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ABSTRACT:

When final customer demand exceeds available supetgilers often hedge against
shortages by inflating orders to their suppliershil® the amplification in orders caused by
competition for scarce resources has been desciibdue literature almost a century ago,
there is little experimental research examining faetors influencing retailer’'s order
amplification.

This paper analyzes retailer order decisions inpm@sse to a surge in demand. In an
experimental environment based on a formal mathealamodel we test subject’s
ordering decisions under different ordering and gligr capacity acquisition delays and
compared them to an optimal benchmark. Our restts different treatments allow us to
characterize subjects’ performance in this systerd tormulate a heuristic that closely
replicates subjects’ ordering behavior in all treznts.
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1. INTRODUCTION

In the past decades, different approaches have ts=h to understand the interrelations
among suppliers, retailers and customers. Theatames$ are typically approached through
the development of mathematical models that miread world situations, such as non-



stationary demand, physical delays, backlogs, oadeplifications, etc. (llkyeong, 2005).
The general objective is to produce and distrildiee product and services at the right
guantities, to the right locations, and at the trighme, in order to minimize system-wide
costs while satisfying service level requireme@lisajng, 2006). One of the most common
and costly problems in supply chains is causedetgiler orders’ amplification (Armony
and Plambeck 2005). These amplifications have lsaptured in the literature as early as
1924, when Mitchell described the case of retailefiating their orders to manufacturers
when competing with other retailers for scarce supide argued “if [retailers] want 90
units of an article, they order 100, so as to be,seach, of getting the 90 in the pro rata
share delivered.” (Mitchell 1924, p. 645). Whenddcwith limited capacity, suppliers
typically allocate available supply among multipdailers. In turn, retailers receiving only
a fraction of previous orders, amplify future omesin attempt to secure more units (Lee et
al., 1997a, 1997b). This phenomenon can propagatesupply chain causing orders and
inventories to chronically overshoot and undershaobund desired levels. These
fluctuations can lead retailers and suppliers aiikeverreact, leading to problems such as
excessive supplier capital investment, inventomtsgllow capacity utilization, and poor
service (Armony and Plambeck, 2005; Gongcalves, 2068 et al., 1997a; Sterman, 2000;
Anderson et al., 1999).

Academic interest in the subject has its roots e and frequent problems faced by
businesses in diverse industries. For examplehén80’s, the computer industry faced
shortages of DRAM chips in several occasions: ardemrged because of retailers
anticipation (Li, 1992). Similarly Hewlett-Packacduld not distinguish between real and
inflated orders place from the resellers for theetdet printers; which later lead to excess
inventory and unnecessary capacity (Lee et al.74p9In the summer of 2000, Cisco began
to experience shortages of key components ancataloised customers’ order amplification.
Cisco failed to recognize the magnitude of custemerder amplification, and the sales
forecast were overestimated. This caused a strapgcity expansion through long term
contracts with its OEMs. Once capacity became alikaland possible delivery delays went
back to normal levels, customers canceled duplicatders, leaving Cisco with significant
excess capacity, rigid long-term contracts andraarkable amount of inventory (Byrne
and Elgin, 2002).

Informed by these industry experiences, our rebeaxplores the impact that delays may
have on subjects’ ordering decisions. We hypotleetiat longer retailer ordering delays
and supplier capacity acquisition delays increastiler order amplification. Both
conditions are consistent with studies by Sternf#89a, 1989b) and Goncalves (2003)
and Goncalves and Arango (2010). Our experimestéihg is based on a system dynamics
model adapted from Gongalves (2003) and Gongalwels Axango (2010). The model



captures retailers’ order amplification when conmgfor scarce supply. Our results show
that subjects systematically deviate from an ogdtidyaamic control. As expected, longer
capacity acquisition and order delays complicae sbbjects’ ordering task, leading to
higher order amplification. While subjects’ ordeyibehavior is not optimal, it can be
explained econometrically by a simple decision.rule

This paper proceeds as follows. Section 2 descriaed analyzes the proposed
mathematical model. Section 3 develops a decisiakimg laboratory experiment based on
the model developed in Section 2. Section 4 showsneain results; particularly that
subjects’ performance deteriorates under longeerorg and capacity acquisition delays.
Section 5 derives an econometric model based dmples anchoring and adjustment to
analyze subjects’ decision rules. Finally, we déscthe main finding in Section 6.

2. MODEL DESCRIPTION

We build upon a model proposed by Gongalves (2@@Bfuring a supply chain with a
single supplier offering a unique, non-substitutabbroduct to multiple retailers. The
emphasis of our analysis is on retailers’ orderprgblem trying to match supplier
shipments and final customer demand. Figure 1 aysghe structure of this supply chain.
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Figure 1. Supply Chain structure

To model the supplier system, we first define thpplier's backlog of ordersBj as a
function of retailers’ orderdRd) and supplier shipmentS)(

B=R,-S (1)
Shipments § are typically given by the minimum between of idex$ shipments and the
available capacity. However, since we are intetkstiesituations characterized by supply

shortages, we model shipments as always constrbynadailable capacity().

S=K (2)



The change in supplier’s capaciti)(is given by a first order exponential smooth kegw
desired shipments() and capacityK), with an adjustment time given by the time toldui
capacity tx). This formulation captures a naive capacity ddjesit process, where the
supplier tries to maintain sufficient capacity tatisfy customer demand with a target
delivery delay. Finally, desired shipmen&)( given by the ratio of Backlogd] and the
Target Delivery Delaytp), capture the shipment rate required to maintaiivery delays
at the target level for the existing level of baxckl This process can be written as:

_Blry,-K 3)
Z-K

Modeling supplier capacity as a first-order expdi@@nsmooth of desired shipments

follows a traditional formulation in system dynasiidn addition, Goncgalves and Arango

(2010) find empirical support for this formulatidior supplier's capacity investment.

Finally, to measure retailers’ ability to meet firaustomer demand, we also capture the

supply gap, measuring the difference betweBn)(a level that accumulates total orders

K

from final customer ordersd), and (ES) a level that accumulates the total shipments
received from the supplier.

De =d 4

E.=S (5)
Figure 2 provides an overview of the supplier-tetanodel driving the lab experiment.

