply disruptions and execute new, unplanned activities in 

response (Brown & Bessant, 2003; Prince & Kay, 2003; Sharifi & Zhang, 2001).  

 

There are four commonly agreed upon distinguishing operational characteristics of agile supply 

chains (Harrison et al., 1999; Christopher, 2000), as outlined in Figure 1.  They are highly 

market sensitive; capacity adjustment decisions are driven by demand information; planning is 

centralized, not left up to individual units; and processes and performance management are 

integrated across all units in the chain.  Each is discussed in detail below. 

 
Figure 1. Characteristics of agile supply chain (modified from Harrison et al., 1999). 

  

First, market sensitivity means that the supply chain is capable of reading and responding to real 

demand in real time.  This is a direct contrast to most organizations, where long production times 

and logistical delays tend to require they be forecast-driven rather than demand-driven.  A key 

operational requirement of agile supply chains is to be able to quickly change production 

resources to respond to real-time demand data.  Agile supply chains often make use of 

information technology systems to capture and share data on demand quickly throughout the 

entire supply chain (Harrison et al., 1999).   
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Christopher (2000) suggests that, to be truly ‘agile,’ the use of information technology to share 

data between partners in the supply chain must be taken farther, in effect, creating a virtual 

supply chain, defined as a supply chain that is information based rather than inventory 

based.  This does not imply simply reducing physical inventory; instead of coordinating flows of 

physical goods, agile organizations must acquire the capability to coordinate production capacity 

(Lee, 2004).  Shifting to information based supply chain coordination means that all elements in 

the chain act upon the same data, i.e. real demand, rather than being dependent upon the distorted 

information that emerges when orders are transmitted from one step to another in an extended 

chain (Argawal et al, 2007).  Without being subsumed under the agile paradigm, research into 

the phenomenon of demand variation amplification (the ‘bullwhip effect’) has shown that this 

operational strategy improves supply chain performance, in terms of reducing risk of stock-outs, 

reduced ‘phantom’ demand, and decreased average costs (Croson & Donohue, 2003; Chen et al, 

2000).  

  

This shared information between supply chain partners can only be fully leveraged through the 

third key characteristic of agile supply chains: centralized planning, meaning the collaborative 

design and implementation of cooperative management structures.  Operationally, centralized 

planning requires disparate units in the production chain to make management decisions and set 

performance goals to maximize performance of the total chain, not the performance of each 

individual production unit.  Each unit must take the adjacent units into consideration when 

making production decisions.  Central planning creates a shared systems perspective and ensures 

the appropriate incentives structure is in place to lead to maximizing overall performance 

(Cannella & Ciancimino, 2010; Cachon & Fisher, 2000).  Operationalizing this aspect of agility 

has been shown to improve visibility of production requirements and reduce the amount of stock 

(or production capacity) held in anticipation of predicted and often distorted demand (Hewitt, 

1999).  

  

This idea of the supply chain as a confederation of partners linked together through a network of 

continuous collaboration leads to the fourth ingredient of agility.  More than cooperation on 

strategic planning and goal-setting, process integration implies cooperation between production 

units on production activities themselves. There is a broad assortment of operational plans 

supporting the concept of process integration in the literature.  Examples range from the co-

design of new products, so design accommodates both end-user preferences and factory and 

production constraints; to the most extreme manifestation of direct sharing of production and 

management resources between production units (Lee, 2004).   

                                       

Some of these individual operational plans have been tested through the simulation of generic 

service chains, even if not directly subsumed under the paradigm of ‘agile.’  Most of these 

simulation studies inadvertently target market sensitivity.  Anderson et al (2005) explore the 

effects of increased market sensitivity through changing in service capacity adjustment decision-
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making times, finding that decreasing decision delays leads to improvement in overall supply 

chain performance.  Lee et al (2009) examine the effect of supplementing demand data with 

information on the derivative of changes in demand.  Their results are mixed, finding that with 

optimal control schemes it was possible to halve the costs associated with demand variation 

amplification, but that including derivative-based information could also lead to increasing 

oscillations in some scenarios.   

 

The other operational strategy tested in simulation is virtual integration, with Anderson and 

Morrice (2000) assessing the effect of sharing end-customer demand data in real time in a 

simplified service chain.  As is commonly reported in manufacturing settings, they found that 

incorporating end-customer demand data with local demand data in individual service unit 

decision making led to increased performance, both in terms of total reduced costs and improved 

service delivery times.  Although not directly discussed, their work also reveals the necessity of 

centralized planning in service chains.  The parameter set that created their lowest-cost, highest-

performance scenario would have been unsustainable without centralized planning, as costs were 

not shared equally across service units.  If individual units made decisions only to maximize their 

own performance, the service chain would never be able to implement this optimal 

scenario.  Cooperating to redistribute the costs and benefits of service delivery redesign seems 

crucial to the ability to achieve optimal performance. 

  

There is also some anecdotal empirical evidence supporting the use of agile strategies in 

healthcare service delivery chains.  Service chain integration is becoming more prevalent in 

healthcare, as team-based care models (e.g., the Patient Centered Medical Home, or PCMH) are 

becoming standardized.   As of 2007, an estimated 27% of primary care practices follow some 

elements of the PCMH model, where disparate elements of the health care system (e.g., 

subspecialty care, hospitals, home health agencies, nursing homes) and the patient’s community 

(e.g., family, public and private community-based services) are coordinated through a patient’s 

primary care provider (Beal et al, 2007).  There are a few reports suggesting that these changes 

lead to better care quality, reduced errors, and increased patient satisfaction (Rosenthal, 2008), 

with one recent study of a Seattle health system demonstrating 29% fewer emergency visits, 6% 

fewer hospitalizations, and total savings of $10.30 per patient per month over a twenty-one 

month period (Reid et al. 2010).  Health services are also moving toward virtual integration as 

well, with the recent mandate to create health information exchange, which will provide the 

capability to electronically move clinical information among disparate healthcare information 

systems (HITECH, 2009).  All this suggest that agile strategies have promise in the healthcare 

context and should be further explored. 

 

The question how to best integrate agile strategies into healthcare is an uncovered field in the 

area of supply chain management, and has only most recently been suggested.  The November 

2011 special issue on healthcare of the international journal Supply Chain Management 
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highlights the need for in-depth research into the strengths and weaknesses of the agile 

management paradigm in the context of health services.  There are clear gaps in knowledge of 

the application of agile strategies, namely: What are the clearest translations of agile strategies 

into operational plans applicable and feasible in healthcare service delivery?  How do they 

compare to each other in effectiveness, as defined as the ability to increase total service chain 

flexibility and mitigate the adverse effects of demand volatility?  Do agile strategies need to be 

implemented as a bundle to be effective, or are they effective at creating service chain flexibility 

when implemented separately?  Answering these questions to further the adaptation and use of 

agile strategies to healthcare could contribute significantly to the broader field of patient logistics 

and the improvement of healthcare service management.   

 

 

6. Methodology/Approach 

The literature on supply chain analysis is rich with classifications of methods used to investigate 

supply chain performance and the effects of demand variation (Riddalls et al, 2000; Kleijnen & 

Smits, 2003; Dejonckheere et al, 2004; Disney et al, 2004; Geary et al, 2006; Towill et al, 2007; 

Disney & Lambrecht, 2008).  Riddalls et al. (2000) submit that the choice of which methodology 

is most appropriate is determined by decision-making level under consideration, commonly 

divided into 1) the local, tactical level for day-to-day decision making, and 2) the implication of 

strategic design on supply chain performance and overall network functioning.  Holweg and 

Disney (2005) recommend the latter category be analyzed using methods based on the dynamics 

of the system in question.  They recognized three distinct and methodologically independent 

research domains: continuous time differential equation models, discrete time difference 

equation models, discrete event simulation systems.  

 

The choice of methodological approach adopted in this paper is based on the need to explore the 

dynamic interaction effects of various operational plans, and to develop a general understanding 

of their inherent dynamics when applied in a healthcare service chain.  We adopt a continuous 

time approach, namely system dynamics simulation modeling.  The service chain and governing 

decision heuristics are modeled through first-order nonlinear differential equations.  The formal 

mathematical expressions of the system are reported in the next section.  We have not used 

discrete-event simulation (DES) or stochastic modeling (of variables like ‘patient inflow' or 

‘treatment time') because our primary objective is not to quantify numerical results for one 

specific healthcare delivery chain, but to understand and illustrate to healthcare managers the 

deterministic behaviors of healthcare delivery systems in general.  The use of continuous, as 

opposed to discrete, flows in the model is a reasonable approximation of the perpetual 

adjustments (hiring and firing) necessary in the management of service organizations, and is a 

common method for abstracting these systems in both operations management and supply chain 

management research (Sethi & Thompson, 2000).  For an in-depth discussion of the trade-offs 
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and appropriate problems for using system dynamics or DES see Tako and Robinson (2009) and 

Kleijnen (2005). 

 

System dynamics is an appropriate chose for modeling healthcare systems, as it encourages both 

a systemic view of the interactions of patient flows and information, and a strategic perspective 

on the management of healthcare delivery systems.  System dynamics modeling has been used to 

address several healthcare related problems and has resulted in about 1500 publications since 

1991 (Brailsford 2008).  Dangerfield (1999) reviews system dynamics modeling in healthcare 

and concludes that the method can be used effectively in quantitative ways when based on 

simulation models.  Examples of modeling efforts range from the use system dynamics 

simulation to analyze the reasons for the failure of management interventions in cardiac 

catheterization services (Taylor & Dangerfield, 2005), to the improvement of acute patient flows 

in the UK National Health Service (Lane & Husemann, 2008).  With the trend toward care 

integration across complex networks of activities and specialties, system dynamics offers a 

rigorous approach for understanding the strengths and weaknesses of that new 

interconnectedness.  A general discussion of the role of system dynamics in analyzing healthcare 

systems can be found in Taylor and Lane (1998). 

