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ABSTRACT: 
When final customer demand exceeds available supply, retailers often hedge against 
shortages by inflating orders to their suppliers. While the amplification in orders caused by 
competition for scarce resources has been described in the literature almost a century ago, 
there is little experimental research examining the factors influencing retailer’s order 
amplification. 
This paper analyzes retailer order decisions in response to a surge in demand. In an 
experimental environment based on a formal mathematical model we test subject’s 
ordering decisions under different ordering and supplier capacity acquisition delays and 
compared them to an optimal benchmark. Our results from different treatments allow us to 
characterize subjects’ performance in this system and formulate a heuristic that closely 
replicates subjects’ ordering behavior in all treatments. 
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1.  INTRODUCTION  
In the past decades, different approaches have been used to understand the interrelations 
among suppliers, retailers and customers. These relations are typically approached through 
the development of mathematical models that mimic real world situations, such as non-



stationary demand, physical delays, backlogs, order amplifications, etc. (Ilkyeong, 2005). 
The general objective is to produce and distribute the product and services at the right 
quantities, to the right locations, and at the right time, in order to minimize system-wide 
costs while satisfying service level requirements (Zhang, 2006). One of the most common 
and costly problems in supply chains is caused by retailer orders’ amplification (Armony 
and Plambeck 2005). These amplifications have been captured in the literature as early as 
1924, when Mitchell described the case of retailers inflating their orders to manufacturers 
when competing with other retailers for scarce supply. He argued “if [retailers] want 90 
units of an article, they order 100, so as to be sure, each, of getting the 90 in the pro rata 
share delivered.” (Mitchell 1924, p. 645). When faced with limited capacity, suppliers 
typically allocate available supply among multiple retailers. In turn, retailers receiving only 
a fraction of previous orders, amplify future ones in an attempt to secure more units (Lee et 
al., 1997a, 1997b). This phenomenon can propagate the supply chain causing orders and 
inventories to chronically overshoot and undershoot around desired levels. These 
fluctuations can lead retailers and suppliers alike to overreact, leading to problems such as 
excessive supplier capital investment, inventory gluts, low capacity utilization, and poor 
service (Armony and Plambeck, 2005; Gonçalves, 2003; Lee et al., 1997a; Sterman, 2000; 
Anderson et al., 1999). 
 
Academic interest in the subject has its roots on real and frequent problems faced by 
businesses in diverse industries. For example, in the 80’s, the computer industry faced 
shortages of DRAM chips in several occasions: orders surged because of retailers 
anticipation (Li, 1992). Similarly Hewlett-Packard could not distinguish between real and 
inflated orders place from the resellers for the laserJet printers; which later lead to excess 
inventory and unnecessary capacity (Lee et al., 1997a). In the summer of 2000, Cisco began 
to experience shortages of key components and this caused customers’ order amplification. 
Cisco failed to recognize the magnitude of customers’ order amplification, and the sales 
forecast were overestimated. This caused a strong capacity expansion through long term 
contracts with its OEMs. Once capacity became available and possible delivery delays went 
back to normal levels, customers canceled duplicated orders, leaving Cisco with significant 
excess capacity, rigid long-term contracts and a remarkable amount of inventory (Byrne 
and Elgin, 2002). 
 
Informed by these industry experiences, our research explores the impact that delays may 
have on subjects’ ordering decisions. We hypothesize that longer retailer ordering delays 
and supplier capacity acquisition delays increase retailer order amplification. Both 
conditions are consistent with studies by Sterman (1989a, 1989b) and Gonçalves (2003) 
and Gonçalves and Arango (2010). Our experimental setting is based on a system dynamics 
model adapted from Gonçalves (2003) and Gonçalves and Arango (2010). The model 



captures retailers’ order amplification when competing for scarce supply. Our results show 
that subjects systematically deviate from an optimal dynamic control. As expected, longer 
capacity acquisition and order delays complicate the subjects’ ordering task, leading to 
higher order amplification. While subjects’ ordering behavior is not optimal, it can be 
explained econometrically by a simple decision rule. 
 
This paper proceeds as follows. Section 2 describes and analyzes the proposed 
mathematical model. Section 3 develops a decision-making laboratory experiment based on 
the model developed in Section 2. Section 4 shows our main results; particularly that 
subjects’ performance deteriorates under longer ordering and capacity acquisition delays. 
Section 5 derives an econometric model based on a simple anchoring and adjustment to 
analyze subjects’ decision rules. Finally, we discuss the main finding in Section 6. 
 
2. MODEL DESCRIPTION 
We build upon a model proposed by Gonçalves (2003) capturing a supply chain with a 
single supplier offering a unique, non-substitutable, product to multiple retailers. The 
emphasis of our analysis is on retailers’ ordering problem trying to match supplier 
shipments and final customer demand. Figure 1 displays the structure of this supply chain. 
 

 
Figure 1. Supply Chain structure 

 
To model the supplier system, we first define the supplier’s backlog of orders (B) as a 
function of retailers’ orders (Rd) and supplier shipments (S). 
 

SRB D −=&        (1) 

 
Shipments (S) are typically given by the minimum between of desired shipments and the 
available capacity. However, since we are interested in situations characterized by supply 
shortages, we model shipments as always constrained by available capacity (K). 
 

S = K         (2) 
 



The change in supplier’s capacity (K& ) is given by a first order exponential smooth between 
desired shipments (S*) and capacity (K), with an adjustment time given by the time to build 
capacity (τK). This formulation captures a naïve capacity adjustment process, where the 
supplier tries to maintain sufficient capacity to satisfy customer demand with a target 
delivery delay. Finally, desired shipments (S*), given by the ratio of Backlog (B) and the 
Target Delivery Delay (τD), capture the shipment rate required to maintain delivery delays 
at the target level for the existing level of backlog. This process can be written as: 
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Modeling supplier capacity as a first-order exponential smooth of desired shipments 
follows a traditional formulation in system dynamics. In addition, Gonçalves and Arango 
(2010) find empirical support for this formulation for supplier’s capacity investment. 
Finally, to measure retailers’ ability to meet final customer demand, we also capture the 

supply gap, measuring the difference between (RD& ) a level that accumulates total orders 

from final customer orders (d), and ( SE& ) a level that accumulates the total shipments 

received from the supplier.  

dDR =&        (4) 

SES =&        (5) 

Figure 2 provides an overview of the supplier-retailer model driving the lab experiment.  
 