Cost Objective

To motivate subjects’ performance, we measure legsaitotal cost (TC) given by two
components: (1) a Supply Gap Coé}4,), given by the summed differences between
cumulative customer demand and cumulative shipnrectsived from the supplier; and (2)
Ordering Cost (,), given by the retailer's order decisiori®p). In addition, we assume
guadratic costs to penalize larger deviations feguilibrium.

TC = Zz'zl(cgap +Co) (6)
Where,

Cyp =@ [{Dr —Es)’, wherea = 2107 (7)

C,=BR.’, where #=110° (8)

The parameterst and 3 were chosen such as they are comparable givermrtler of
magnitude of the variables;RDg and Es Appendix 1 presents the general units of measure
used for each variable or parameter.
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Figure 2. System dynamics diagram for supplier-retailereyst

3. THE EXPERIMENT

We use the model described above as a basis foaagdgement flight simulator” (Sterman
1989, Senge and Sterman 1992). Subjects play lh@fa single retailer, placing orders to
a supplier and trying to minimize total costs. Bx@eriment starts in dynamic equilibrium.
Initially the supplier has sufficient productionpeity to meet total retailer's demand
according to the target delivery delay. After thed period (week), the supplier faces a
sudden increase in retailer's orders. Subjectsimfi@med that customer demand will
increase in 20% and that the supplier faces a delduild additional capacity. Subjects
must decide how many units to order from the seppmiach week through 35 simulated
weeks. Subjects are asked to minimize the totalraatated costTC), during 35 weeks

3.1. Experimental Treatments

Our experiment explores two characteristics prestipidentified by Gongalves (2003) and

Goncalves and Arango (2010) affecting the perforreaaof retailers’ decisions: retailer

ordering delays and supplier capacity acquisitielays. We use a full experimental design,
with four experimental treatments. Table 1 spesifedl treatments conducted in the
experiment and the number of participants (N) ioheaeatment. We model the retailer
ordering delay4o) as a pipeline delay



Table 1.Experimental treatments.

Supplier’'s Capacity
Investment Delay ()
1 3
2 T1 T2
Retailer’s Order (N=18) (N=18)
Decision Delay Qo) 3 T3 T4
(N=18) (N=18)

3.2. Protocol

We follow standard experimental economics protdseke Friedman & Sunder, 1994 and
Friedman & Cassar, 2004). Subjects were fourthfdiidyear Industrial and Management
Engineering students at the National UniversityColombia, in the autumn of 2010. The
subjects did not have previous experience in da@laxperiment. Participants were told
they would earn a show-up fee of Col$10.000 (apprately US$5) and a variable amount
contingent on their performance, between Col$0 @at$30.000 (US$0 - US$15) for an
overall average payoff of Col$24.000 (US$12). Tkpegiment ran for around 1 hour and
students were informed about the duration of theegment. The payoff was more than
two times larger than their opportunity cost in @obia. The students were also given a set
of instructions describing the production systehg tecisions and the goals of the game
(Appendix 2)

We ran the experiment with 18 subjects per treatmédpon arrival, subjects were seated
behind computers and a treatment was assigned mayndeee Appendix 3). Participants
were allowed to ask questions and test out the atenpnterface (Appendix 4). All the
experiment parameters were common knowledge tpaaticipants. The experiment was
run in the computer simulation softwaP®wersim-Constructor-2.51®The software ran
automatically and kept record of all variables|uding subjects’ decisions. Subjects were
also asked to write their decisions in a sheetaplep, which served as a physical backup of
the data.

3.3 Optimal Simulated Trajectory

In order to have a framework for comparison, wel fam optimal simulated trajectory for
each treatmenihese optimal retailers’ order decision trajectomesre estimated using the
Solver inPowersim Studio 8Appendix 5 shows the optimization specificatiarsed) and
minimizing the total cost over all periods. FigBeshows the behavior of these optimal
trajectories, considering the ordering decisioresrande under deterministic demand. For
optimization purposes, this Powersim Studio 8 Soluses a method called the
evolutionary search method (for more details relatéh this method see Appendix 6).
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Figure 3. Optimal Retailer’s order decisions

Figure 3 shows that the optimal ordering trajeetorare characterized by a large initial
order at the moment the demand surges. The magnifichis optimal initial order
increases with the complexity (longer delays) af #ystem. Then, orders exponentially
decrease with a final damped oscillation until Isgjt on 120 units per week. The
magnitude of the damped oscillation also increasis the complexity of the system.
Finally, optimal orders settle at 120 units per kvé the rest of the trajectory.

4. RESULTS

In this section we present the overall results led experiments. We report the four
experimental treatments with 15 subjects per treatjwhich are chosen among the 18
subjects base on one variance method (see appémalixriteria selection).

4.1. Subjects’ Order decisions Behavior
Subjects received information on system structdetays and costs and then were asked to
place orders that would minimize total simulatedgeun costs. Figure 4 shows ordering



behavior for four selected subjects (one in eae@attnent) capturing typical subjects
behavior. The results suggest common pattern: stghjerders initially over-shoot, then

under-shoot until settling around equilibrium clésel20 units (the final demand).

Figure 4 also shows that subjects in treatmentaidd. T2 (with shorter ordering delays)
over-order for shorter periods of time (around 1€el). In such treatments the shorter
ordering delays allows subjects to more quicklyatjheir orders.
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Figure 4. Typical experimental result®findicates the subject ID wijh= 1,...,15)

Figure 4 also shows that subjects in treatmentaid T2 (with shorter ordering delays)
over-order for shorter periods of time (around 1€el). In such treatments the shorter
ordering delays allows subjects to more quicklyuatliheir orders. However, it seems that
in treatments T3 and T4 the subjects are more caaibee in their initial orders. This could
mean that in a certain way subjects are not comlglé&irgetting their supply line.