 

The use of system dynamics to understand the dynamics of healthcare service delivery builds on 

a rich history of developing insights into supply chain management.  Forrester (1961), the creator 

of system dynamics, laid the foundations for the use of the continuous time approach towards the 

study of supply chain dynamics.  Later, the work on ‘beer game’ simulation (Sterman, 1989) 

ushered a new era in supply chain management research into understanding how micro-level 

decision structures, bounded rationality, and misperceptions of system feedback cause macro-

level behavior (Cannella & Ciancimino, 2010).  Subsequent system dynamics-based research in 

service supply chains has led to knowledge of how the defining phenomena of services, for 

example, the intangibility of services and the simultaneous interaction of customer and service 

provider, affect system behavior.   

 

This paper builds on a thread started by Oliva and Sterman’s (2001) simulation study of a single-

stage service process, as well as Anderson’s (2001) analytical model of similar issues.  It relates 

to research on managing service chain dynamics (such as the ‘bullwhip’ effect), information 

sharing, and coordination of management decision making (e.g., Lee et al, 1997; Chen, 1998, 

1999).  Anderson and Morrice (1999, 2000) first consider a multi-stage service system in their 

model of the mortgage service industry, and start the exploration of the impact of resource 

acquisition delays on demand variation amplification.  In their case study of a European telecom 

firm, Akkermans and Vos (2003) use a similar model to develop insight into the interdependence 

between workload, work quality and variation amplification.  However, their model is highly 

context specific and the analysis space is limited by the narrow set of policy options available to 

the firm’s management.  Perhaps the most closely related research exists in the linear programing 
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work Anderson et al. (2005, 2006), which uses a relaxation of a system dynamics model to 

evaluate the structural causes of, and counter-measures to, demand amplification in a generic 

service chain.  Such uses of system dynamics have been cited as "clear exceptions" to what is 

normally described as the "forced and unclear" application of supply chain management 

modeling methods to services (Sampson & Froehle, 2006, p.337).   

 

 

7. Model Design 

The healthcare service chain we model here is an abstract representation of a broad spectrum of 

possible healthcare delivery networks.  The purpose of the model is to capture the essential 

elements of reality common to most healthcare delivery chains rather than perfectly simulate one 

specific service. Our delivery chain consists of three stages, the three most clearly defined stages 

in any patient care event: diagnosis, treatment and recovery, as indicated in Figure 2 (Aronsson 

et al, 2011).  While all steps can be performed by one or several organizations depending on the 

patient, we represent each stage with a finite workforce capacity handling the different tasks 

inside a stage, which can represent the organizational separation and specialization among 

hospitals, or between departments inside a single hospital.  The health care service system is 

modeled in continuous time, and is simulated with Vensim® software.  This model is concurrent 

with previous system dynamics service supply chain models, visualized in 

Figure 3.   

 

 
Figure 2. The functional steps in a healthcare process (adapted from Aronsson et al, 2011). 

 

To illustrate how patients flow through this chain, take the example of the care of patients with 

acute myocardial infarctions (sudden heart attacks).  It is a care process that involves several 

departments inside the hospital and often requires addition rehabilitation services after treatment.  

There are also clear quality implications of care lead-time, as mortality rates are highly 

correlated with diagnosis and treatment delays (Gulli et al, 2010). These patients often arrive 

unscheduled, by ambulance to an emergency department.  A diagnosis is made which normally 

includes lab-tests and X-rays.  After diagnosis, the patient is transferred to the cardiac 

catheterization lab for coronary angioplasty (PCI) or bypass surgery (CABG).  After the 

operation, the patient recuperates in a cardiac care unit.  When leaving the hospital there are 

often extended needs for recovery involving physical therapy and social services, which has to 

be planned and coordinated with family, physical therapists, and possibly personal care 

attendants.   

 

7.1 Traditional service supply chain structure 

Diagnosis                Treatment              Recovery 
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These archetypical functional steps, as outlined by Aronsson (et al, 2011), map directly to our 

model structure: where boxes represent patient service backlogs, hourglasses represent patient 

care events (interaction between patient and provider or other staff and resources), and arrows 

represent the direction of patient flow.   

 

 

 
 

Figure 3. A generic multi-stage healthcare service delivery model 

 

While clinics in our service chain are obviously linked, as the output of one clinic forms the 

input to the next, each clinic in our model operates autonomously, as management decisions are 

based only on the information available inside each clinic.  Each clinic has sole responsibility for 

operational performance and control of its own resource actions, i.e., acquiring and releasing 

workforce.  Each clinic requires a separate set of resources to serve its patient backlog; no 

resources are shared between clinics.  Resource sharing may be possible in some healthcare 

service chains, depending on the specifics of a particular care process, but the high level of 

specialization and the complexity of healthcare ensure that resource sharing is not the norm.  For 

simplicity, we assume that there are no dropped or lost patients and all of the patient care events 

in a backlog are eventually concluded.   

 

Each of the three clinics is identical, with a finite capacity for patient care, derived from the 

number of providers working in that clinic.  Each clinic’s implicit goal is to keep service 

performance at a desired level (measured in average service time), while keeping service 

capacity costs to a minimum.  While this structure is far from optimal, it is a realistic 

representation of the common ‘staff to demand’ heuristic found currently in most hospitals and 

health care centers (Litvak et al, 2005). 

 

A more specific stock and flow model of one representative clinic is presented in  

Figure 4, graphically displaying the three control loops fundamental to clinic management: one 

to prevent number of customers waiting for service from going negative (the Work Availability 

loop), one representing manager's decisions to add or remove providers from the clinic schedule 

to balance workforce with demand (the Capacity Management loop), in which is embedded the 

manager's decisions comparing current workforce with desired workforce to achieve desired 

service capacity (the Meeting Workforce Goal loop).  The formal mathematical details are 

described below.   

 

Triage Admission Recovery

Patient
Arrival

Patient
Diagnosis

Patient
Treatment

Patient
Discharge

adsfl;kjadadsfl;kjad 0
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Figure 4. System dynamics model of a single representative care delivery unit; the main capacity 

adjustment loop is highlighted. 

 

There are two streams of activities in the model. The first one is the uncertain flow patients 

coming into a clinic as shown in the top portion of 

Figure 4.  The patient backlog accumulates based on the difference between inflow of demand 

arrival, Ra , and completion rate, Rc.  Note that the patient backlog (B) is actually the healthcare 

work-in-progress, which is number of patients being diagnosed, treated, or recovering, and has a 

different meaning than the traditional backlog in an industrial supply chain.  The completion of 

each stage in patient care requires a certain number of resources (personnel, equipment, rooms, 

etc.) for a certain duration.  In this model, we assume that all patients eventually complete each 

clinic’s care process, though some patients can be delayed as accumulated demand backlog due 

to capacity shortages, as shown in the expression of, Rc , in Equation 1. 

 

 ( )   ∫ [  ( )    ( )  ]    

 

 

 

 

where  B(t) = patient backlog at t, 

Ra(t)= arrival rate of patients at t 

Rc(t) = completion rate of patients at t = min[C(t) , B(t)/Tm] 

C(t) = resource capacity available at t 

Tm = minimum patient care time 

B0 = initial backlog (patients in-progress) at t = 0 
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Note that patient backlog (B(t) and B0) is expressed in number of patients.  Completion rate and 

resource capacity (Ra , Re and C ) are expressed in the number of patients per day, and 

completion time (Tm ) is expressed in days.  There is a minimum completion time even if 

unlimited resources are available.  With the minimum care completion time, adding more 

resources past a certain level will not reduce the backlog, merely the resource utilization. 

 

The second flow in the model is the flow of workforce as shown in the bottom part of the model 

in Figure 4.  The resource capacity available, C(t), accumulates based on the net capacity 

discrepancy, e(t), which is defined as the resource capacity needed to care for all patients in the 

desired time, Cd(t), minus the resource capacity currently available, Ct-1(t), as shown in Equation 

2. 

 

 ( )   ∫ [
 ( )

  
]       

 

 

 

 

 

where  C(t) = resource capacity available at t 

e(t) = the net capacity error = Cd(t) - C(t-1) 

Cd(t) = resource capacity desired = [B(t)/ Ts ] 

C(t-1) = resource capacity at pervious time step 

Ts = target patient care service time 

Tc = delay for resource capacity change process 

C0 = initial capacity (providers) at t = 0  

 

In the traditional service supply chain, any single clinic only receives information about patient 

flow from the adjacent upstream clinic.  Each clinic calculates the resource adjustment in any 

given period, Cd(t), on the basis of local data and parameters (service capacity level C(t), delays 

in the resource adjustment process, Tc) and on the desired service capacity.  This desired service 

capacity is, in turn, modeled as a rate of patients per day, calculated from the current patient 

backlog and the desired care delivery time.  The overall capacity adjustment decision is 

moderated (divided) by the delays inherent to the resource capacity adjustment process, Tc, 

which represent delays in decision making and the schedule modification process itself.  The 

denominator of Tc captures the first-order effect of capacity adjustment, and approximates reality 

for all but extreme target capacity changes.  Implicit in these equations is the assumption that one 

unit of capacity is required to process one unit of patient backlog each day. This assumption can 

be relaxed by scaling the capacity appropriately.  Note that net resource adjustment rate rate, is 

expressed in the number of patients per day per day, while the units of resource capacities, (Cd, 

Ct-1, C0) are expressed in units of number of patients per day.  
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This capacity adjustment policy is derived both from the literature and from interviews 

conducted with healthcare department chiefs and clinic managers.  Anderson (1997) finds an 

identical stock correction mechanism in custom machine tool industry, Anderson and Morrice 

(2000, 2001) in a mortgage services company, Akkerman and Vos (2003) in a telecom company, 

and Anderson et al (2005) in the service supply chains of an oil field development firm.  While 

not an optimal decision heuristic by any means, it is the rule most often used in practice in 

service supply chain management.  Note that the rule in Equation 2 is simpler than the standard 

stock-adjustment rule found in manufacturing supply chain modeling (Sterman, 2000); we 

believe this is justified because there is no significant supply line of capacity on order in this 

system.   