Cost Objective 
To motivate subjects’ performance, we measure retailers’ total cost (TC) given by two 
components: (1) a Supply Gap Cost (����), given by the summed differences between 

cumulative customer demand and cumulative shipments received from the supplier; and (2) 
Ordering Cost (��), given by the retailer’s order decisions (RD). In addition, we assume 
quadratic costs to penalize larger deviations from equilibrium. 
 
  �� = ∑ (���� + ��)


���      (6) 

Where, 
 

( )2
SRgap EDC −⋅= α ,  where 3102 −⋅=α    (7) 

2
Do RC ⋅= β , where 3101 −⋅=β      (8) 

The parameters α and β were chosen such as they are comparable given the order of 
magnitude of the variables RD, DR and ES Appendix 1 presents the general units of measure 
used for each variable or parameter. 



 
Figure 2. System dynamics diagram for supplier-retailer system. 

 
 
3. THE EXPERIMENT  
We use the model described above as a basis for a “management flight simulator” (Sterman 
1989, Senge and Sterman 1992). Subjects play the role of a single retailer, placing orders to 
a supplier and trying to minimize total costs. The experiment starts in dynamic equilibrium. 
Initially the supplier has sufficient production capacity to meet total retailer’s demand 
according to the target delivery delay. After the third period (week), the supplier faces a 
sudden increase in retailer’s orders. Subjects are informed that customer demand will 
increase in 20% and that the supplier faces a delay to build additional capacity. Subjects 
must decide how many units to order from the supplier each week through 35 simulated 
weeks. Subjects are asked to minimize the total accumulated cost (TC), during 35 weeks 
 
3.1. Experimental Treatments 
Our experiment explores two characteristics previously identified by Gonçalves (2003) and 
Gonçalves and Arango (2010) affecting the performance of retailers’ decisions: retailer 
ordering delays and supplier capacity acquisition delays. We use a full experimental design, 
with four experimental treatments. Table 1 specifies all treatments conducted in the 
experiment and the number of participants (N) in each treatment. We model the retailer 
ordering delay (∆O) as a pipeline delay 
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Table 1. Experimental treatments. 
 
 
 
 
 
 
 
 

 
3.2. Protocol   
We follow standard experimental economics protocol (see Friedman & Sunder, 1994 and 
Friedman & Cassar, 2004). Subjects were fourth and fifth year Industrial and Management 
Engineering students at the National University of Colombia, in the autumn of 2010. The 
subjects did not have previous experience in a related experiment. Participants were told 
they would earn a show-up fee of Col$10.000 (approximately US$5) and a variable amount 
contingent on their performance, between Col$0 and Col$30.000 (US$0 - US$15) for an 
overall average payoff of Col$24.000 (US$12). The experiment ran for around 1 hour and 
students were informed about the duration of the experiment. The payoff was more than 
two times larger than their opportunity cost in Colombia. The students were also given a set 
of instructions describing the production system, the decisions and the goals of the game 
(Appendix 2) 
We ran the experiment with 18 subjects per treatment. Upon arrival, subjects were seated 
behind computers and a treatment was assigned randomly (see Appendix 3). Participants 
were allowed to ask questions and test out the computer interface (Appendix 4). All the 
experiment parameters were common knowledge to all participants. The experiment was 
run in the computer simulation software Powersim-Constructor-2.51®. The software ran 
automatically and kept record of all variables, including subjects’ decisions. Subjects were 
also asked to write their decisions in a sheet of paper, which served as a physical backup of 
the data. 
 
3.3 Optimal Simulated Trajectory 
In order to have a framework for comparison, we find an optimal simulated trajectory for 
each treatment. These optimal retailers’ order decision trajectories were estimated using the 
Solver in Powersim Studio 8 (Appendix 5 shows the optimization specifications used) and 
minimizing the total cost over all periods. Figure 3 shows the behavior of these optimal 
trajectories, considering the ordering decisions are made under deterministic demand. For 
optimization purposes, this Powersim Studio 8 Solver uses a method called the 
evolutionary search method (for more details related with this method see Appendix 6).  

  Supplier’s Capacity 
Investment Delay (ττττK) 

  1 3 

Retailer’s Order 
Decision Delay (∆∆∆∆O) 

2 T1 
(N=18) 

T2 
(N=18) 

3 T3 
(N=18) 

T4 
(N=18) 



 
Treatment 1    Treatment 2 

 
Treatment 3    Treatment 4 

Figure 3. Optimal Retailer’s order decisions 
 

Figure 3 shows that the optimal ordering trajectories are characterized by a large initial 
order at the moment the demand surges. The magnitude of this optimal initial order 
increases with the complexity (longer delays) of the system. Then, orders exponentially 
decrease with a final damped oscillation until settling on 120 units per week. The 
magnitude of the damped oscillation also increases with the complexity of the system. 
Finally, optimal orders settle at 120 units per week for the rest of the trajectory. 
 
4. RESULTS 
In this section we present the overall results of the experiments. We report the four 
experimental treatments with 15 subjects per treatment, which are chosen among the 18 
subjects base on one variance method (see appendix 7 for criteria selection).  
 
4.1. Subjects’ Order decisions Behavior 
Subjects received information on system structure, delays and costs and then were asked to 
place orders that would minimize total simulated long-run costs. Figure 4 shows ordering 
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behavior for four selected subjects (one in each treatment) capturing typical subjects 
behavior. The results suggest common pattern: subjects’ orders initially over-shoot, then 
under-shoot until settling around equilibrium close to 120 units (the final demand).  
Figure 4 also shows that subjects in treatments T1 and T2 (with shorter ordering delays) 
over-order for shorter periods of time (around 10 week). In such treatments the shorter 
ordering delays allows subjects to more quickly adjust their orders.  
 