To compare overall subject behavior in each treatméh the optimal ordering decisions,
we compute the average retailer’'s orders (AO) faygrs in each treatment. Figure 5
suggests that subjects fail to place sufficiengisgé initial orders, and also fail to reduce



them quickly toward the equilibrium value. Insteadbjects place orders with magnitudes
averaging half of the desired initial value, butimtain high orders for a longer period than
desired. When subjects finally reduce their ordérsy do so more than the optimal values.
As a result subjects’ ordering behavior fluctuatesund the optimal trajectory in all
treatments. While the pattern presents similariie®ss treatments, it is also possible to
identify differences. The peak in subjects’ deaistends to be wider in treatments with
longer retailer ordering delays (T3 and T4). Sutgedecisions are less stable and take
longer to settle in the treatment with higher dsléi4).
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Figure 5. Optimal and Average Subjects’ Ordefg]) in each treatment

4.2. Subjects’ Cost Performance

The main subject’s objective in the experiment teasinimize cumulative costs. Table 2
presents total cumulative costs per subject andvikeage, the minimum and the optimal
for each treatment.



A general observation is that most of the subjgmsform far from optimal, for all
treatments. The lowest total cost achieved by gestilvas 33% higher than the optimal of
the treatment, which occurred for subject P8 imattreent 2 (T2). The best performances
observed in the other treatments were also abovenalpcosts: 39% above optimal in
treatment 1 (T1), 40% above optimal in treatmenfT3), and 96% above optimal in
treatment 4 (T4).

Table 2. Total cumulative, average, and optimal costs adressment for the experiment.

Subject T1 T2 T3 T4
P1 $2,331.95 $3,243.45 $1,285.69 $41,569.73
P2 $16,186.75 $1,313.24 $6,349.57 $1,576.23
P3 $17,921.82 $6,806.07 $1,439.31 $1,976.48
P4 $3,995.25 $3,017.32 $2,441.01 $19,297.83
P5 $845.60 $878.90  $8,854.54 $12,619|97
P6 $3,834.15  $899.15  $1,407.55 $37,655,30
P7 $6,805.24 $14,624.58 $2,086.54 $30,220.8L
P8 $25,358.16 $854.73  $3,946.30 $4,258.17
P9 $4,056.73 $10,944.48 $2,410.65 $2,214.2§
P10 $1,664.46 $2,438.42 $2,958.85 $1,403/54
P11 $1,511.78 $1,002.29 $1,202.67 $2,294/44
P12 $1,193.47 $46,973.16$1,106.48 $2,649.15
P13 $4,790.34 $2,792.65  $885.04  $13,44540
P14 $805.86  $7,144.60 $961.68  $35,200,88
P15 $27,068.96 $5,362.77 $1,719.34 $1,388.21

Average $7,891.37 $7,219.72 $2,603.68 $13,851.36
Min $805.86 $854.73 $885.04  $1,388.21

Optimal $57¢€.1C $642.67 $632.4C $707.58

The subjects’ average performances vary from 400%900% higher than the optimal.

(These results are conservative since we have deatlgubjects with outlying ordering

behavior.) The lowest benchmark costs is observedréatments 1 ($579.1) and highest
cost is in treatment 4 ($707.0), these resultsligighthe increasing system difficulty when

higher delays are introduced producing lower pentorces. In general, subjects’ decisions
have lower total cumulative cost in simpler treatise(shorter delays) and higher total
cumulative cost in more complex treatments. Falamse, in treatments 1, 2 and 3, most of
the cumulative costs are smaller than $10.000,jrbtiteatment 4 we have several values
above $20.000. In treatment T3, it seems that giv®enconservative decisions of the
subjects during the first periods and the fast Bappesponse could lead to a lower long-
term costs, but also higher adjustment time (FigQr& able 3 shows how cost components



contributed to optimal and average subjects’ tatast in each treatment. The cost
breakdown in the optimal trajectory suggests thatstnof the costs are given by the
ordering component. Hence, the choice of parametarsd S induces orders that minimize

the Supply Gap and its associated cost. In contfastcost breakdown for the subjects’
decisions shows that subjects have a difficult tm&ncing supply and demand, placing
orders that fail to minimize the Supply Gap. Hersiéhjects have a disproportionally high
fraction of their costs due to the Supply Gap amshponent.. As expected, in the most
dynamic complex treatment (T4), subjects incurhighest proportion of costs due to the
Supply Gap.

Table 3.Costs distribution given by Orders and Supply gap.

% Cost given | % Cost given |% Cost given| % Cost given
by Orders by Supply Gap | by Orders | by Supply Gap
T1 T2
Average 26.94Y 73.06% 29.25% 70.75%
Optimal 98.52% 1.48% 90.45% 9.55%
T3 T4
Average 29.69¥% 70.31% 17.73% 82.27%
Optimal 94.60% 5.40% 85.17% 14.83%

5. MODELING DECISION RULES

For modeling the subjects’ decision rules, we tast heuristic proposed by Gongalves
(2003). Goncalves modeled retailers’ ord&s, using aranchor and adjustment heuristic
where retailers anchor their orders on a demaretést, and then adjust it up or down to
maintain orders at a desired level. The anchor temptures retailers’ intention to place
sufficient orders to meet their customers’ ordéfee adjustment term closes the gap
between retailers’ desired and actual backlog de within a specific adjustment time.
Goncalves (2003) also assumes that each retaibgtsathe same heuristic with the model
capturing total values for customer demand fore¢dst actual backlog of ordersB),
desired backlog of order8¥), and adjustment tim@g). Finally, total retailers’ orders are
non-negative (no cancellations). Equation (9) shthwsheuristics

R, = Ma{o,d B 'Bj 9)

Iy

Retailers’ desired backlog of ordeB*] is given by the product of the demand forecast,
and the expected delivery delay to receive ordera the supplierED).



B*=d[ED (10)

Goncalves (2003) assumes that the expected deliletay is given by a linear functiof),(
with slopea, of the actual delivery delayAD).The function {) captures retailers’ delivery
delay adjustment, that is, when faced with longveey delays, retailers set their expected
delivery delay ED) above the actual delivery dela&) quoted by the supplier. Longer
expected delivery delay&€D) than actual AD) leads to higher desired backlog of orders
(B*) and higher retailers’ orders.

ED = o AD, whereo>1 (11)

Where, actual delivery delayAD) is given by the ratio of the order backloB) (to
shipments §.