 

Health care service delivery chains are complex and require a great deal of coordination.  Based 

on its use in similarly complex fields, we believe this base structure is both abstract enough to be 

generalizable across services, and structurally sound enough to yield insights into the dynamics 

of healthcare service delivery management.   We use it as a base upon which to test the adoption 

of multiple agile-derived operational plans, each explained in detail below.    

 

 

7.1 Agile operational plans  

We identify specific operational plans from the literature on service supply chain management 

which can be subsumed under the agile paradigm.  This assembled set of plans covers all four of 

the key characteristic of an agile supply chain: market sensitivity, information driven, centralized 

planning, and process integration.  Each is described in detail below; including the structural 

changes to information flows and management’s decision heuristics, along with its mathematical 

formulation. 

 

 7.1.1 Market Sensitivity 

Despite its importance in manufacturing supply chain management research, increasing market 

sensitivity is not directly discussed as such in the service supply chain literature.  As a 

conceptual framework of ‘agility’ has not yet been universally adopted (Li et al, 2008), there are 

many meanings of the term market sensitivity depending on context and level of detail under 

investigation.  It could refer to the ability of a manufacturing chain to elicit and respond to 

patient preferences in new product development (product characteristics), or the ability to 

perceive, evaluate, and respond to changes in total demand with accurate adjustments to 

production and inventory quotas (availability), or to identify the relative value of a product in the 

market and adjust price accordingly (price).  In general, market sensitivity is the ability to make 

swift and appropriate decisions in reaction to changes in demand, in any of its dimensions.   

 

For healthcare delivery, where patients have limited knowledge of the price and relative quality 

of any given service or provider, the most significant dimension of demand, from a clinic 
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manager’s perspective, is total volume.  We narrow our focus through defining market sensitivity 

as the ability of a service chain to respond quickly to changes in demand for a given service with 

accurate changes in service capacity in order to maintain an adequate level of service 

availability.  Including the price and service characteristics of patient demand are possible 

extensions for future work, but are more apposite to the analysis of national healthcare policy 

than improving healthcare delivery.  With this definition, we find two operational plans in the 

literature that address increasing market sensitivity.  Both were first developed in manufacturing 

and only recently tested (separately) in simulation in service supply chains.   

 

The first focuses on the impact of increasing the speed of capacity adjustment decision making, 

modeled as a reduction in the service capacity adjustment time, Tc.  Analysis of mortgage service 

simulations (Anderson & Morrice, 2000) suggest that decreasing service capacity adjustment 

delays is one operational plan available to managers of individual clinics to improve the 

responsiveness of their clinic to changes in patient arrival rates.  In subsequent research, 

however, they find reducing the equivalent of had mixed effectiveness, improving service 

delivery (as measured by the variance in average service time), but increasing variance in 

subsequent stages’ capacity stocks and backlogs (Anderson et al, 2005).   A reduction in Tc could 

be achieved through many operations-level changes, from increasing the frequency of 

information gathering and analysis on the current patient backlog level, to streamlining the HR 

process for hiring and firing, to improving the quality of training to reduce the training time for 

new hires, to improving coordination between managers and employees over clinic schedule 

changes.  All would reduce Tc , and make the clinic more sensitive to changes in demand 

volume.  

 

The second focuses on improving the information used to make the capacity adjustment decision.  

This operational plan captures emerging trends in demand volume, through including a measure 

of the change in the patient backlog along with the actual size of the backlog itself.  This 

‘derivative control’ is common to physical manufacturing systems (temperature control, velocity 

control, etc.), and is part of a standard engineering control algorithm called PID (Proportional, 

Integral, Derivative Control), which is mainly used as a means to minimize the error between a 

measured value and a target value, given the presence of adjustment delays (Axsater, 1985).  Our 

current decision equation falls under the domain of proportional control, where the rate of 

capacity adjustment is a proportion of the error between the desired and the actual service 

capacity.  Fundamentally, a PID control algorithm improves basic proportional control in two 

ways.  Integral control creates a system memory of the accumulated error over any period of 

time when error is being corrected, and adds that error to the correction itself, thus preventing 

‘steady-state error.’  Derivative control increases the correction in response to rising error, thus 

returning the system to its desired state faster that if the system responded proportion to the error 

alone.  The derivative of the error is a faster signal to clinic managers than the error itself, as the 

derivative peaks when signal from proportional gap is only at its inflection point.   
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In simulation, supplementing standard proportional control-base heuristics with integral and 

derivative control has been found to significantly improve the control of supply chains faced 

with volatile demand, allowing a reduction in inventory safety stock by over 80% without 

sacrificing product availability (White, 1999).  For discussion of the application of PID in 

manufacturing settings, see White (1999) and Saeed (2008, 2009).  A similar approach was 

recommended for improving decision-making in strategic management by Warren (2007).  The 

study of the addition of integral and derivative control in service chains is an emerging area of 

service supply chain research, and has only been explored in simulation.  Results from Lee (et al, 

2010) indicate that using derivative control to supplement a manager’s decision heuristics leads 

to performance improvement.  However, the inclusion of integral control is proposed to not be 

useful in managing service chains, as the common decision heuristic used produces no steady-

state error. 

 

Including derivative control in our clinics’ capacity adjustment decision requires changes to 

model equations.  The new equation for net capacity error is shown below. 

 

  ( )   (   ( )      
 [ ( )]

  
) 

  

where  e*(t)  = is the error calculated with derivative control 

e(t) = the net service capacity error 

Kp = gain (sensitivity) constant of the traditional control; normally Kp = 1 

Kd = gain (sensitivity) constant of derivative control 

Td = derivative time constant 

 

Setting the Kd parameter to zero eliminates derivative control.  Changing the parameters for Kp 

and Kd influences the gain of the traditional and derivative controls, respectively.  Adjusting 

these parameters can be used to optimize the decision equation for a given set of costs.  

 

 7.1.2 Information Driven 

The importance of demand information in optimizing supply chain management is well known.  

End-to-end sharing of real-time demand data is one of the common solutions in the supply chain 

management literature for minimizing the demand amplification (bullwhip) effect inherent to 

supply chains (Disney & Towill, 2003; Chatfield et al, 2004; Dejonkheere et al, 2004; Shang et 

al, 2004; Byrne & Heavey, 2006; Kim et al, 2006; Hosoda et al, 2008; Kelepouris et al, 2008; 

Argawal et al, 2009).  Unlike a traditional supply chain, in an ‘information driven’ system, the 

information flow consists of both the transmission of stages’ orders in the up-stream direction 

and sharing information on market demand.  Each stage remains autonomous and makes 

decisions on production and distribution independently, but all stages make those decisions on 
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the basis of shared, global information.  This prevents extreme internal demand variation 

amplification, as each stage now has some understanding of real demand, not just local demand 

from the downstream stage.   

 

Expanding the data available to supply chain managers at each stage almost always leads to 

lower costs and fewer stock-outs.  The effects of sharing end-customer demand data in industrial 

supply chains has been tested many times in simulation, under many constraining assumptions, 

with all findings indicating that sharing end-customer demand data improves performance.  

There are fewer results from analysis of real world data, but they also re-enforce this finding.  

For example, Hosoda (et al, 2008) find that sharing ‘point-of-sale’ data in real-time between a 

supermarket chain and a soft-drink manufacture reduced the holding and backlog costs incurred 

by the manufacturer by 8-19%.  In a similar study conducted in a Greek retail grocery company, 

consisting of 250 retail stores and 7 central warehouses, Kelepouris (et al, 2008) find that 

information sharing results in a 21% reduction in order variability and a 20% reduction in 

average inventory.  These, and other studies, confirm the value of shared information on end-

customer demand for mitigating the bullwhip effect and associated costs in physical supply 

chains. 

 

The usefulness of sharing end-customer demand data has not been empirically examined in 

service supply chains, but has been explored in simulation.  Anderson and Morrice (2000, 2001) 

test the effect of sharing information on real demand with each stage in their mortgage services 

chain, finding that adding this information to each stage’s decision heuristic does improve 

performance.  However, the use of end-customer demand data can create a trade-off between the 

level of variation in patient backlog and in service capacity.  Anderson (et al, 2005) assert that 

the stages in a service chain can always decrease their backlog variation by paying more 

attention to end-customer demand rather than local backlog, but only up to a certain point, 

beyond which capacity variation will start to increase.  Thus, information sharing can only lead 

to limited improvements before creating a direct trade-off between customer service (variation in 

patient wait times) and personnel costs (variation in capacity).  The precise tipping points are 

determined by the parameters of a process (for discussion, see Anderson et al, 2006).  The 

common strategy advocated for service supply chain scholars is to use a mix of both, rather than 

completely relying on one or the other.  Determining the optimal weights for both types of data 

in management decision depends on the cost structure in a given service chain. 

 

We change the ‘capacity management’ loop to include data on initial patient demand, 

supplementing local patient backlog data.  The first term represents the degree to which the 

target capacity relies on the end-customer demand rate.  The second term denotes how the target 

capacity depends on the magnitude of the local backlog, Bi(t) and the target service care time.  