 
Treatment 1 – P3    Treatment 2 – P15 

 

 
Treatment 3 – P11    Treatment 4 - P3 

Figure 4. Typical experimental results (Pj indicates the subject ID with j = 1,…,15) 
 
Figure 4 also shows that subjects in treatments T1 and T2 (with shorter ordering delays) 
over-order for shorter periods of time (around 10 week). In such treatments the shorter 
ordering delays allows subjects to more quickly adjust their orders. However, it seems that 
in treatments T3 and T4 the subjects are more conservative in their initial orders. This could 
mean that in a certain way subjects are not completely forgetting their supply line. 
To compare overall subject behavior in each treatment with the optimal ordering decisions, 
we compute the average retailer´s orders (AO) for players in each treatment. Figure 5 
suggests that subjects fail to place sufficiently large initial orders, and also fail to reduce 
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them quickly toward the equilibrium value. Instead, subjects place orders with magnitudes 
averaging half of the desired initial value, but maintain high orders for a longer period than 
desired. When subjects finally reduce their orders, they do so more than the optimal values. 
As a result subjects’ ordering behavior fluctuates around the optimal trajectory in all 
treatments. While the pattern presents similarities across treatments, it is also possible to 
identify differences. The peak in subjects’ decision tends to be wider in treatments with 
longer retailer ordering delays (T3 and T4). Subject’s decisions are less stable and take 
longer to settle in the treatment with higher delays (T4). 
 

 
Treatment 1    Treatment 2 

 
Treatment 3    Treatment 4 

Figure 5. Optimal and Average Subjects’ Orders (AO) in each treatment  
 

4.2. Subjects’ Cost Performance 
The main subject’s objective in the experiment was to minimize cumulative costs. Table 2 
presents total cumulative costs per subject and the average, the minimum and the optimal 
for each treatment.  
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A general observation is that most of the subjects perform far from optimal, for all 
treatments. The lowest total cost achieved by a subject was 33% higher than the optimal of 
the treatment, which occurred for subject P8 in treatment 2 (T2). The best performances 
observed in the other treatments were also above optimal costs: 39% above optimal in 
treatment 1 (T1), 40% above optimal in treatment 3 (T3), and 96% above optimal in 
treatment 4 (T4).  
 
Table 2. Total cumulative, average, and optimal costs across treatment for the experiment. 

Subject T1 T2 T3 T4 
P1 $2,331.95 $3,243.45 $1,285.69 $41,569.73 
P2 $16,186.75 $1,313.24 $6,349.57 $1,576.23 
P3 $17,921.82 $6,806.07 $1,439.31 $1,976.48 

P4 $3,995.25 $3,017.32 $2,441.01 $19,297.83 
P5 $845.60 $878.90 $8,854.54 $12,619.97 
P6 $3,834.15 $899.15 $1,407.55 $37,655.30 

P7 $6,805.24 $14,624.58 $2,086.54 $30,220.81 
P8 $25,358.16 $854.73 $3,946.30 $4,258.17 
P9 $4,056.73 $10,944.48 $2,410.65 $2,214.28 

P10 $1,664.46 $2,438.42 $2,958.85 $1,403.54 
P11 $1,511.78 $1,002.29 $1,202.67 $2,294.44 
P12 $1,193.47 $46,973.16 $1,106.48 $2,649.15 

P13 $4,790.34 $2,792.65 $885.04 $13,445.40 
P14 $805.86 $7,144.60 $961.68 $35,200.88 
P15 $27,068.96 $5,362.77 $1,719.34 $1,388.21 

Average $7,891.37 $7,219.72 $2,603.68 $13,851.36 

Min $805.86 $854.73 $885.04 $1,388.21 

Optimal $579.10 $643.67 $632.40 $707.58 

 
 
The subjects’ average performances vary from 400% to 1900% higher than the optimal. 
(These results are conservative since we have excluded subjects with outlying ordering 
behavior.) The lowest benchmark costs is observed for treatments 1 ($579.1) and highest 
cost is in treatment 4 ($707.0), these results highlight the increasing system difficulty when 
higher delays are introduced producing lower performances. In general, subjects’ decisions 
have lower total cumulative cost in simpler treatments (shorter delays) and higher total 
cumulative cost in more complex treatments. For instance, in treatments 1, 2 and 3, most of 
the cumulative costs are smaller than $10.000, but in treatment 4 we have several values 
above $20.000. In treatment T3, it seems that given the conservative decisions of the 
subjects during the first periods and the fast supplier response could lead to a lower long-
term costs, but also higher adjustment time (Figure 4). Table 3 shows how cost components 



contributed to optimal and average subjects’ total cost in each treatment. The cost 
breakdown in the optimal trajectory suggests that most of the costs are given by the 
ordering component. Hence, the choice of parameters α and β induces orders that minimize 
the Supply Gap and its associated cost. In contrast, the cost breakdown for the subjects’ 
decisions shows that subjects have a difficult time balancing supply and demand, placing 
orders that fail to minimize the Supply Gap. Hence, subjects have a disproportionally high 
fraction of their costs due to the Supply Gap cost component.. As expected, in the most 
dynamic complex treatment (T4), subjects incur the highest proportion of costs due to the 
Supply Gap.  
  

Table 3. Costs distribution given by Orders and Supply gap. 

  
% Cost given  

by Orders 
% Cost given  

by Supply Gap 
% Cost given  

by Orders 
% Cost given  

by Supply Gap 
  T1 T2 
Average 26.94% 73.06% 29.25% 70.75% 

Optimal 98.52% 1.48% 90.45% 9.55% 

  T3 T4 
Average 29.69% 70.31% 17.73% 82.27% 
Optimal 94.60% 5.40% 85.17% 14.83% 

 
 
5. MODELING DECISION RULES 
For modeling the subjects’ decision rules, we test the heuristic proposed by Gonçalves 
(2003). Gonçalves modeled retailers’ orders, RD, using an anchor and adjustment heuristic, 
where retailers anchor their orders on a demand forecast, and then adjust it up or down to 
maintain orders at a desired level. The anchor term captures retailers’ intention to place 
sufficient orders to meet their customers’ orders. The adjustment term closes the gap 
between retailers’ desired and actual backlog of orders within a specific adjustment time. 
Gonçalves (2003) also assumes that each retailer adopts the same heuristic with the model 
capturing total values for customer demand forecast (d), actual backlog of orders (B), 

desired backlog of orders (B*), and adjustment time (τB). Finally, total retailers’ orders are 
non-negative (no cancellations). Equation (9) shows this heuristics 
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Retailers’ desired backlog of orders (B*) is given by the product of the demand forecast, d 
and the expected delivery delay to receive orders from the supplier (ED).  



 

EDdB ⋅=*       (10) 
 

Gonçalves (2003) assumes that the expected delivery delay is given by a linear function (f), 
with slope α, of the actual delivery delay (AD).The function (f) captures retailers’ delivery 
delay adjustment, that is, when faced with long delivery delays, retailers set their expected 
delivery delay (ED) above the actual delivery delay (AD) quoted by the supplier. Longer 
expected delivery delays (ED) than actual (AD) leads to higher desired backlog of orders 
(B*) and higher retailers’ orders.  