The qualitative similarity of the results shownthe previous section could suggest the
subjects use a heuristic with common features 1f®trr1989a). Substituting equations 10
and 11 into 9 we obtain equation 12, which candezluo test if retailers’ orders are given
by anchoring and adjustment heuristic. The germalel behavior base on equations 1 to
12 can be observed in Appendix 8.

d*a B/K—Bj 12)

R, = Max{o,d +
Z-B
The system determined by equation 12 involves dimearity associated with the ratio of
the two states: order backloB)(and capacityK). We can linearize the system using a
Taylor series approximation of the ratio of the tstates B/K) around the initial backlog
(Bo) and capacityK,) and neglect higher order terms. .
AD:I'i’zl'iM(B—BO)i +(K—KO)%

0

Bo.Ko Bo.Ko

B_B 1
Ezio'l'(B_Bo)K*'*(K_Ko)

2
0 0 0

B (13)

and since in equilibrium we have that the supmiaritial supplier capacityK) is equal to
K, = BO/TD , the linearized form for delivery delays is givan



ap=B -7 (1+ (B/TD‘KB (14)

Substituting in 14 in 12, we get:

Tt
R, =Max 0,d + °

Iy

(15)

Finally, grouping terms and taking the linear pag get a linear approximation of the
anchor and adjustment heuristroposed by Gongalves (2003), which could be deste
econometrically. We have the model as:

R, = Max(o,[d Lardr TD]‘[a*f* TD]K +(%]B)
TB Z-B KO TB KO (16)

Equation 16 captures the change in retailers’ arapected when retailers adopt an
anchoring and adjustment heuristic in the simufatizodel. The model will be analyzed
using two different methods. First, we estimate wh&nown parameters for each subject
using the ordinary least squares (OLS); and seocmadstructured the data from the game
as a panel in order to increases the efficienaphefestimations and the representativeness
of the resulting rule. It allows us to make estiorad across individuals and treatments.

5.1. OLS Analysis

Initially, the model shown in the equation 16 caréwritten as:
Rowny = Bon + BanKo * BenBo * € (17)

Where £, ;, represent theth coefficient for the treatmenti=0,1,2 andj=1..4, and Eeh

is the error term. According to the formulationtlifs decision rule, we expect a coefficient
of B, larger than 1204, ;) <0to be negative ang, ;,to be positive. Estimations of the



coefficients using the linearized heuristic areegivn Table 4In this estimationsve take

the equilibrium values used in the mod& €10, 7,= 4, K,=100 anci=120).

Table 4. Coefficient estimates.

Bo BB
45C  -3.2 0.0¢

For analyzing the significance and polarity of frerameters using OLS, we estimate the
model of equation 17 using the softw&&.12.2. Table 5 shows:

1. The estimations fo('B("i)for each subject.

2. The estimations fd[r;(ivD after play the experiment using the average datssi
obtained per treatment.

3. The average values dﬁ(‘vi)for all the subjects that have significant values.
4. It shows the r2 values for all regressions.

A priori, we expected’B ©Dto be above than 1203, to be negative and3,;to be

positive. We can analyze these parameters matheatgtihowever, possibly it should
intuitive because the lower the supplier’s shipragtite higher would be the retailer’ orders

(By; negative). And, higher backlogs would indicate digppdelivery problems, and

therefore higher retailer ordergg;, positive).

The results show that a high fraction of models sagaificant (at 5%). For example, we
found significant values for the three parameters2% of the whole subjects. We observe
that just 40% of R-squares are larger than 0.48 &ppendix 9 for assumptions validation).
Table 5 also shows that the R-squares after runtiiegsimulator using the average
decisions are between 0.47 and 0.67. The coeffifiels consistent with our expectations,
with negative values and significant in the largajonty. We found significant values for
53%, 80%, 73%, and 67% in treatments T1, T2, Td, Bhrespectively. Also, most of the
signs (78%) of this parameter are negative. Onditer hand, the coefficierfi, has
positive values in the large majority (77%), witgrsficant values for 60%, 67%, 67%, and
60% in treatments T1, T2, T3, and T4 respectivdlge constant, is positive and
significant for the 88% of the sample.



Table 5. Coefficient estimates of decision rule for eachvittial for all treatments

Treatment 1

Treatment 2

Subject Bo | B: ‘ B2 ‘ R? Bo | B1 | B2 ‘ R?