The first term represents the service capacity needed to meet end customer demand at time t and 

the second term represents the capacity required to guarantee that, on average, the orders not yet 
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met in the local backlog will not be delayed longer than an acceptable amount of time (i.e., the 

service delay).  The weighted sum of these two terms determines target capacity.   

 

Cd(t) = resource capacity desired =  [  ( )   
(   ( )(   )

  
] 

 

Where  Ra(t) = arrival rate of patients in the first clinic in the service chain at time t 

Bi(t) = local patient backlog  

Ts = target patient care service time 

a = the relative weight of end-customer demand in the desired capacity calculation. We 

assume that 0 ≤ a ≤ 1. 

 

This modification to management’s decision heuristic can be supplemented with previous agile 

operational plans for increasing market sensitivity, both decreasing capacity adjustment time and 

including derivative control.   

 

7.1.3 Centralized planning 

The literature on service supply chain management commonly defines 'centralized planning' as a 

system where decisions are made to maximize efficiency and performance of the total chain, as 

opposed to decisions being made locally to maximize the performance of individual stages 

(Anderson et al, 2006).  In formal mathematical terms, the control policies for adjusting 

capacities in all stages are determined simultaneously by optimizing a single objective function 

for the supply chain.  In most services, the optimal level of coordination between stages in a 

service chain is not obvious, nor are the appropriate methods to create that coordination, i.e., by 

supply contact or direct ownership (Holweg, et al, 2005).   

Confounding factors, like tighter integration leading to organizational diseconomies of scale 

(Zenger, 1994) or the loss of market share due to shifting brand differentiation strategies, may 

outweigh any gains in operational improvements from increased coordination.  Separate from 

studies of information sharing, limited empirical research in the service supply chain 

management literature on the impact of transitioning to centralized planning has been 

reported.  Many studies in manufacturing collaboration and centralization report high degrees of 

difficulty of integrating external collaboration with internal production and inventory control 

(Cachon & Lariviere, 2001; Stank et al, 2001).  Anderson (et al, 2006) provide anecdotal 

evidence from the oil-field development industry, where firms with centralized planning are 

found to be no more competitive or successful than firms with individually managed stages. 

 

Simulation studies of service supply chain centralization are also few, and contain inconclusive 

results.  While highly abstract, special case, linear models have been developed which show 

centralization leading to improved performance (Anderson et al, 2006), the common strategies 

for moving toward centralized service chains have been shown to have adverse effects on 

performance.  Anderson (et al, 2005) assert that the default centralization strategy for service 
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chains is to move stages toward uniform decision making (in terms of the type of information 

used, management's decision rules themselves, and target performance measures, such as service 

delivery times). Changing these decisions is the least complex way to implement ‘global’ supply 

chain policies, particularly if the stages are inside the same firm.  However, moving away from 

idiosyncratic decision strategies to more uniform decision making inadvertently results in worse 

performance than if decision strategies had not been aligned (Anderson et al, 2005).   Their 

simulation research suggests that adopting a single management decision heuristic (modeled as 

identical capacity adjustment times and target service delivery times for all stages) across the 

entire service chain is actually leads to significant increases in variation in both demand for 

services and capacity adjustment.  Centralization is a difficult strategy to implement effectively 

in service supply chains, as seemingly benign actions can generate unforeseen adverse 

consequences.    

 

Other examples illustrate how optimizing delivery in a service supply chain through 

centralization is not simple or intuitive.  Under the simplifying assumptions of a linear relaxation 

of a dynamic optimization model, Anderson (et al, 2006) find that while transitioning to 

centralized decision making usually leads to increased operational efficiencies for the total chain 

when compared to local decision making, improvements are not shared equally between supply 

chain stages.  Centralized planning usually decreases backlog and capacity variation overall, but 

when measured in isolation, the first stage is almost always worse off than before.  The use of a 

single optimization equation to govern both stages almost always results in improvements in the 

performance of the second stage, but at the cost of decreased performance of the first stage.  

Depending on the cost and pricing schemes of the services offered in each stage, centralized 

decision making could lead to increased costs Anderson (et al, 2006).  For example, they 

conclude that if the first stage has a sufficiently higher cost structure (both of holding excess 

backlog and/or cost of changing capacity) than the second stage, centralized control of capacity 

adjustment is of no direct benefit.  They conclude that centralized planning may improve total 

chain performance in some situations and under some limiting assumptions, but it is difficult to 

achieve in practice, with a high possibility of being counter-productive. 

 

Based on these works, we believe the most promising manifestation of the agile concept of 

centralized planning is the creation of an ‘unbalanced’ service chain, where each stage follows a 

different management decision heuristic (modeled as differing capacity adjustment times and 

target service delivery times).  While varying service targets and capacity adjustment processes 

is by no mean an optimization, exploration of such policies could lead to simple, straightforward 

guidance for healthcare service chain managers.  To test this strategy, we run three sets of 

simulations, where we vary 1) target service times, or Ts; 2) capacity adjustment delays, or Tc; 

and 3) both simultaneously.  Operationally, these would be time and resource intensive policies 

to implement: changing target service times in an individual clinic directly affects service quality 

and resource requirements; changing capacity adjustment times might involve negotiation with 
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national accreditation bodies, state review boards, internal HR committees, union representation, 

etc.  In order to keep these changes somewhat inside the realm of possibility and comparable to 

our other policy experiments, we keep the total capacity adjustment and service delivery times 

constant for all simulations.  Thus, while any one clinic may alter their parameters, the sum of 

these parameters across the service chain will remain constant.  It is also important to note that 

the parameter adjustments we use to manifest these operational changes to decision making can 

easily accompany the other agile operational plans identified in previous sections. 

  

            7.1.4 Process Integration & Performance Management 

Supply chain integration has been described as the ‘holy grail’ of supply chain improvement 

(Holweg et al, 2005).  It is widely accepted that creating a totally seamless, synchronized supply 

chain will lead to increased responsiveness and lower inventory costs.  Jointly creating the 

common practices for “information sharing, replenishment, and supply synchronization … is 

essential to avoid the costly bullwhip effect that is still prevalent in so many sectors” (Holweg et 

al, 2005, p.180).  However, in the light of the complexity of today’s global supply chains, most 

firms find it is hard to reap the full benefits from their efforts of integrating with their supply 

chain partners.  Only a few individual success stories have been reported in the industry sector; 

mainstream implementation within these industries has been much less prominent than expected.  

In practice, the issue of how to benefit from process integration and how to use performance 

management to improve capacity utilization and inventory turnover is still not well understood, 

nor even well defined (Lapide, 2001). 

 

There are many reasons complete integration remains elusive to most firms.  The right approach 

for any firm depends on the supply chain context, in terms of geographical dispersion of retailers 

and supplier plants, complexity of distribution networks, and constraints on production 

modifications, as well as in terms of product characteristics and demand patterns (Holweg et al, 

2005).  Also, there are many different possible strategies to pursue to integrate a supply chain, 

and most steps toward complete integration, from information sharing to adopting uniform 

decision rules and service targets, are costly to implement, provide unequal benefit to each stage, 

and have high potential for generating adverse effects.  While the promises of improved 

performance generated by each strategy are real, actually achieving successful implementation is 

rare, and achieving those improvements is rarer still. 

 

Most of the supply chain improvement strategies found in the literature and discussed in this 

paper could not occur without integration of some kind.  If the decision to adopt any of these 

strategies was driven solely by the benefits that would accrue naturally to each stage, then none 

of them would ever be adopted.  For example, out of many possible scenarios, the lowest cost 

strategy identified in a simulation of the mortgage service industry (Anderson & Morrice, 2000), 

is where each stage only uses end-customer demand to make capacity adjustment decision.  

While by far the most efficient supply chain structure overall, the first stage bears all the burden 
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of demand volatility, while all the benefits of information sharing  go only to the downstream 

stages.  Such a ‘raw deal’ would never arise without the integration of these stages through the 

creation of additional structures to redistribute the overall benefits of information sharing more 

equally between supply chain partners.  More recent studies suggest this is the norm, that sharing 

information will only improve performance of downstream stages, never the first stage 

(Anderson et al, 2006).  The same dynamic occurs with strategies to promote efficiency through 

centralized planning, where no matter what the cost schemes, fundamentally, the benefits of 

centralized planning do not accrue evenly across all stages in a service chain.   

 

Obviously, it is difficult to encourage each stage to participate in these different improvement 

strategies when local incentives differ so dramatically.  This shows how crucial integration is to 

achieving efficient supply chain operations.  The successful implementation of any of the other 

improvement strategies discussed requires finding and implementing an incentive scheme to 

compensate each stage appropriately.  Supply chain simulation is an important tool in the design 

of such integrative incentive structures.   

 

To explore the impact and importance of the agile strategy of supply chain integration, we focus 

on the need for altering performance measures to promote and sustain these policies and, with a 

generic cost structure, how efficiency gains must be redistributed to ensure that these policies are 

actually beneficial to each stage, not just overall.  We determine the change in performance 

caused by each strategy for each stage, and use these findings to describe the necessary 

redistribution scheme so all stages would be willing to participate.  The integration of incentive 

structures and performance management is key to achieving operational efficiency.    

  

  

8. Simulation Analysis 

In this section, we discuss our selection of performance measures and how they compare to 

general performance measures previously developed for the evaluation of service chains.  Next, 

we present base case simulations that, consistent with the literature, establish demand variation 

amplification as an inherent system behavior. 