 
ED = α AD, where α≥1      (11) 

 
Where, actual delivery delay (AD) is given by the ratio of the order backlog (B) to 
shipments (S). 
 
The qualitative similarity of the results shown in the previous section could suggest the 
subjects use a heuristic with common features (Sterman 1989a). Substituting equations 10 
and 11 into 9 we obtain equation 12, which can be used to test if retailers’ orders are given 
by anchoring and adjustment heuristic. The general model behavior base on equations 1 to 
12 can be observed in Appendix 8. 
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The system determined by equation 12 involves a nonlinearity associated with the ratio of 
the two states: order backlog (B) and capacity (K). We can linearize the system using a 
Taylor series approximation of the ratio of the two states (B/K) around the initial backlog 
(B0) and capacity (K0) and neglect higher order terms. .  
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and since in equilibrium we have that the supplier´s initial supplier capacity (K0) is equal to 

DBK τ00 = , the linearized form for delivery delays is given by: 
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Substituting in 14 in 12, we get: 
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Finally, grouping terms and taking the linear part we get a linear approximation of the 
anchor and adjustment heuristic proposed by Gonçalves (2003), which could be tested 
econometrically. We have the model as: 
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Equation 16 captures the change in retailers’ orders expected when retailers adopt an 
anchoring and adjustment heuristic in the simulation model. The model will be analyzed 
using two different methods. First, we estimate the unknown parameters for each subject 
using the ordinary least squares (OLS); and second, we structured the data from the game 
as a panel in order to increases the efficiency of the estimations and the representativeness 
of the resulting rule. It allows us to make estimations across individuals and treatments. 
 
5.1. OLS Analysis 
 
Initially, the model shown in the equation 16 can be rewritten as: 
 

),()(),2()(),1(),0(),( jttjtjjjtD BKR εβββ +++=&      (17) 

 

Where ),( jiβ  represent the i-th coefficient for the treatment j, i=0,1,2 and j=1..4, and  ),( jtε  

is the error term. According to the formulation of this decision rule, we expect a coefficient 

of ),0( jβ larger than 120, 0),1( <jβ to be negative and ),2( jβ to be positive. Estimations of the 



coefficients using the linearized heuristic are given in Table 4. In this estimations we take 

the equilibrium values used in the model (Dτ =10, Bτ = 4, 0K =100 and d=120). 

 
Table 4. Coefficient estimates.  

ββββ0 ββββ1 ββββ2 
450 -3.3 0.08 

 
For analyzing the significance and polarity of the parameters using OLS, we estimate the 
model of equation 17 using the software R 2.12.2. Table 5 shows: 

1. The estimations for ),( jiβ
for each subject. 

2. The estimations for ),( jiβ
 after play the experiment using the average decisions 

obtained per treatment. 

3. The average values of ),( jiβ
for all the subjects that have significant values. 

4. It shows the r² values for all regressions. 
 

 A priori, we expected ),0( jβ
to be above than 120, ),1( jβ to be negative and ),2( jβ to be 

positive. We can analyze these parameters mathematically; however, possibly it should 
intuitive because the lower the supplier’s shipments, the higher would be the retailer’ orders 

( ),1( jβ negative). And, higher backlogs would indicate supplier delivery problems, and 

therefore higher retailer orders ( ),2( jβ  positive).  

 
The results show that a high fraction of models are significant (at 5%). For example, we 
found significant values for the three parameters in 52% of the whole subjects. We observe 
that just 40% of R-squares are larger than 0.40 (See appendix 9 for assumptions validation). 
Table 5 also shows that the R-squares after running the simulator using the average 
decisions are between 0.47 and 0.67. The coefficient β1 is consistent with our expectations, 
with negative values and significant in the large majority. We found significant values for 
53%, 80%, 73%, and 67% in treatments T1, T2, T3, and T4 respectively. Also, most of the 
signs (78%) of this parameter are negative. On the other hand, the coefficient β2 has 
positive values in the large majority (77%), with significant values for 60%, 67%, 67%, and 
60% in treatments T1, T2, T3, and T4 respectively. The constant β0 is positive and 
significant for the 88% of the sample. 
 
 
 



Table 5. Coefficient estimates of decision rule for each individual for all treatments 
  Treatment 1 Treatment 2 

Subject ββββ0000    ββββ1111    ββββ2222    R2 ββββ0000    ββββ1111    ββββ2222    R2 
1 120.00† 0† 0† 0.49 150.91† 2.57† 0.21† 0.26 
2 51.82 -2.72† 0.31† 0.18 235.50† -2.17† 0.13† 0.74 
3 152.33† -3.35† 0.30† 0.18 176.03† -2.62† 0.22† 0.20 
4 158.21† -8.01† 0.77† 0.60 411.27† -2.95† 0.02 0.21 
5 399.56† 1.24 -0.35† 0.60 300.41† -1.45† 0.01 0.72 
6 213.21† -1.57 0.06 0.02 246.57† -1.28† 0.03 0.50 
7 86.56† -9.09† 0.93† 0.71 342.49† -2.06† 0.02† 0.69 
8 200.65† -1.00 0.04 0.02 269.08 1.59 0.35† 0.11 
9 149.31† -5.85† 0.55† 0.31 428.02† -1.99† -0.04† 0.89 
10 238.34† 0.11 -0.11 0.05 267.14† -3.89† 0.25† 0.56 
11 147.57† 0.09 -0.03 0.06 199.24† -0.79 0.02 0.25 
12 86.49 -8.61† 0.89† 0.76 178.31† -3.20† 0.29† 0.62 
13 19.83 -1.39 0.25 0.72 181.57† -3.26† 0.28† 0.38 
14 209.31† -0.48 -0.02 0.01 -50.04 1.97 -0.06 0.00 
15 276.87† -4.11† 0.33† 0.20 189.95† -2.45† 0.18† 0.21 