1 120001 Of 0t 04¢ | 150911 2571 0211 026

2 5182 -272t 0311 018 | 238501 -217t 013t 0.74

3 15233t -335t 030t 016 | 17€03t -2.621 022t 0.0

4 15621t -8011 077t 06C | 41127t -295t 002 021

5 39¢561 124 035t 06C | 30C411 -145t 001  0.72

6 212211  -157 006 002 | 24€57t -128t 003  0.50

7 86561 -9.091 093t 071 | 34249t -206t1 002t 0.69

8 20065t -1.0C 004 002 | 26608 158 035t 0.11

9 14¢31t1 -585t 055t 031 | 42602t -1.991 -0.04f 0.89

10 236341 011  -011 005 | 267141 -3.89t1 025t 0.56

11 147571 008  -0.02 006 | 19¢241 -0.79 002 025

12 8649  -861t 0891 076 | 176311 -320f 0291 0.62

13 1083  -13¢ 025 072 | 18157t -3261 028t 038

14 20c311 -048  -002 001 | -50.04 197  -0.06 0.0

15 276.871 -4111 033t 02C | 18c95t -245t 018t 021

Average* | 157.22  -6.08 053 042 | 23688  -269 017 051

Using Average| 504 29+ .61t 059t 050 24474t  -1.99f 011  C
Decisions

Treatment 3 Treatment 4

Subject Bo | B | B | R Bo | B | B | F

1 221211 4431 036 015 | 407041 021 -0.121 0.89

2 397791 052  -0211 051 | 142261 248t 024 027

3 276591 -02¢  -007 004 | 283511 -368t 0221 0.62

4 196761 166  -024 00C | 5069  -3.661 040t 078

5 78391 -8061 083t 055 | 285541 -2.241 014t 0.15

6 492601 -3.08t -002t 072 | 256511 -217t 015t 0.14

7 212801 -1.0¢ 001 -0.03| 22168t -325t 025t 0.34

8 177.361 -7.461 072t 028 | 106621 -2.221 023t 0.30

9 212391 -365t 029t 0123 | 258721 055  -0.06 057

10 180941 -247t 017 008 | 12497t -1.09 008  0.01

11 204841 -643t 056t 051 | 11133t 101  -009  0.01

12 1597t 134t -0161f 035 | 195811 -4311 038t 057

13 20233t -557t 049t 044 | 14c76f -1.75t 015t  0.08

14 301771 -3.80t 0241 04€ | 156891 -1.08t 009  0.12

15 86.881 -3.47t 038t 024 | 94C 019 008 001

Average* | 21228 447 037 041 | 21z4¢ 281 022 031

USNGAVErage! 17019t 598t 056t 047 156861 -320t  0.291

Decisions

.65

.67



5.2. Panel Data Analysis

In order to control for variables we cannot obseovemeasure and to study omitted
variables that vary over time but are constant betwtreatments, we structured the data
from the experiments as a panel. It increasesfflegeacy of the estimations and improves
the representativeness of the decision rule anduats for individual heterogeneity. In
order to explain overall behavior, we assume thatcbvariance between variables equal to
zero and that there is occurrence of random effactess individual for each treatment
(Greene, 1997). The panel data showed in tableré eatimated using2.12.2.

Table 6. Coefficient estimates of decision rule for treatings panel data

Regressor Treatment 1 Treatment 2 Treatment 3 Treatment 4
: 100.75% 133.467 127.857 106.911
Bo(intercept) | 15 36 (11.96) (16.012)  (13.197)
. -3.916t -2.403t -4.371 -1.727t
B: (Capacity)| 4 435 (0.191) (0.483) (0.222)
0.413% 0.2261 0.433t 0.183t
Bz (Backiog) | 4 0a2) (0.016) (0.047) (0.019)
F-statistic 47.7325 93.0629 42.4084 44,9515
P - Value 2.22E-16 2.22E-16 2.22E-16 2.22E-16
R -Square
within 0.1377 0.2389 0.1228 0.1227
between 0.6276 0.5883 0.6504 0.5936
random| 0.1625 0.2745 0.1461 0.1535
N
Obsevations 495 495 495 495

t Significant at 1% and Standard error (SE) in péreses

The significance test of the model using the diatis shows that all thd® values are
smaller than 0.05, which implies that coefficieatg different than zero and we cannot
reject the model. The Table 6 also shows the Rrsguavithin, between, and random) for
each treatment. Despite the fact that the overaljirares are low for within and random, it
shows high between values, ranking from 0.58 fort@2.65 for T3. This means that
subjects tend to make similar decisions.

The coefficients in all treatments are highly sfgaint. Thes, coefficients are negative,
but the magnitude is lower than the expected vélable 4, Figure 6). On the one hand,
the B, coefficients are positive for all treatments bubwad 4 times higher than the

expected value (see Table 4). Finally, the constgitare close to 120 units and highly
significant for all treatments.



Figure 6 summarizes the information obtained in ghevious sections. First, we built a
box-plot using the estimated parameters obtainedallosubject in each treatment; and
second, the estimated parameters using the heutlsti mean values of the parameters for
each treatment and the panel data parameters @gstimare included in each box-plot. The
box-plots show a general distribution for each pester, indicating whether they are
skewed or not. For instancB; in T2 has a short plot and it is almost a symrogttot,
which means that the sample is compact and probtlelyestimations could have less
uncertainty. Figure 6 also shows that the 70% ef different kinds of estimations are
between the Q1 and Q3 in all treatments. This p¢age is not higher because all of fae
estimated values (with the heuristic) are highantthe experimental results. It means that
the heuristic is creating an overestimation of th@dependent parameter. However, the
results inf3; (Capacity coefficient) an@, (Backlog coefficient) show that the estimated
values using the heuristic are in general withrtgkt sign and also in the expected range
given by the boxplot and the panel data estimators.

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4
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Figure 6. Coefficient estimations of decisions Box plot, Idstic, mean and panel data
estimations

Given the estimations obtained with the panel (Baaral those obtained using the average
OLS (Adjusted AO), we insert and run them into $aene model of the experiment. Figure
8 shows the behavior of these runs over time. \seme that these simulations replicate
the pattern of behavior given by the actual subjebehavior (AO). However, the

magnitude of the oscillations is much lower in #®ulated ones. On the other hand, it can
be seen that the proposed heuristic (Heuristi@) aplicates the actual subjects’ decisions



in all treatments, with the underperformance presip described. However, the length of
the oscillations is different (Figure 7).
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Figure 7. Average Subjects’ Orders (AO), Simulation of thegwsed heuristic (Heuristic),
Adjusted model with Average Subjects’ Orders (AtgdsAO) and with Panel parameters
(Panel).

6. DISCUSSION AND FURTHER RESEARCH

In this paper, we develop a laboratory experimergxplore how subjects playing the role
of a retailer place orders in response to a surgmal customer demand. Subjects must try
to minimize cumulative costs, given by the sum dwpply Gap Cost and an Ordering
Cost, under ordering and capacity acquisition deldye explore the ordering behavior of



subjects facing two types of delays: retailer ardgrdelays and supplier capacity
acquisition delays.

To set a performance benchmark, we characterizeghmal ordering trajectory for each

experimental treatment. The optimal trajectoryiieg by a large initial order followed by

an exponential decrease that undershoots belowliarders, and a damped oscillation into
the final equilibrium of 120 units per week. The gnaude of the peak in the optimal

ordering trajectory varies across treatments, asing with longer system delays. Our
selection of cost parameters results in optimgédtaries with total costs driven by the
Ordering component (e.g., 98.5% of the total cosfEl), and retailers ability to close any
supply/demand gap.