  

8.1 Performance measures 

The most common measures of supply chain simulations are of backlog and capacity variation 

(for discussion, see Anderson et al, 2006).  These most clearly reveal the extent of inherent 

demand variation amplification, the ‘bullwhip effect,’ in a supply chain, and quantify the effects 

of mitigation strategies.  It is possible to associate costs with each, but these can be very different 

depending on specifics of supply chain and stage in question.  Not all variation creates cost 

equally.  In a healthcare service chain, costs between service chains and between individual 

clinics vary considerably.  For example, an increase in the post-surgery patient backlog would 

cost a hospital thousands of dollars per day, as patients took up more hospital beds and attendant 
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care; whereas an increase in the backlog of patients in the ED waiting room would cost almost 

nothing.  Obviously, the impact to patient is also very different.  In the first case, there is 

probably a null effect, with increased risk of nosocomial complications countered by increased 

attention; while an increased backlog in the second case clearly has a detrimental effect on 

patient health.  The same is true for service capacity variation: hiring and training a personal care 

attendant incurs very different costs than hiring and training a pediatric neurosurgeon.  Reducing 

service capacity also incurs some costs, quantitatively with possible severance pay and 

qualitatively through reduced morale with remaining staff.  However, to keep our simulation 

results generalizable, we do not associate a cost measure with variation, only reporting averages 

and standard deviations of both backlog and service capacity.  It should be noted that adding cost 

equations to each stage in the model is easily done, if context specific cost data are available.  

 

We also use service time as a measure of performance, which is a common measure of both 

general service quality and healthcare quality (Parsuraman et al, 1988).  Instantaneous average 

service delivery times for each clinic are calculated based on Little’s Law, as the quotient of the 

current backlog of patients by the rate at which the clinic completes its service, and summed to 

generate the total average service time.  We report both the average and standard deviation of 

service time for each clinic and the chain as a whole.   

 

Average Patient Service Time =  
 ( )

  ( )
⁄  

where  B(t) = patient backlog at t 

Rc(t) = completion rate of patients at t  

 

The final measure we consider when evaluating the impact of agile strategies on service chains is 

the patient to provider ratio.  Like service time, this is another measure of care healthcare quality.  

Healthcare services research has linked the ratio of patients to providers, and the subsequent 

employee stress and fatigue, to increased error generation, patient safety risk, and reduced 

overall care quality (Kane et al, 2007; Robertson & Hassan, 1999).  Higher patient to provider 

ratios have been correlated with increased patient mortality, failure-to-rescue (deaths following 

complications), urinary tract infections, pneumonia, thrombosis, and pulmonary compromise 

(Aiken et al, 2002; Kovner & Gergen, 1998).  While not a precise measure of service quality, it 

is easily comparable across stages and service chains and could be easily modified to provide 

more setting specific indications. 

 

However, patients and service capacity are not directly comparable in our model, as they are 

measured in different units.  We convert the measure of patients to that of service capacity, 

through comparing it to the target service delivery time.  This adjusted measure, normally called 

‘workload,’ now represents the ratio of the service capacity necessary to see the current backlog 

of patients within current standard of care and the service capacity currently available.  This 
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measure of stress and patient safety risk can be modified to suit any service delivery system, and 

is accepted as a general measure of service supply chain stress and a main contributing factor to 

reduced service quality and increased rework.  This ratio was first proposed by Akkermans and 

Vos (2003), and is similar to the measures of ‘schedule pressure’ found in system dynamics 

workforce models (Lyneis & Ford, 2007).   

 

Normalized Workload = [(
 ( )

  
)   ( )⁄ ] 

 

where B(t) = patient backlog at t, 

Ts = target patient care service time 

C(t) = resource capacity available at t 

  

To illustrate how this measure is used, assume a 10% increase in patient demand makes the 

workload measure triple from 0.1 to 0.3, this suggests severe demand variation amplification, but 

it also indicates that the system is not put under serious pressure because the workload is still 

well below 1.0, where 1.0 indicates that demand for services and current service capacity are in 

equilibrium, and thus all current patients can be seen within the desired service time.  

 

This measure provides an instantaneous measure of provider stress and system flexibility, and is 

useful for evaluating behavior over the course of a simulation.  However, to facilitate comparison 

of stress and flexibility across multiple simulations, we must condense this behavior into one 

number. Based on a technique common to control theory (White, 1999), we use the sum of the 

absolute difference between equilibrium and actual workload generated in all clinics.  This 

accumulated error (the difference between desired and actual workload) stores the history of 

behavior over the entire simulation, resulting in a less volatile and clearer picture of how 

different policies affect performance over time, not just at one moment in time.  

 

This measure also provides an estimate of overall system flexibility.   If the ratio of patients to 

providers is often not balanced, then the system is not able to effectively and efficiently address 

changes in demand for services with changes in service capacity.  For example, when workload 

is high, there are more patients waiting than there are necessary providers to diagnose, treat, and 

care for them in a timely manner, indicating that the system was not able to successfully respond 

to the initial increase in demand.  The same is true when workload is below 1: the system has 

more resources than it needs to be able to provide the standard level of care.    

 

 8.2 Base Case 

We run an initial simulation to reveal dynamic behaviors inherent to the system.  Key parameters 

in the model are initially set to the relative equivalents of those found in other generic service 

supply chain models.  The total desired patient service time is 15 days, spread evenly over each 

clinic (Ts  is 5 days); the time to add or remove a provider from any clinic roster is four times as 
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long (Tc = 20 days).  The model starts in equilibrium, where exogenous demand is a constant rate 

of 10 patients per day, and each clinic is staffed with the exact number needed to meet that 

demand in the target service time.  Thus, initially, there is no variation in backlog or service 

capacity, and average service time is equal to desired service time.  Desired capacity and actual 

service capacity are equal, therefore our performance measure, workload, is 1.0 in each service 

clinic.  This scenario represents the traditional healthcare service delivery system, where local 

managers control the workforce at each clinic using only information on their local clinic 

backlog and provider productivity.  In this base case scenario, the system is disturbed from that 

equilibrium by a minimal level of demand uncertainty, a one-time 10% increase in patient 

demand. 

 

The model structure clearly generates the demand variation amplification effect, as 

expected.  The results outlining the effect of variation in demand for services on each clinic over 

a one year period are contained in Figure 5.  These oscillations are mirrored in the clinic 

performance measures.  For example, the 10% increase in demand causes clinic workload to 

peak at 13.4%, 14.5%, 20.0%, in the first, second, and third clinic, respectively.  Patient service 

time averaged over the course of the simulation do not vary significantly between clinics (as 

would be expected in a return to equilibrium), but the variation is significant, with service times 

error peaking at 0.67, 0.72, and 1.0 days.  This finding compliments previous healthcare service 

delivery research (Walley, 2007; Sethuraman & Tirupati, 2005), with has identified increasing 

downstream variation common to both service rates and patient backlogs.   

 

The amplification effect arises from delays in demand signaling and the limited information and 

bounded rationality of individual clinic managers.  As each clinic transfers demand to subsequent 

clinics, they unknowingly magnify variation as patients move up the service chain, creating 

system stresses proportionally much larger than the initial increase in demand.  Clinics in this 

model are highly compartmentalized; they share no data on capacity adjustment, patient backlog 

or service quality.  This lack of coordination and information on the other stages is the chain 

represents the typical organization of care both between healthcare organizations and inside 

hospitals.   
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Figure 5. Base case analysis of individual clinic service rates resulting from by an instantaneous 

10% increase in demand in week 10 (demand rate changed from 10 patients per day to 11 

patients per day).  Simulation was conducted in Vensim® software version 6.0 using Runge-

Kutta integration methods, with a time step of 0.0625 days. 

 

Given this ‘global’ perspective on system behavior, the decision rules used in the model clearly 

lead to unintended adverse effects.  After the initial demand disturbance, it takes the clinics 

between six months and over a year to realign the supply of services with demand, creating 

intense variation in patient service times, clinic workload, and care quality.  These results, while 

somewhat dependent on model parameters, suggest that the traditional organizational structures 

governing the management of services do not provide the necessary flexibility to synchronize 

service supply with fluctuating patient demand.   

 

 

9. Exploration of Agile Strategies 

Increasing service chain flexibility is crucial to synchronizing clinical resources with patient 

demand, and thus the ability to provide cost effective, quality healthcare.  In this section, we test 

whether each previously identified agile operational strategy improves supply chain flexibility, 

compared to the base case.  While the literature suggests that all should improve performance, 

mitigate the ‘bullwhip effect,’ and improve system flexibility, not all have been examined in 

dynamic simulation, and none of them have been systematically evaluated against the others in 

an identical setting, facing an identical demand pattern.  These simulations will provide an 

understanding of their general compare effectiveness in modifying the behavior of service 

chains.  They also answer questions on whether or not a service chain requires improvement in 

rates
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all four characteristics to become ‘truly agile,’ as proposed by Christopher (2000), or if some 

characteristics and operational plans are equally impactful on their own.  We also discuss the 

feasibility of implementation of each operation strategy, specifically the need for an incentive 

structure to compensate for possible reductions in the performance of individual clinics.  Finally, 

we discuss how each change in model structure creates these new behaviors and the 

generalizable implications for healthcare managers. 

 

9.1 Market sensitivity 

The first set of scenarios explores the impact of reduced service capacity adjustment time, Tc.  

Changes in this parameter can represent any operation changes that directly affect the speed of 

management decision making.  Decreasing the capacity adjustment time has been shown to 

mitigate the ‘bullwhip effect’ in dynamic simulations of service chains (Anderson & Morrice, 

2000, 2001; Anderson et al, 2005).  Reducing this parameter means that each clinic now 

responds proportionally faster to any change in demand, rendering each clinic more market 

sensitive, and thus allowing less patient backlog to accumulate.  Reducing the ability of the clinic 

to accumulate unwanted patient backlog is key to reducing downstream demand amplification. 