Average* 157.22  -6.08   0.53 0.42   238.88 -2.69   0.17 0.51  

Using Average 
 Decisions 

204.29† -6.61† 0.59† 0.59 244.74† -1.99† 0.11 0.65 

  Treatment 3 Treatment 4 

Subject ββββ0000    ββββ1111    ββββ2222    R2 ββββ0000    ββββ1111    ββββ2222    R2 
1 221.21† -4.43† 0.36 0.15 407.04† 0.21 -0.12† 0.89 
2 397.79† 0.52 -0.21† 0.51 143.26† 2.48† 0.24 0.27 
3 278.59† -0.29 -0.07 0.04 283.51† -3.68† 0.22† 0.62 
4 196.76† 1.66 -0.24 0.00 50.69 -3.66† 0.40† 0.78 
5 78.39† -8.06† 0.83† 0.55 285.54† -2.24† 0.14† 0.15 
6 493.60† -3.08† -0.02† 0.72 258.51† -2.17† 0.15† 0.14 
7 212.80† -1.09 0.01 -0.03 221.68† -3.25† 0.25† 0.34 
8 177.36† -7.46† 0.72† 0.28 108.62† -2.22† 0.23† 0.30 
9 213.39† -3.65† 0.29† 0.13 255.72† -0.55 -0.06 0.57 
10 180.94† -2.47† 0.17 0.08 124.97† -1.09 0.08 0.01 
11 204.84† -6.43† 0.56† 0.51 111.33† 1.01 -0.09 0.01 
12 159.97† 1.34† -0.16† 0.35 195.81† -4.31† 0.38† 0.57 
13 203.33† -5.57† 0.49† 0.44 140.76† -1.75† 0.15† 0.08 
14 301.77† -3.80† 0.24† 0.46 158.89† -1.08† 0.09 0.12 
15 86.88† -3.47† 0.38† 0.24 9.40 -0.19 0.08 0.01 

Average * 213.28 -4.47 0.37 0.41 213.49  -2.81  0.22  0.31  

Using Average 
 Decisions 

170.19† -5.98† 0.56† 0.47 156.86† -3.20† 0.29† 0.67 

  



5.2. Panel Data Analysis 
In order to control for variables we cannot observe or measure  and to study omitted 
variables that vary over time but are constant between treatments, we structured the data 
from the experiments as a panel. It increases the efficiency of the estimations and improves 
the representativeness of the decision rule and accounts for individual heterogeneity. In 
order to explain overall behavior, we assume that the covariance between variables equal to 
zero and that there is occurrence of random effects across individual for each treatment 
(Greene, 1997). The panel data showed in table 6 were estimated using R2.12.2. 
 

Table 6. Coefficient estimates of decision rule for treatment as panel data 
Regressor Treatment 1 Treatment 2 Treatment 3 Treatment 4 

ββββ0000    (intercept) 
100.75† 133.46† 127.85† 106.91† 
(15.36) (11.96) (16.012) (13.197) 

ββββ1 (Capacity) 
-3.916† -2.403† -4.37† -1.727† 
(0.435) (0.191) (0.483) (0.222) 

ββββ2 (Backlog) 
0.413† 0.226† 0.433† 0.183† 
(0.042) (0.016) (0.047) (0.019) 

F-statistic 47.7325 93.0629 42.4084 44.9515 
P - Value 2.22E-16 2.22E-16 2.22E-16 2.22E-16 
R -Square         

within 0.1377 0.2389 0.1228 0.1227 
between 0.6276 0.5883 0.6504 0.5936 
random 0.1625 0.2745 0.1461 0.1535 

N 
Obsevations 495 495 495 495 

† Significant at 1% and Standard error (SE) in parentheses 
 

The significance test of the model using the statistic F shows that all the P values are 
smaller than 0.05, which implies that coefficients are different than zero and we cannot 
reject the model. The Table 6 also shows the R-squares (within, between, and random) for 
each treatment. Despite the fact that the overall R-squares are low for within and random, it 
shows high between values, ranking from 0.58 for T2 to 0.65 for T3. This means that 
subjects tend to make similar decisions. 

The coefficients in all treatments are highly significant. The 1β  coefficients are negative, 

but the magnitude is lower than the expected value (Table 4, Figure 6). On the one hand, 

the 2β  coefficients are positive for all treatments but around 4 times higher than the 

expected value (see Table 4). Finally, the constants 0β  are close to 120 units and highly 

significant for all treatments. 



 
Figure 6 summarizes the information obtained in the previous sections. First, we built a 
box-plot using the estimated parameters obtained for all subject in each treatment; and 
second, the estimated parameters using the heuristic, the mean values of the parameters for 
each treatment and the panel data parameters estimations are included in each box-plot. The 
box-plots show a general distribution for each parameter, indicating whether they are 
skewed or not. For instance, β2 in T2 has a short plot and it is almost a symmetric plot, 
which means that the sample is compact and probably the estimations could have less 
uncertainty. Figure 6 also shows that the 70% of the different kinds of estimations are 

between the Q1 and Q3 in all treatments. This percentage is not higher because all of the β0 
estimated values (with the heuristic) are higher than the experimental results. It means that 
the heuristic is creating an overestimation of the independent parameter. However, the 

results in β1 (Capacity coefficient) and β2 (Backlog coefficient) show that the estimated 
values using the heuristic are in general with the right sign and also in the expected range 
given by the boxplot and the panel data estimators. 
  

 
Figure 6. Coefficient estimations of decisions Box plot, Heuristic, mean and panel data 

estimations 
 

Given the estimations obtained with the panel (Panel) and those obtained using the average 
OLS (Adjusted AO), we insert and run them into the same model of the experiment. Figure 
8 shows the behavior of these runs over time. We observe that these simulations replicate 
the pattern of behavior given by the actual subjects’ behavior (AO). However, the 
magnitude of the oscillations is much lower in the simulated ones. On the other hand, it can 
be seen that the proposed heuristic (Heuristic) also replicates the actual subjects’ decisions 



in all treatments, with the underperformance previously described. However, the length of 
the oscillations is different (Figure 7). 
 

  
Treatment 1    Treatment 2 

 

 
Treatment 3    Treatment 4 

Figure 7. Average Subjects’ Orders (AO), Simulation of the proposed heuristic (Heuristic), 
Adjusted model with Average Subjects’ Orders (Adjusted AO) and with Panel parameters 

(Panel).  
 
 
6. DISCUSSION AND FURTHER RESEARCH  
In this paper, we develop a laboratory experiment to explore how subjects playing the role 
of a retailer place orders in response to a surge in final customer demand. Subjects must try 
to minimize cumulative costs, given by the sum of a Supply Gap Cost and an Ordering 
Cost, under ordering and capacity acquisition delays. We explore the ordering behavior of 
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subjects facing two types of delays: retailer ordering delays and supplier capacity 
acquisition delays. 
 