Our experimental results show that subjects’ ordergate widely from the optimal orders.
Subjects fail to place sufficiently large initialders and also fail to reduce them quickly
toward the equilibrium. Instead, subjects orders kwer than the amounts initially
required but are kept high for longer than optimalhen subjects orders finally are
reduced, subjects do so in excess, under-ordeglayithe optimal levels. Despite having
access to complete system information, subjectse Hamited ability to process and
interpret the impact of delays and feedback onailveystem behavior. This is commonly
known as misperception of feedback (Sterman 198%&)expected, subject performance
differs per treatment, and in particular subjepistformance decreases with longer delays
and increased dynamic complexity (Diehl and Ster&28b). For instance, subjects’ orders
remain high longer than optimal and as subjects kacger retailer ordering delays (T3 and
T4) the duration of high orders increases furtheviating from optimal. These results
suggest that when possible, retailers should trgdorease the delays inherent in their
ordering processes. In doing so, retailers wouthlice the complexity of the system and
improve their ordering decisions and their ability manage any mismatches between
supply and demand. Our results, those shorteysldéad to simpler, easier to manage
systems, which yield to lower costs, are alignethwhose of Sterman (1989), Kaminsky
and Simchi-Levi (1998), and Gupta et al (2001).

The experimental costs also provide clues abousdlieces of subjects’ underperformance.
In general, cumulative costs are closer to optim&leatments with shorter delays (T1) and
further from the optimal in treatments with longaelays (T4). Comparing the costs
associated with subjects’ decisions with those fiagtimal ones, we note that subjects’
average performances vary from 400% to 1900% higjimen the optimal, with the best

(i.e., lowest) performance still being 33% highwaurt the optimal. In addition, subjects fall

to minimize Supply Gap during the experiment, imcwy the associated long-term costs.



For example, in Treatment 4, around 82% of the exib] total costs are given by the
Supply Gap component.

Given their limited processing and cognitive caphipeople make decisions translating
complex information into simplistic models, eithiey capturing essential features from
problems and not taking all the features into antoor by developing habits and routines
(Lazaric 2000; Simon 1982). Our econometric analgsiggests that subjects use a simple
anchoring and adjustment heuristic (Tversky andreatan 1974) to place orders.

Analysis of individual regressions had in genem@d model fit and also suggest that the
model explains a significant portion of the varlapiin the ordering data. In particular,
40% of R-squares were larger than 0.40. Furtherptbescoefficients of capacitKj and
backlog B) in the individual regressions have the expecigdss(negative and positive,
respectively) and are significant for more than 56Psubjects. Naturally, while heuristics
are simple and useful, they also can lead to ctamtibiases, limited search and resistance
to change (Leonard-Barton, 1992; Lazaric, 2000)prkrctice, managers should be careful
when relying on rules-of-thumb. In our simulatedpesiment, the adopted heuristic
performs substantially worse than the optimal, Whsaggests significant opportunity for
improvement.

The analysis of average decisions produces higtifisignce in the estimated parameters’
values and their expected signs. Moreover, thelmiata estimations show that the model
is significant and the coefficients of the variablgre significant and have the expected
signs for all treatments. Finally, we conclude ttreg differences among subjects do not
contribute to explain the unexplained variance.

This research could have some limitations regarthiegyuantitative application in systems

under uncertain demand, however we believe thetgtie¢ analyses should hold. On the

other hand, in order to extend and improve thelteguesented here, we thought in the
following ideas. First, given the optimal decisivajectory was obtained using simulations,
we would like to obtain mathematically a close faatution of this trajectory, and then try

to find a robust solution applicable in realistituations with uncertainty. Second, it could

be interesting to find out if subjects can learnm@ke better decisions and if so, do they
retain this learning over time or revert to oldtpais as time passes. Third, multiple
subjects could interact amongst themselves plaondgrs to the same supplier, whose
responses would be simulated by the computer. Forth simulator allocates available

supply in proportion to orders placed. Differerlbehtion mechanisms could be explored.
Fifth, subjects could be subjected to a differaygtdunction and potentially be exposed to
specific information cues. Finally, we could potaty analyze other kinds of heuristics.
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Appendix 1. Model specifications

Variable, Stock or Parameter Symbol Initial Value Units
Backlog of orders B 1000 Units
Cumulative Customer Orders De 100 Units
Cumulative Supplier Shipments Es 100 Units
Retailers’ orders RD 100 Units/wk
Supplier Shipments S 100 Units/wk
Supplier Capacity K 100 Units/wk
Final Customer Orders d 100 Units/wk
Retailers’ total costs TC 10 $
Supply Gap Costs Cyap 0 $lwk
Order costs C, 10 $/wk
Target Delivery delay I, 10 wks
Time to build Capacity Ty lor3 wks
Time Adjust Backlog Iy 4 wks
Linear Coefficient a 11 Dimensionless

Appendix 2. Instructions for T3 (in Spanish)

INSTRUCCIONES
POR FAVOR NO TOCAR EL COMPUTADOR HASTA QUE NO SE LE INDIQUE

Bienvenido, a partir de este momento usted hacte gk un experimento de toma de
decisiones, en el cual asumira el papel de gerdeteuna empresa mayorista. Su
responsabilidad esiinimizar los costos acumuladosal final de la simulacion del juego
(50 semanas), y de acuerdo a su desempefio obtengragonen dinero efectivo, de un
proyecto de investigacion patrocinado por la Ursidad Nacional de Colombia, Sede
Medellin.

Su decision semanal es definir cuantas unidaddsnar a su proveedor, con el fin de
cubrir toda la demanda de sus clientes (en el erpato, esta decision se toma en la
casilla ubicada al frente deDécision de Pedidds La decision que usted toma, sera
recibida por su proveedor tres semanas despuéslirada la orden y seran acumuladas en
un canal de 6rdenes pendientes. La capacidadlidigiproduccion de su proveedor es de
100 unidades por semana, sin embargo, el tiereplactdad de cambiar su capacidad segun
la 6rdenes que usted le realice, a mas ordenesrnmarsion en capacidad. El tiempo de
construccion de capacidad de su proveedor es dsammana. En caso de que su proveedor
no tenga la capacidad suficiente para satisfacensoesidades, este va a empezar a tener
retrasos en las entregas de los pedidos (maydi@semanas) y por lo tanto usted también
le incumplira a sus clientes.



Se incurre en costos cada semana por dos compsnente

1. Costo por Ordenar (CO)
. e . 2
co=L" (DeC|S|on Pedldos)
100c

Con una cantidad inicial de pedidos de 100 unidasite costo en la primera semana es de
$10.000.
2. Costo por Déficit o Inventario (CD):
* s \2
oD = 2 (Déficit)
100(

Con un déficit de 0 unidades, el costo en la prinsgmana es de $0.