 

We also explore the effects of the addition of derivative-based information into each clinic’s 

decision heuristic.  Adding this signal to the information used in the base case is shown to 

improve clinic performance and reduce costs associated with demand variation (Lee et al, 2010).  

The derivative is a faster signal of changes in the patient backlog than simply the measures of the 

backlog itself; by definition, the derivative peaks when patient backlog is only at its inflection 

point and still rising.   

 

All of these operational strategies to improve market sensitivity have effect predicted: all yield 

improvements over base case.  However, not all have an equal impact on performance, as shown 

in Figure 6.  The key finding in this set of simulations is that the addition of derivative control 

appears to be the most effective operational strategy of the set for improving system 

performance.  All strategies reduce the amplitude of variation, but decreasing capacity 

adjustment time increases the oscillation frequency, while the addition of derivative control 

returns the system to equilibrium faster than any other strategy in this set.  Furthermore, doubling 

Kd, the weight clinic managers give to the information on the derivative in their decision 

equation, further improves the performance under the derivative control strategy.  Such 

adjustments are more common in highly measurable systems such as manufacturing, and while 

more difficult in the healthcare setting, this simulation sheds light onto the improvements made 

possible by ‘fine tuning’ management’s capacity control heuristics. 
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Figure 6. Resultant service times from market sensitivity simulation runs.  

Behavior of total service delivery time (sum of each clinic’s instantaneous average wait time, as 

computed by Little’s Law) in response to an instantaneous 10% increase in demand in week 10.  

Figure includes five different scenarios for the model parameter and formulae governing market 

sensitivity.  Simulation was conducted in Vensim® software version 6.0 using Runge-Kutta 

integration methods, with a time step of 0.0625 days. 

 

In terms of total service chain performance, a greater than 50% reduction in the service capacity 

adjustment time is required to create the same benefits as basic derivative control (see Figure 7).  

Basic derivative control generates a 78% decrease in workload error over the course of the 

simulation and a 63% decrease in service time variation, compared to the base case.  One could 

infer these results to indicate that both methods are equally useful, but they are not equally cost-

effective.  Derivative control is by far easier to implement.  Including information on the 

derivative of the patient backlog in a manger’s decision could be done with a simple spreadsheet, 

while changing the service capacity adjustment time would require intense effort in HR process 

redesign.  Achieving a 75% reduction would be difficult for most healthcare clinics, with 50% 

being practically impossible. 

 
Figure 7. Resultant service supply chain performance under various market sensitivity strategies. 

Total Service Time

16.51

15.75

15.00

14.25

13.50

0 50 100 150 200 250 300 350

Time (Day)

D
a
y

Total Service Time : ServCapTime--075

Total Service Time : ServCapTime--050

Total Service Time : Base Case

Total Service Time : P+D Control

Total Service Time : P+D Control(x2)

0 0.2 0.4 0.6 0.8 1

0 10 20 30 40

ServCapTime 75%

ServCapTime 50%

D Control(x2)

D Control

 Base Case

Total Chain Performance 

Total ABS Workload Error

Service Time St. Dev

Total Service Time

16.51

15.75

15.00

14.25

13.50

0 50 100 150 200 250 300 350

Time (Day)

D
a
y

Total Service Time : ServCapTime--075

Total Service Time : ServCapTime--050

Total Service Time : Base Case

Total Service Time : P+D Control

Total Service Time : P+D Control(x2)



Rust 31 
 

Behavior of total accumulated absolute workload variation and variation in total average service 

times (sum of each clinic’s instantaneous average wait time, as computed by Little’s Law) in 

response to an instantaneous 10% increase in demand in week 10.  Figure includes five different 

scenarios for the model parameter and formulae governing market sensitivity.  Simulation was 

conducted in Vensim® software version 6.0 using Runge-Kutta integration methods, with a time 

step of 0.0625 days. 

 

 

All individual clinics incur some benefits under each market sensitivity strategy (see Figure 8).  

Downstream clinics benefit more from any market sensitivity strategy than upstream clinics, as 

the effects of dampened demand variation are cumulative, and because downstream stages 

initially incurred more of the burden of inherent demand variation amplification.  In terms of 

variation in patient backlog and service capacity, derivative control leads to slightly better 

outcomes than a 50% reduction in service capacity adjustment times in all clinics.  Under the 

derivative control scenario, the final clinic has 46%  less variation in capacity and 63% less 

variation in its patient backlog, compared to -42% and -62%  change under the 0.5Tc scenario.  

These results reveal that actual implementation of either strategy can be accomplished without 

the creation of additional incentives or a benefit redistribution structure.  While downstream 

clinics do benefit from the adoption by upstream clinics, there is no need create further 

incentives to encourage any clinic to participate.   

 

 
Figure 8. Variation in individual clinic backlogs and capacities following market sensitivity 

strategies. 

Behavior of variation in patient backlogs and service capacities in response to an instantaneous 

10% increase in demand in week 10.  Figure includes five different scenarios for the model 

parameter and formulae governing market sensitivity.  The time horizon for each simulation is 

350 days.  Simulation was conducted in Vensim® software version 6.0 using Runge-Kutta 

integration methods, with a time step of 0.0625 days. 
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 9.2 Information Sharing 

The second set of scenarios explores the impact of including real-time, end-patient demand data 

in the decision equation at each clinic.  Including this information means that each clinic now 

responds to both changes in their local patient backlog and to the patients that have started the 

care process but have not yet arrived at their clinic.  Increasing the visibility of real demand 

throughout the supply chain has been shown to mitigate the ‘bullwhip effect’ in real-world 

manufacturing chains (Holweg et al, 2005).  Including initial patient demand in individual 

clinic’s capacity adjustment decision making has also improved performance of service chains in 

dynamic simulations (Anderson & Morrice, 2000, 2001; Anderson et al, 2005).  However, 

implementing this strategy in the real world requires a costly change in operations: including the 

installation of IT infrastructure to collect and transmit the data in real time, and training 

managers on how to incorporate these new data into their decision heuristics.  Also, the relative 

weight given to each source of information is both difficult to intuit correctly and fundamentally 

important to determining overall performance.  It should be noted that initial patient demand is a 

different type of information than managers used in the base case: it is an instantaneous rate of 

patient arrival, as opposed to a stock of patients waiting (or, depending on the formulation, the 

stock of patients in process).  

 

We test two different versions of the information sharing strategy, one where information on 

initial patient demand completely replaces local backlog in the capacity adjustment decision (a = 

1), and another, more reasonable version, where managers use a mix of local backlog and initial 

patient  demand (a = 0.5).  In the runs described, all clinics use the same relative weight 

parameter (we did run experiments varying these weights between clinics, but those runs did not 

yield significant system improvement or insight into model behavior).  For the chain as a whole, 

both versions of the information sharing strategy reduce workload and service time variation 

under most scenarios, as shown in Figure 9.   

 

The mixed information version leads to significant improvements in mitigating workload 

variation, but basing capacity adjustment decisions fully on initial patient demand (i.e., not using 

local information at all) appears to yield even more improvement.  Under the condition a = 1, 

total accumulated workload error is 84% lower than the base case; service times in this version 

are also more controlled under most scenarios.  These results suggest that using initial patient 

demand in place of local demand increases system flexibility, yielding a faster and more accurate 

response to demand variation than the traditional decision structure.  

  

We explore the validity of the strategy of only using initial patient demand in all clinics by 

testing it in multiple versions of our generic service chains, where all clinics are no longer 

identical.  The variation in individual clinic parameters provides a more realistic and 

representative simulation of the complexity seen in actual healthcare service chains.  In these 

scenarios, each clinic is portrayed as conducting a different care processes, requiring different 
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target clinic service times.  Also, each clinic manages their service capacity differently, with 

each clinic subject to a different capacity adjustment decision time.  Target service time is set at 

either 2, 5, or 8 days (labeled as L, M, and H for ‘low,’ ‘medium,’ and ‘high’ values); while 

capacity adjustment time varies between 7, 20, and 33 days.  Despite these changes, each 

scenario remains comparable to the other strategy evaluation simulation runs because total 

service time and total capacity adjustment delays for the overall chain remain constant (∑Ts = 15 

and ∑Tc = 60, for all scenarios).   

  

Even under these more realistic conditions, where all clinics are not identical, making decisions 

solely with initial patient demand often yields better outcomes than either the mixed information 

strategy or the base case.  Only in one simulation run, where the first clinic's parameters produce 

low market sensitivity, as the capacity adjustment time is set to 33 days, did this strategy lead to 

a worse outcome, specifically a service time variation 73% worse than the base case.  In cases 

when the first clinic is equally or more responsive to changes in demand than the base case, 

overall system performance improved.  Results are described in Figure 9.   

 

 
Figure 9. Resultant service supply chain performance under various information sharing 

strategies. 

Behavior of total accumulated absolute workload variation and variation in total average service 

times (sum of each clinic’s instantaneous average wait time, as computed by Little’s Law) and in 

response to an instantaneous 10% increase in demand in week 10.  Figure includes seven 

different scenarios for the model parameter and formulae governing information sharing under 

differing assumptions of clinic characteristics (parameters delta and tau varied between 2, 5, and 

8 days and 7, 20, and 33 days respectively).  The time horizon for each simulation is 350 days.  

Simulation was conducted in Vensim® software version 6.0 using Runge-Kutta integration 

methods, with a time step of 0.0625 days. 
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This variation in service chain performance can be explained by examining the behavior of 

individual clinics, as shown in Figure 10.  Not all clinics are affected equally by the extreme 

reliance on initial patient demand information.  A detailed analysis reveals that most of the 

predicted benefits of relying on initial patient demand are generated in the model by the 

complete elimination of variation in downstream clinics patient backlogs.  This is more than the 

complete elimination of the amplification of variation, or ‘bullwhip effect,’ it is the complete 

elimination of any variation whatsoever.  However, these impressive outcomes only occur in the 

improbable scenario where all clinics have identical capacity adjustment times.  More realistic 

scenarios with variable decision making practices between clinics indicate that these results 

would not be produced in real-world healthcare service chains, where maintaining identical 

management decision making heuristics and HR processes across the entire chain is highly 

unlikely.   