To set a performance benchmark, we characterize the optimal ordering trajectory for each 
experimental treatment. The optimal trajectory is given by a large initial order followed by 
an exponential decrease that undershoots below initial orders, and a damped oscillation into 
the final equilibrium of 120 units per week. The magnitude of the peak in the optimal 
ordering trajectory varies across treatments, increasing with longer system delays. Our 
selection of cost parameters results in optimal trajectories with total costs driven by the 
Ordering component (e.g., 98.5% of the total costs in T1), and retailers ability to close any 
supply/demand gap. 
 
Our experimental results show that subjects’ orders deviate widely from the optimal orders. 
Subjects fail to place sufficiently large initial orders and also fail to reduce them quickly 
toward the equilibrium. Instead, subjects orders are lower than the amounts initially 
required but are kept high for longer than optimal. When subjects orders finally are 
reduced, subjects do so in excess, under-ordering below the optimal levels. Despite having 
access to complete system information, subjects have limited ability to process and 
interpret the impact of delays and feedback on overall system behavior. This is commonly 
known as misperception of feedback (Sterman 1989a). As expected, subject performance 
differs per treatment, and in particular subjects’ performance decreases with longer delays 
and increased dynamic complexity (Diehl and Sterman 1995). For instance, subjects’ orders 
remain high longer than optimal and as subjects face longer retailer ordering delays (T3 and 
T4) the duration of high orders increases further deviating from optimal. These results 
suggest that when possible, retailers should try to decrease the delays inherent in their 
ordering processes. In doing so, retailers would reduce the complexity of the system and 
improve their ordering decisions and their ability to manage any mismatches between 
supply and demand.  Our results, those shorter delays lead to simpler, easier to manage 
systems, which yield to lower costs, are aligned with those of Sterman (1989), Kaminsky 
and Simchi-Levi (1998), and Gupta et al (2001). 
 
The experimental costs also provide clues about the sources of subjects’ underperformance. 
In general, cumulative costs are closer to optimal in treatments with shorter delays (T1) and 
further from the optimal in treatments with longer delays (T4). Comparing the costs 
associated with subjects’ decisions with those from optimal ones, we note that  subjects’ 
average performances vary from 400% to 1900% higher than the optimal, with the best 
(i.e., lowest) performance still being 33% higher than the optimal. In addition, subjects fail 
to minimize Supply Gap during the experiment, incurring the associated long-term costs. 



For example, in Treatment 4, around 82% of the subjects’ total costs are given by the 
Supply Gap component. 
 
Given their limited processing and cognitive capability, people make decisions translating 
complex information into simplistic models, either by capturing essential features from 
problems and not taking all the features into account, or by developing habits and routines 
(Lazaric 2000; Simon 1982). Our econometric analysis suggests that subjects use a simple 
anchoring and adjustment heuristic (Tversky and Kahneman 1974) to place orders. 
 
Analysis of individual regressions had in general good model fit and also suggest that the 
model explains a significant portion of the variability in the ordering data. In particular, 
40% of R-squares were larger than 0.40. Furthermore, the coefficients of capacity (K) and 
backlog (B) in the individual regressions have the expected signs (negative and positive, 
respectively) and are significant for more than 50% of subjects. Naturally, while heuristics 
are simple and useful, they also can lead to consistent biases, limited search and resistance 
to change (Leonard-Barton, 1992; Lazaric, 2000). In practice, managers should be careful 
when relying on rules-of-thumb. In our simulated experiment, the adopted heuristic 
performs substantially worse than the optimal, which suggests significant opportunity for 
improvement. 
 
The analysis of average decisions produces high significance in the estimated parameters’ 
values and their expected signs. Moreover, the panel data estimations show that the model 
is significant and the coefficients of the variables are significant and have the expected 
signs for all treatments. Finally, we conclude that the differences among subjects do not 
contribute to explain the unexplained variance. 
 
This research could have some limitations regarding the quantitative application in systems 
under uncertain demand, however we believe the qualitative analyses should hold. On the 
other hand, in order to extend and improve the results presented here, we thought in the 
following ideas. First, given the optimal decision trajectory was obtained using simulations, 
we would like to obtain mathematically a close form solution of this trajectory, and then try 
to find a robust solution applicable in realistic situations with uncertainty. Second, it could 
be interesting to find out if subjects can learn to make better decisions and if so, do they 
retain this learning over time or revert to old patterns as time passes. Third, multiple 
subjects could interact amongst themselves placing orders to the same supplier, whose 
responses would be simulated by the computer. Forth, our simulator allocates available 
supply in proportion to orders placed. Different allocation mechanisms could be explored. 
Fifth, subjects could be subjected to a different cost function and potentially be exposed to 
specific information cues. Finally, we could potentially analyze other kinds of heuristics. 
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Appendix 1. Model specifications 
 

 
Appendix 2. Instructions for T3 (in Spanish) 
 

INSTRUCCIONES 
POR FAVOR NO TOCAR EL COMPUTADOR HASTA QUE NO SE LE  INDIQUE 
 
Bienvenido, a partir de este momento usted hace parte de un experimento de toma de 
decisiones, en el cual asumirá el papel de gerente de una empresa mayorista. Su 
responsabilidad es minimizar los costos acumulados al final de la simulación del juego 
(50 semanas), y de acuerdo a su desempeño obtendrá un pago en dinero efectivo, de un 
proyecto de investigación patrocinado por la Universidad Nacional de Colombia, Sede 
Medellín. 
Su decisión semanal es definir cuántas unidades ordenar a su proveedor, con el fin de 
cubrir toda la demanda de sus clientes (en el experimento, esta decisión se toma en la 
casilla ubicada al frente de “Decisión de Pedidos”). La decisión que usted toma, será 
recibida por su proveedor tres semanas después de realizada la orden y serán acumuladas en 
un canal de órdenes pendientes. La capacidad inicial de producción de su proveedor es de 
100 unidades por semana, sin embargo, el tiene la capacidad de cambiar su capacidad según 
la órdenes que usted le realice, a mas órdenes mayor inversión en capacidad. El tiempo de 
construcción de capacidad de su proveedor es de una semana. En caso de que su proveedor 
no tenga la capacidad suficiente para satisfacer sus necesidades, este va a empezar a tener 
retrasos en las entregas de los pedidos (mayores a 10 semanas) y por lo tanto usted también 
le incumplirá a sus clientes. 