De esta manera, el costo total acumulado CTA ssrfm de estos costos en toda la
simulacioén, asi:

CTA= i (co, +cD,)
t=1

Inicialmente, usted ordena 100 unidades por semanajal le permite a su proveedor
conservar un tiempo de entrega objetivo de 10 sasnaomo condicién inicial.
Recientemente, aplicaciones novedosas del produetoson un aumento en su demanda.
El incremento en la demanda sera permanente yrdehale 20 unidades por semana.
Dado que usted no estaba atento a estas nueveacapies, el aumento en la demanda lo
tomo por sorpresa y se da cuenta que su défiéitaesnentando y por lo tanto perdiendo
clientes y prestigio.

Usted iniciara por 3 semanas decidiendo 100 unidasleomo periodo de aprendizaje
Después su tarea es manejar la compafiia durasitadéacion, decidiendo cuanto ordenar
a su proveedor mientras que minimiza el costo smtamulado CTA.

PAGO: EIl pago sera en efectivo al final del experimef@orresponde a una suma por
participacién de $10000 mas una suma variable &ng $30000 en funcion del CTA, a
menor costo total CTA mayor pago.

NOTA: Por favor no divulgar informacion del experiento con sus comparieros para no
perder la validez cientifica del experimento.



GLOSARIO
(ACERCA DE LOS RESULTADOS QUE SE OBSERVAN EN “REPORTES”)

Seccion de Operacioneda informacion del sistema del mayorista (usted).

DEMANDA, [unds/sem]; 100 f———p 1
DEFICIT [unds]: Of——Pp12
UNIDADES RECIBIDAS [undsT: 100 [——p 3
TIEMPC DE ENTREGA [sem]: 10,00 [————p 4
UMDADES PEMDIEMTES POR RECIBIR [undsT: 1000 [—— 5

1. Son las érdenes que usted recibe de sus clientsdi Esta es la demanda que se debe
cubrir cada periodo.

2. Son las unidades que le faltan por entregar (segativa indicainventario).

3. Son las unidades que le llegan cada periodo al mségo(a usted) por parte del
proveedor y son con las que dispone por perioda gatisfacer la demanda.

4. Es el tiempo de entrega promedio de las 6rdenegados desde el momento en que
usted realiza las 6rdenes hasta el momento eraguedibe. El tiempo de entrega ideal
es de 10 semanas.

5. Acumulan la diferencia entre las Ordenes realizadéss recibidas por el mayorista
(usted) en el tiempo. Inicialmente usted tiene uaatidad acumulada de pedidos
realizados de 1000 unidades, que serian recibidos d00 unidades durante 10
semanas.

Seccion de Costoda informacidn acerca de cada componente de stsscos

COSTOS

[Fiunc]
POR ORDEMAR [$izem]: 1 10| ——Pp 5
POR: DEFICIT [$fsem]: 2 0|——p 7
COSTOS TOTALES SEMANALES [$isem] 10| ———Pp 8
COSTOS ACUMULADOS [$]: 0|———p9
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Appendix 3. Experiment Enviroment

Costos por la decisiébn tomada cada periodo.
Costo por tener inventario o deberle unidadesienid final ($/semana)
Es la suma de los dos componentes de los costaseathna.
Es el costo total acumulado en el tiempo CTA.

Appendix 4. Computer Interface (in Spanish)

CONTROL DEL
JUEGO

DECISIONES DE PEDIDOS

REPORTES

OPERACIONES

DEMANDA [unds/ser:

100

DEFICT [unds]

2501
2004

1004

PEDIDOS

Time.

SIGUIENTE SEMANA >>

100

10.00

1000

Semana: 1

COSTOS

300,
250
200
1504
1004

DEMANDA

— Unds Recibidas

Time

POR ORDENAR [S/sem;

10

POR DEFICIT [Sisem]:

COSTOS TOTALES SEMANALES [s/sem):

10

COSTOS ACUMULADOS [$]:

250

150
1004

COSTOS

— Por Déficit

Time

Appendix 5. The Powersim optimization details
Optimization formulation:

The model equations 1 to 8 reported previously rewalid. Hence, as payoff function
we used the variable TC (retailers’ total cost, $lettings used in this objective function in

Powersim Solver are:

Name: TC




Type: Min
Apply time: Stop
Weigth: 1
Divisor: 1

We have created a parameter for each period dedsidormulating the decision variables
(Rp: Retailers’ Orders). Hence each parameter is ustane specific period during the
simulation. We also reduce the searching spadeeioptimization, assigning an upper (500
units/wk) and lower (0 units/wk) bound to thesegmaeters (which are going to be
optimized). The settings used in this decisionalads in Powersim Solver are:

Name: RDt; fort: 1, 2... 46
Minimum: O

Maximum: 500

Apply time: Start

Simulation Settings:

Time unit: period

Time step: 1

Start Time: 0

Stop Time: 46

Simulation speed: Maximized speed

Integration: i order, Euler

Run count: 1

*The stop time was fixed in a higher number comgavéh the experiment stop time,
because we needed to avoid biased results at thefeine optimization. Hence, we run the
optimization with 46 periods, but for the analysis did not take into account the last 11
times.

Evolutionary Search Method:
The evolutionary search algorithms used by Powe®iiaer are licensed from Dr.
Nikolaus Hansen. The general settings used fooptienization are:

Maximum generations: 1000
Parents: 20

Offsprings: 100

Minimum convergence: le-10



Appendix 6. General description of the Optimization procesl&tonary search method.
The evolutionary search algorithms used by PowerSwoiver are licensed from Dr.
Nikolaus Hansen (Powersim Studio 8). However, tkaegal idea of the Evolutionary
search method is presented here:

This method, inspired by Darwin's evolutionary ttygas a goal-seeking process where
successive runs take place and where the bessiffou a run are used in the next run to
generate new inputs to a simulation and try to fireloptimum. This evolutionary research
method is based on the collective learning proeegsn a population of individuals (each
of which represents a search point in the spapetntial solution).