 

These uneven outcomes across clinics render implementation of the information sharing strategy 

difficult.  In almost all scenarios, the first clinic in our service chain incurs more variation in 

patient backlog when including initial patient demand in their management decisions than they 

would without.  This leads to more variation in service times and service quality levels.  Even 

when demand information is combined with local backlog information, such as the a = 0.5 

scenario, the first clinic is still subject to an increase in backlog variation.  Any implementation 

of information sharing strategies would require a drastic benefits redistribution mechanism to 

compensate the first clinic for the use of demand information.   

 

 Behavior of variation in patient backlogs and service capacities in response to an instantaneous 

10% increase in demand in week 10.  Figure includes seven different scenarios for the model 

parameter and formulae governing information sharing under differing assumptions of clinic 

characteristics (parameters delta and tau varied between 2, 5, and 8 days and 7, 20, and 33 days 

respectively).  The time horizon for each simulation is 350 days.  Simulation was conducted in 

Vensim® software version 6.0 using Runge-Kutta integration methods, with a time step of 

0.0625 days. 

Figure 10. Variation in individual clinic backlogs and capacities following information sharing strategies. 
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The only case where patient backlog variation in the first clinic declines is when increasing 

market sensitivity (through a reduction in Tc) overcomes the detrimental effects of initial patient 

demand data.  These simulations indicate that market sensitivity of the first clinic is a significant 

factor in determining the performance of the overall chain.  When first clinic's ability to respond 

to changes in demand is low, the variation created in the first clinic outweighs the benefits of 

increased market sensitivity in downstream clinics.  For example, in the ServTime-HML 

scenario, decreasing market sensitivity in the first clinic is (by an increase Tc by 65%, to 33 days) 

results in a 367% increase in overall service time variation over the base case (as shown in 

Figure 9), even though opposing parameter changes in downstream clinics rendered them more 

responsive to the increased demand fluctuations generated by the first clinic.  This set of 

scenarios exposes that replacing local backlog data with initial patient demand data is not a 

feasible solution for improving service chain performance.  Any differences between clinics in 

management practices and decision heuristics will eliminate the benefits indicated in previous 

simulation studies (Anderson & Morrice, 2000).   

 

Moreover, while the information sharing strategy does reduce variation in some scenarios, it 

does so by creating a more significant problem.  The complete use of initial patient demand rate 

in management decisions leads to steady state error in patient service time, as shown in Figure 

11.  Completely ignoring local data results in a dangerous scenario, where individual clinic 

managers are blind to the impact of delays in capacity adjustment on patient service times.  This 

consequence, no matter what the possible benefits from reduced variation, is not acceptable in 

healthcare service chain management.  

 

This steady-state error results from only using a proportional control based on the rate of 

demand, which cannot keep track of the error built up over the time period when a correction is 

being made.  The 100% initial patient  demand decision heuristic will synchronize a clinic 

quickly to any new demand rate under many clinic configurations and parameter sets, but once 

supply is again matched with demand, there is no information retained on the accumulation of 

error that has developed in the interim.  Without including this information on clinic backlog, as 

would occur in the initial decision heuristic, these patients are never accounted for, and their 

impact on performance is never corrected. 

 

Under the scenario of the 100% use of initial patient demand rate, more variation in demand 

would lead to more accumulated error remaining unaccounted for.  If a system is experiencing 

demand variation around a steady mean, this ‘ignored’ error would cancel itself out, but if 

demand fundamentally increases or decreases, steady state error will necessarily occur.  With the 

likelihood of a steady mean demand rate a near impossibility, relying solely on initial patient 

demand to make clinic capacity adjustment decisions is not a realistic option for healthcare 

services.   
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Figure 11. Resultant average patient service times from information sharing simulation runs. 

Behavior total service time (sum of instantaneous average service times, as calculated by Little’s 

Law, for each clinic) in response to an instantaneous 10% increase in demand in week 10.  

Figure includes seven different scenarios for the model parameter and formulae governing 

information sharing under differing assumptions of clinic characteristics (parameters delta and 

tau varied between 2, 5, and 8 days and 7, 20, and 33 days respectively).  The time horizon for 

each simulation is 350 days.  Simulation was conducted in Vensim® software version 6.0 using 

Runge-Kutta integration methods, with a time step of 0.0625 days 

 

 

 9.3 Coordinated planning 

The final set of scenarios explores the impact of centralized planning, specifically the use of a 

systems perspective to determine clinic decision heuristics and target service times to maximize 

supply chain performance.  These changes are meant to maximize performance for the total 

chain, even if individual clinics generate worse performance.  From past simulation research, we 

know that service chains should not move toward decision synchronization, as services with 

identical stages show worse performance than services with varied stages (Anderson et al, 2005).  

We explore the implications of this finding to determine if healthcare services can operationalize 

increasing decision and service target variation to improve overall performance. 

 

We manifest this idea through changes to clinic parameters Tc and Ts.  To illustrate the possible 

feedback effects, consider the example of an increase in Tc, which results in the clinic now 

responding proportionally slower to any change in demand, rendering that clinic less market 

sensitive, and thus allowing more patient backlog to accumulate.  Similarly, reducing Ts results 

in a clinics needing to maintain more staff for the same level of demand, which allows patients to 

wait less on average to complete services in that clinic.  Analogous to the ‘more realistic’ 

scenarios in the previous section, we maintain a fixed ∑Tc and ∑Ts for the service chain as a 
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whole, thus there are no improvements in overall standard of care or market sensitivity.  These 

parameter changes isolate the effects of a redistribution of HR resources (changing Tc allows 

clinics to make and execute capacity adjustment decisions faster) and service delivery standards 

(changing Ts directly affects a clinic’s average service time). 

 

Decision and service standards de-synchronization has a minimal effect on the behavior of total 

service time.  There is a minor improvement in workload error, compared to the base case, 

confirming results from previous studies (see Figure 12).   

 

 
Figure 12. Resultant service supply chain performance under various coordination strategies. 

Behavior of total accumulated absolute workload variation and variation in total average service 

times (sum of each clinic’s instantaneous average wait time, as computed by Little’s Law) in 

response to an instantaneous 10% increase in demand in week 10.  Figure includes five different 

scenarios for the model parameter and formulae governing service chain coordination 

(parameters delta and tau varied between 2, 5, and 8 days and 7, 20, and 33 days respectively).  

Simulation was conducted in Vensim® software version 6.0 using Runge-Kutta integration 

methods, with a time step of 0.0625 days. 

 

 

Simulation results suggest that maintaining relatively longer average service times in the first 

clinic in the service chain yields the best performance of these decision and performance 

standard de-synchronization scenarios.  Changes to the parameter governing target service time 

(Ts) alters the desired patient backlog level implicit in clinic managers’ decision heuristics, 

affecting the average size of the buffer each clinic maintains against demand variation.  By 

setting performance standards higher in the final clinics of the service chain, the clinics at the 

beginning of the service delivery chain are allowed lower relative efficiency and larger patient 

backlogs, when compared to the balanced strategy.  This provides the first clinic with more 

patient demand buffer, so less internal demand variation amplification is passed on to subsequent 

clinics. This ‘front-loaded’ service supply chain buffers the entire service chain from external 
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demand variation, resulting in less variation amplification overall.  All else equal, keeping 

patients concentrated at the beginning of a service delivery chain better accommodates demand 

fluctuation, resulting in less system stress in any clinic.  Holding relatively more patients at the 

front of the care process (and fewer in the later clinics, to maintain an equivalent total number) 

also leads to less workload variation than any other distribution.   

 

Changes to capacity adjustment time have a similar effect, but less pronounced than the de-

synchronization of service targets.  This occurs because the size of Tc  is relative small compared 

to Ts.  If the Tc:Ts, ratio were larger, then unbalancing capacity adjustments would have more 

impact on service performance.   Re-designing HR processes to affect capacity adjustment rates 

could be an important operational improvement if applied in a service chain where Tc:Ts is 

relatively small. 

 

Overall, these simulations suggest that using centralized planning to redistribute service targets 

and capacity adjustment times has limited impact on service performance, compared to other 

possible agile strategies.  Furthermore, the fundamental characteristics of individual clinics in 

actual healthcare service supply chains limit the ability of managers to alter these service targets. 

 

There also exist complex interaction effects between operational strategies to alter these 

parameters.  Tests combining both parameter changes across the service chain (still maintaining 

∑Tc = 60 and ∑Ts =15) reveal that the impact of changing one set of parameters is strongly 

influenced by the distribution of the other set, as shown in Figure 14.  These experiments reveal 

a general conclusion that clinics with low desired patient backlog levels should maintain high 

market sensitivity, as they have minimal buffer against variation in demand, so they must be able 

Figure 13. Variation in individual clinic backlogs and capacities following centralization strategies. 

Behavior of variation in patient backlogs and service capacities in response to an instantaneous 10% increase in demand in week 

10.  Figure includes five different scenarios for the model parameter and formulae governing service chain coordination 

(parameters delta and tau varied between 2, 5, and 8 days and 7, 20, and 33 days respectively).  Simulation was conducted in 

Vensim® software version 6.0 using Runge-Kutta integration methods, with a time step of 0.0625 days. 
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to change service capacity quickly to minimize the accumulation of error.  In these runs, the 

strategy of ‘front-loading’ the service chain, where the first clinic maintains the largest patient 

backlog (the ServTimes-HML scenario), still produces the best performance; however, it can also 

produce nearly the worst performance if capacity adjustment times have the opposite distribution 

(the CapAdj-LMH scenario, where the first clinic is the most market sensitive).  The opposite 

strategy, of ‘rear-loading’ the service chain (where both ServTimes parameters are distributed 

LMH), also produces little workload error if matched with a similar distribution of capacity 

adjustment times.  These seemingly contradictory results further reduce the ability to make 

simple guidelines for unbalancing service chains.   