Variable, Stock or Parameter  Symbol Initial Value  Units 
Backlog of orders B&  1000 Units 
Cumulative Customer Orders 

RD&  100 Units 

Cumulative Supplier Shipments 
SE&  100 Units 

Retailers’ orders 
DR&  

100 Units/wk 

Supplier Shipments S 100 Units/wk 
Supplier Capacity K 100 Units/wk 
Final Customer Orders d 100 Units/wk 
Retailers’ total costs TC 10 $ 
Supply Gap Costs ����  0 $/wk 
Order costs �o  10 $/wk 
Target Delivery delay 

Dτ  10 wks 

Time to build Capacity 
Kτ  1 or 3 wks 

Time Adjust Backlog 
Bτ  

4 wks 

Linear Coefficient α 1.1 Dimensionless 
 



Se incurre en costos cada semana por dos componentes:  
 
1. Costo por Ordenar (CO):  

( )
1000

*1
2

PedidosDecisión
CO =  

 
Con una cantidad inicial de pedidos de 100 unidades, este costo en la primera semana es de 
$10.000. 
2. Costo por Déficit o Inventario (CD): 

( )
1000

*2 2Déficit
CD =  

 
Con un déficit de 0 unidades, el costo en la primera semana es de $0. 
 
De esta manera, el costo total acumulado CTA es la suma de estos costos en toda la 
simulación, así: 

( )∑
=

+=
T

t
tt CDCOCTA

1

 

Inicialmente, usted ordena 100 unidades por semana, lo cual le permite a su proveedor 
conservar un tiempo de entrega objetivo de 10 semanas como condición inicial. 
Recientemente, aplicaciones novedosas del producto crearon un aumento en su demanda. 
El incremento en la demanda será permanente y del orden de 20 unidades por semana. 
Dado que usted no estaba atento a estas nuevas aplicaciones, el aumento en la demanda lo 
tomó por sorpresa y se da cuenta  que su déficit está aumentando y por lo tanto perdiendo 
clientes y prestigio. 
Usted iniciara por 3 semanas decidiendo 100 unidades como periodo de aprendizaje. 
Después su tarea es manejar la compañía durante la simulación, decidiendo cuánto ordenar 
a su proveedor mientras que minimiza el costo total acumulado CTA. 
 
PAGO: El pago será en efectivo al final del experimento. Corresponde a una suma por 
participación de $10000 mas una suma variable entre $0 y $30000 en función del CTA, a 
menor costo total CTA mayor pago. 
 
NOTA: Por favor no divulgar información del experimento con sus compañeros para no 
perder la validez científica del experimento. 
 
 
 



GLOSARIO  
(ACERCA DE LOS RESULTADOS QUE SE OBSERVAN EN “REPORTES”) 

 
Sección de Operaciones: Da información del sistema del mayorista (usted). 
 

 
 
1. Son las órdenes que usted recibe de sus clientes finales. Esta es la demanda que se debe 

cubrir cada periodo.  
2. Son las unidades que le faltan por entregar (si es negativo, indica inventario). 
3. Son las unidades que le llegan cada periodo al mayorista (a usted) por parte del 

proveedor y son con las que dispone por periodo para satisfacer la demanda. 
4. Es el tiempo de entrega promedio de las órdenes, contados desde el momento en que 

usted realiza las órdenes hasta el momento en que las recibe. El tiempo de entrega ideal 
es de 10 semanas. 

5. Acumulan la diferencia entre las órdenes realizadas y las recibidas por el mayorista 
(usted) en el tiempo. Inicialmente usted tiene una cantidad acumulada de pedidos 
realizados de 1000 unidades, que serían recibidos de a 100 unidades durante 10 
semanas. 

 
 
Sección de Costos: Da información acerca de cada componente de sus costos: 
 

 
 
 



6. Costos por la decisión tomada cada periodo. 
7. Costo por tener inventario o deberle unidades al cliente final ($/semana) 
8. Es la suma de los dos componentes de los costos cada semana. 
9. Es el costo total acumulado en el tiempo CTA. 
 
Appendix 3. Experiment Enviroment 
 

 
 

Appendix 4. Computer Interface (in Spanish) 

 
 
 
Appendix 5. The Powersim optimization details 
Optimization formulation: 
The model equations 1 to 8 reported previously remain valid. Hence, as a payoff function 
we used the variable TC (retailers’ total cost), the settings used in this objective function in 
Powersim Solver are: 
Name: TC 



Type: Min 
Apply time: Stop 
Weigth: 1 
Divisor: 1 
 
We have created a parameter for each period decision for formulating the decision variables 
(RD: Retailers’ Orders). Hence each parameter is used just one specific period during the 
simulation. We also reduce the searching space in the optimization, assigning an upper (500 
units/wk) and lower (0 units/wk) bound to these parameters (which are going to be 
optimized). The settings used in this decision variables in Powersim Solver are: 
 
Name: RDt;  for t: 1, 2… 46 
Minimum: 0 
Maximum: 500 
Apply time: Start 
  
Simulation Settings: 
Time unit: period 
Time step: 1 
Start Time: 0 
Stop Time: 46*  
Simulation speed: Maximized speed 
Integration: 1st order, Euler 
Run count: 1 
*The stop time was fixed in a higher number compared with the experiment stop time, 
because we needed to avoid biased results at the end of the optimization. Hence, we run the 
optimization with 46 periods, but for the analysis we did not take into account the last 11 
times. 
 
Evolutionary Search Method: 
The evolutionary search algorithms used by Powersim Solver are licensed from Dr. 
Nikolaus Hansen. The general settings used for the optimization are: 
 
Maximum generations: 1000 
Parents: 20 
Offsprings: 100 
Minimum convergence: 1e-10 
 
 
 



 
Appendix 6. General description of the Optimization process: Evolutionary search method.  
The evolutionary search algorithms used by Powersim Solver are licensed from Dr. 
Nikolaus Hansen (Powersim Studio 8). However, the general idea of the Evolutionary 
search method is presented here: 
This method, inspired by Darwin's evolutionary theory, is a goal-seeking process where 
successive runs take place and where the best inputs from a run are used in the next run to 
generate new inputs to a simulation and try to find the optimum. This evolutionary research 
method is based on the collective learning process within a population of individuals (each 
of which represents a search point in the space of potential solution).  
In a given time t there are m representatives of a given scheme H (set of decisions that are 
taken into account during the selection step) contented in a population. 
 

(A1)  
If n is the population size, f(H) is the average sample fitness value of the chains that 
represents the H scheme in t, and ∑fj is the sum of the aptitudes of all possible chains, the 
effect of propagation would be given by: 

f

Hf
tHmtHm
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n

f
f j∑=   (A2) 

During the calculation of fitness, the evaluation of objective function values is always 
necessary, such that the information is available and can easily be stored in an appropriate 
data structure. The population is arbitrarily initialized, and it evolves toward better and 
better regions of the search space by means of randomized processes of selection, mutation, 
and recombination. The environment delivers quality information (fitness value) about the 
search points, and the selection process favors those individuals (solutions) of higher fitness 
to reproduce more often than those of lower fitness (Bäck, 1996).  
Including the effects of mutation and recombination we can express the propagation 
scheme based on the following fundamental theorem: 
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Where Pc is the recombination probability, ∂H is the scheme length, L is the chain length, 
Pm  is the mutation probability and O(H) is the number of fixed positions within a given 
scheme. The recombination mechanism allows the mixing of parental information while 
passing it to their descendants, and mutation introduces innovation into the population. 
Both mutation and recombination can essentially be reduced to local operators that create 
one individual when applied (Bäck, 1996). The simulation model is run many times with 
new sets of input values to produce a satisfactory result. The method discards the poorest 

),( tHmm=



results, and selects the best results as new scheme. This scheme is used to form offspring 
for the next generations. An evolutionary search algorithm is repeated until the optimal 
solution is found, reaches a user-specified limit of generations or until the result is below 
the specified minimum convergence rate. 
 
 
Appendix 7. Residual analysis for each subject performance. 
 
While the experiment was run with more than 15 people per treatment, we removed a few 
outliers through statistical analysis. The behavior of excluded subjects’ deviated markedly 
from those of other subjects. In particular, some excluded subjects placed a few orders of a 
dramatic magnitude (e.g., order decision of 9000 units/week, 90times above initial). The 
removal of these subjects does not change the overall results obtained, but they prevent our 
statistical analysis to be swayed by these extreme cases. In the presentation of our results, 
we consider the 60 remaining subjects, 15 per treatment (as shown in table 2). The figures 
below graphically summarize for each treatment each subject’s residuals after 
econometrically fitting their orders by the proposed heuristic. The graphs for each treatment 
display the 15 remaining subjects’ residuals, between 2 and -2 standard deviations, whose 
data were used in our statistical analysis.  

   
Treatment 1    Treatment 2 

   



Treatment 3    Treatment 4 
Figure A1. Residual analysis for each subject performance 

 
Appendix 8. Model Behavior 
 
In order to analyze the model behavior, we simulate the model for 30 weeks. Initially, 
during the first 3 weeks, the model is set in dynamic equilibrium. For this reason, the 
backlog, retailer’s orders and capacity are fixed at their initial values. Thereafter, we 
introduce a permanent 20% step increase in final customer demand (see Figure A2 – black 
dashed line) in order to gain intuition about model behavior. 
With the anchoring and adjustment heuristic for retailer’s ordering behavior the increase in 
final customer demand leads to an over-reaction of retailers’ orders (see Figure A2 – blue 
dashed line). These retailers’ orders exceed supplier capacity and cause an increase in 
backlog. As backlog increases, retailers experience longer delivery delays, the supplier 
cannot meet all retailers’ orders with the normal delivery delay, and therefore, retailers 
inflate more their orders. Due to this increase in the backlog, the supplier invests in 
capacity orders (see Figure A2 – continuous green line) to meet the increase in retailers’ 
orders, but it takes time before the investment in capacity allows the supplier to meet actual 
demand. 
 

 
Figure A2. Model behavior (with Bτ =6, 2.1=α , 1=Kτ ) 

 
When capacity increases high enough such that outgoing shipments equate incoming 
orders, backlog reaches the maximum value. This retailer orders peaks is mostly influenced 
for the shipments receive from the supplier, for the long delivery delays faced and for the 
quantity of orders previously placed. At this point, desired capacity also peaks and capacity 
investment turns to divestment. As the supplier tries to meet inflated orders from retailers, it 
dramatically overinvests in capacity. The boom-and-bust in supplier’s capacity and backlog 
represent the reference mode of the system. While final customer demand increases by 20% 
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for one year, supplier backlog and capacity increase above 40% to final equilibrium levels 
(Figure A2).  
 
Appendix 9. Validation of econometrical model assumptions 
 
In order to accept the model and the found parameters, we should also assure that the error 
has normal distribution and constant variance. In the next figure, we use a simple graphical 
normality test for the residuals. The residual adjust to a straight line, especially in the 
middle of the graph. So we can say the normality assumption might be satisfied for these 
data. 
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Figure A3. Normality Analysis per treatment 
 



In the other hand, we use another graphical test in order to analyze the residuals variance. 
The next figure shows that the points in the plots seem to be fluctuating randomly around 
zero in an un-patterned fashion. Thus, the plots do not suggest violations of the 
assumptions of zero means and constant variance of the random errors. 
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Figure A4. Variance Analysis per treatment 
 

As we show, the parameter estimations are significant and the residuals satisfy all the 
normality restrictions. In fact, we would like to assure that there is not exist multicolinearity 
between the variables, because multilinear variables contain the same information about the 
dependent variable and actually quantify the same phenomenon.  
 
In the next table, we find the largest and smallest Eigenvalues for each data and the ratio 
between them (condition number). Condition numbers in the table shows numbers less than 
100, it suggests there are no serious problems with multicolinearity. 
 
 
 



Table A1. Econometrical model selection  

 
Finally, the table also shows the Akaike information criterion (AIC), it is a measure of the 
goodness of fit of a statistical model. The AIC is not a test of the model in the usual sense 
of hypothesis testing; but, it is a tool for model selection. In the table, we have three values 
of AIC: 1) The model using x1 and x2, 2) the model without x1 and 3) the model without 
x2. The best of the three models is chosen according to the lower AIC for each treatment. 
From the AIC values one may also infer that the top models are roughly using x1 and x2. 

Max Eigen 
Value 

Min Eigen 
Value 

Condition 
number 

(Max/min) AIC Initial  AIC  -x1 AIC -x2 
T1 1,956 0,044 44,619 196,560 223,880 230,490 
T2 1,838 0,162 11,375 170,150 179,180 198,760 
T3 1,976 0,024 83,463 203,990 221,530 224,840 
T4 1,871 0,129 14,490 231,300 269,640 269,960 