 

 
Figure 14. Resultant workload error following clinic parameter re-distribution. 

Behavior of total accumulated absolute workload variation in response to an instantaneous 10% 

increase in demand in week 10.  Figure includes 25 different scenarios for the model parameter 

and formulae governing service chain coordination (parameters delta and tau varied between 2, 

5, and 8 days and 7, 20, and 33 days respectively).  Simulation was conducted in Vensim® 

software version 6.0 using Runge-Kutta integration methods, with a time step of 0.0625 days.  

 

Attempting to actively alter variation in clinic standards to increase performance should not be 

made without first understanding the relative market sensitivity of each clinic in the service 

chain, and vice versa.  This centralization strategy presents no simple solutions.  Considering 

the diversity of requirements for any healthcare clinic, the difficulty clinic managers will have 

assessing the relative value of Ts and Tc for all clinics in a healthcare chain, and the complexity 

of service delivery in the real world that is not included in this model, this strategy is probably 

the least useful of the agile operational strategies tested so far.   

 

9.4 Results summary 

This series of operational simulations leads to multiple conclusions.  The first key finding is that 

agile strategies do not need to be implemented together to produce significant results.  Promoting 
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individual agile characteristics appears to be an effective improvement strategy for service 

delivery chains.   

 

Second, under these simplifying assumptions, improving market sensitivity is the most effective 

agile strategy for improving performance in service chains, as shown in Figure 15.  The specific 

operational plan of introducing derivative-based controls into managers’ decision heuristics 

yields the most improvement in service quality and reduction in cost drivers.  This operational 

change also mitigated internally produced demand variation amplification, the ‘bullwhip effect,’ 

more than any other agile operation plan.  Furthermore, the inclusion of derivative information 

improved both overall system performance and that of individual clinics, thus requiring no extra 

benefits redistribution mechanism to encourage the adoption of this strategy. 

 

The third key finding is that implementation of operational plans to increase a service chain’s 

ability to be ‘information driven’ can unintentionally produce significant adverse effects.  While 

the sole use of initial patient demand in capacity adjustment decisions appears to be a promising 

strategy, basing this ‘feed forward’ proportional controller on the exogenous variable of patient 

demand leads to steady-state error in key performance metrics.  These simulations expose the 

importance of including endogenous variables in each clinic’s control decisions.   However, a 

blended information approach, which is a much more likely implementation in real-world service 

chains, is not as effective at controlling the bullwhip effect and minimizing the patient safety risk 

and care delivery costs created by those demand fluctuations than strategies to promote market 

sensitivity.   

 

 
Figure 15. Comparative effectiveness of selected agile operational plans in response to a one-

time 10% increase in demand. 

0

5

10

15

20

25

30

35

40

To
ta

l W
o

rk
lo

ad
 E

rr
o

r 

Service Times (days) 

Base Case

ServCapTime 75%

ServTimes-HML

InfoSharing @ 50%

ServCapTime 50%

D Control

D Control(x2)

Target Service Delivery Time 



Rust 41 
 

The experiment includes seven different scenarios for the model parameter governing market 

sensitivity, information sharing, and service chain coordination.  Chart reports the total range of 

average service times (computed by Little’s law) and accumulated absolute workload variation 

summed over all clinics for each scenario, in response to an instantaneous 10% increase in 

demand in week 10.  The time horizon for each simulation is 350 days.  Simulation was 

conducted in Vensim® software version 6.0 using Runge-Kutta integration methods, with a time 

step of 0.0625 days. 

 

  

10. Conclusion  

To date there has been limited success in making system-wide service supply chain management 

improvements in healthcare (McKone-Sweet et al, 2005; Vries & Huijsman, 2011).  We still face 

significant challenges designing and implementing cost-effective, and at the same time flexible, 

healthcare systems which increase the availability of scarce service resources and improve 

patient access to care.  Past efforts applying management strategies developed in manufacturing 

settings have led to little sustained improvement (Joosten et al, 2009).  Defining structural 

differences between services and manufacturing necessitate the adoption of new strategies more 

suited to the challenges facing healthcare operations and management. 

 

This paper provides a structured assessment of the impact of one possible new strategy, ‘agile,’ 

on service performance in simulated healthcare delivery chains.  In doing so, we bridge the 

supply chain and healthcare management literatures and establish ‘agile’ as a new area of study 

for service supply chain management research.  Our research objectives were to develop a set of 

operational plans from the literature on ‘agility’ and service supply chain management and assess 

the impact of these agile-derived plans in a generalized healthcare service chain.  The knowledge 

gained was to provide healthcare managers with useful guidelines for redesigning service 

delivery.   

 

To fulfill the research objectives, we describe and test three sets of agile-based operational 

strategies, focusing on key characteristics of supply chain agility: increasing market sensitivity, 

the use of real-time demand information, and centralized planning.  We assess the impact to the 

service system based on three criteria: variation in the stocks of patients and service capacity in 

each clinic (to expose the ability of each strategy to mitigate the bullwhip effect), average patient 

service time, and provider workload.  These are measured both at the local (single clinic) and 

systemic level (total service chain).  

 

We determine that agile is a valuable strategy for increasing system flexibility and mitigating 

internally caused demand variation.  Scenarios show improved system performance from both 

the patients’ and providers’ perspective, with agile-based operational modifications leading to 
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reduced variation in service times, improved service quality, and the potential for decreased 

costs.  

  

Of the agile characteristics under study, increasing market sensitivity led to the most 

improvement, with the specific operational plan of supplementing manager’s traditional decision 

making heuristic with derivative control resulting in superior performance.  Study results 

indicate that demand volatility can be effectively controlled in healthcare by applying derivative 

control to the resource adjustment decision.  The addition of derivative control reduces the 

oscillation of patient backlogs and the discrepancy between demand and service capacity created 

by the simplistic feedback control methods commonly used in healthcare.  The application of 

derivative controls in service chains could refute the conundrum identified by Anderson (et al, 

2005), that there is generally a trade-off between policies that improve service quality by 

reducing backlog variability and those that reduce personnel costs by reducing capacity 

variability.  We find that the addition of derivative control can effectively accomplish both. 

 

In practice, derivative controls could be used to dampen oscillations resulting from any capacity 

management decision, from resource acquisition, release and write down of capital investments, 

to hiring and workforce training.  Even the most basic derivative control should lead to a sizable 

improvement in synchronization of service resources with demand and, if implemented in all 

clinics, significantly mitigate the bullwhip effect.  The addition of derivative-based controls is 

relatively simple to implementable in real-world service chains.  Optimizing these control 

equations could further improve cost, utilization and stability of workforce management in 

healthcare, if reliable and timely data were available. 

 

Study results also indicate that investing in IT systems to share demand data between clinics 

might not as useful in healthcare as predicted from the research done in manufacturing 

sectors.  Our evidence runs counter to the common supposition on the value of information 

sharing strategies in healthcare, as summed up by Baltacioglu (et al, 2007, p121) as "effective 

management of healthcare supply chain is only possible via the implementation of effective 

information and technology management systems." 

In our simplified service delivery chain, the use of initial patient demand rates either has less 

impact on performance than agile practices which increase market sensitivity, or leads to 

significant disruptions in service times and the alignment of clinic incentives.  While possibly 

beneficial when viewing the chain as a whole, relying on initial patient demand does not appear 

to be an appropriate strategy for all clinics.   

 

Generating results that are in direct disagreement with commonly held supply chain management 

beliefs could easily be attributed to the abstract nature of our simulation model.  Effective 

information and technology management systems may address key issues and feedbacks that we 

have decided not to include, such as links between service delivery times and patient health, or 
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between provider workload, service quality, and rework.  These information systems may also be 

useful in managing details on individual patient demand and provider characteristics not allowed 

by the mathematical underpinnings of our model.  Other critiques of this research could be 

leveled at the applicability of our results to inform decisions in real-world healthcare chains, as 

our exogenous demand pattern is undoubtedly not representative of the usually stochastic 

demand pattern in healthcare.  Each of these shortcomings deserves the attention of further 

research.   

  

Our abstract model is a first step toward understanding and informing the application of agile 

strategies in healthcare.  These results provide only the most general guidance on where agile-

derived efforts to improve service delivery will yield the most return.  Healthcare managers are 

still ‘on their own’ to adapt these recommendations to their unique care settings and service 

delivery chains.  Future work should be directed to examining the validity of our findings under 

the constraints inherent to different service settings, both in simulation of specific healthcare 

service chains and empirically in pilot implementation projects in real-world clinics.  Another 

thread of future research centers on derivative control.  To truly develop useful guidelines for 

implementing an agile systems approach in healthcare, the ability of healthcare managers to use 

derivative control in individual clinics must be empirically evaluated.  Case studies of the 

effectiveness of derivative control in ‘noisy’ real-world service chains would undoubtedly shed 

light onto important implementation challenges.  A second piece of this thread would be 

exploring opportunities for ‘tuning’ proportional and derivative-based control decisions, based 

on data quality and availability and on the bounded rationality of clinic managers.  Increasing 

knowledge in these areas together will support the creation of effective, flexible service chain 

management that suits the dynamic nature of health itself, and hopefully will lead to enhanced 

effectiveness and efficiency of healthcare operations.  
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