In a given time there aran representatives of a given scheme H (set of dewdhat are
taken into account during the selection step) adetkin a population.

m=m(H,t) (A1)
If nis the population size(H) is the average sample fitness value of the chtiat
represents the H scheme in t, alffis the sum of the aptitudes of all possible chains
effect of propagation would be given by:

f(H)

m(H,t+2) =m(H,t)——7; where f :anj (A2)

During the calculation of fithess, the evaluatiohobjective function values is always
necessary, such that the information is availahtk @an easily be stored in an appropriate
data structure. The population is arbitrarily @ized, and it evolves toward better and
better regions of the search space by means obmaimdd processes eélection mutation,
andrecombination The environment delivers quality informatiffitness valuepbout the
search points, and the selection process favosetimalividuals (solutions) of higher fitness
to reproduce more often than those of lower fit(@sgk, 1996).

Including the effects of mutation and recombinatie can express the propagation
scheme based on the following fundamental theorem'

m(H,t+1) = m(H, t) f(H)[ |_ .

Where R is the recombination probabilitgH is the scheme length, L is the chain length,
Pn is the mutation probability and O(H) is the numbé fixed positions within a given
scheme. The recombination mechanism allows thenmiif parental information while
passing it to their descendants, and mutation diotes innovation into the population.
Both mutation and recombination can essentiallydakiced to local operators that create
one individual when applied (Back, 1996). The smtioh model is run many times with
new sets of input values to produce a satisfaatesylt. The method discards the poorest

-O(H)PR, } (A3)



results, and selects the best results as new schdnsescheme is used to form offspring
for the next generations. An evolutionary searaorihm is repeated until the optimal
solution is found, reaches a user-specified lirhigenerations or until the result is below
the specified minimum convergence rate.

Appendix 7. Residual analysis for each subject performance.

While the experiment was run with more than 15 pee@er treatment, we removed a few
outliers through statistical analysis. The behawbexcluded subjects’ deviated markedly
from those of other subjects. In particular, somewled subjects placed a few orders of a
dramatic magnitude (e.g., order decision of 900i@siweek, 90times above initial). The
removal of these subjects does not change the lbvesalts obtained, but they prevent our
statistical analysis to be swayed by these extregses. In the presentation of our results,
we consider the 60 remaining subjects, 15 perrreat (as shown in table 2). The figures
below graphically summarize for each treatment eaglbject’'s residuals after
econometrically fitting their orders by the propod$euristic. The graphs for each treatment
display the 15 remaining subjects’ residuals, betw2 and -2 standard deviations, whose
data were used in our statistical analysis.
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Figure Al. Residual analysis for each subject performance

Appendix 8. Model Behavior

In order to analyze the model behavior, we simuthte model for 30 weeks. Initially,
during the first 3 weeks, the model is set in dyaequilibrium. For this reason, the
backlog, retailer's orders and capacity are fixedheir initial values. Thereafter, we
introduce a permanent 20% step increase in fingtiocoer demand (see Figure A2 — black
dashed line) in order to gain intuition about mdukhavior.

With the anchoring and adjustment heuristic foaitet’'s ordering behavior the increase in
final customer demand leads to an over-reactioretaiilers’ orders (see Figure A2 — blue
dashed line). These retailers’ orders exceed sapphpacity and cause an increase in
backlog. As backlog increases, retailers experidonger delivery delays, the supplier
cannot meet all retailers’ orders with the normalivéry delay, and therefore, retailers
inflate more their orders. Due to this increasethe backlog, the supplier invests in
capacity orders (see Figure A2 — continuous graes) o meet the increase in retailers’
orders, but it takes time before the investmemjpacity allows the supplier to meet actual
demand.
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Figure A2. Model behavior (withr; =6, = 12,7, =1)

When capacity increases high enough such that mgtgshipments equate incoming
orders, backlog reaches the maximum value. Thésleetorders peaks is mostly influenced
for the shipments receive from the supplier, fa& kbng delivery delays faced and for the
guantity of orders previously placed. At this pouiesired capacity also peaks and capacity
investment turns to divestment. As the suppli@stto meet inflated orders from retailers, it
dramatically overinvests in capacity. The boom-andt in supplier's capacity and backlog
represent the reference mode of the system. Wheg dustomer demand increases by 20%



for one year, supplier backlog and capacity in@essove 40% to final equilibrium levels
(Figure A2).

Appendix 9. Validation of econometrical model assumptions

In order to accept the model and the found parasienee should also assure that the error
has normal distribution and constant variancehérext figure, we use a simple graphical
normality test for the residuals. The residual adjip a straight line, especially in the
middle of the graph. So we can say the normalisuaption might be satisfied for these
data.
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Sample Quantiles
Sample Quantiles

Theoretical Quantiles Theoretical Quantiles

Treatment 1 Treatment 2

Normal Q-Q Plot Normal Q-Q Plot

Sample Quantiles
Sample Quantiles
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Treatment 3 Treatment 4
Figure A3. Normality Analysis per treatment



In the other hand, we use another graphical testder to analyze the residuals variance.
The next figure shows that the points in the pkaem to be fluctuating randomly around
zero in an un-patterned fashion. Thus, the plots ndd suggest violations of the
assumptions of zero means and constant variante eandom errors.
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Figure A4. Variance Analysis per treatment

As we show, the parameter estimations are signifieend the residuals satisfy all the
normality restrictions. In fact, we would like tesaure that there is not exist multicolinearity
between the variables, because multilinear vagabbatain the same information about the
dependent variable and actually quantify the sanempmenon.

In the next table, we find the largest and smallggenvalues for each data and the ratio
between them (condition number). Condition numlietie table shows numbers less than
100, it suggests there are no serious problemsmutkicolinearity.



Table Al. Econometrical model selection

Condition
Max Eigen Min Eigen number
Value Value (Max/min) AIC Initial | AIC -x1 | AIC -x2
T1 1,956 0,044 44,619 196,56( 223,880 230,490
T2 1,838 0,162 11,375 170,15(¢ 179,180 198,760
T3 1,976 0,024 83,463 203,99( 221,530 224,840
T4 1,871 0,129 14,490 231,30( 269,640 269,960

Finally, the table also shows tiAdaike information criterio{AIC), it is a measure of the
goodness of fit of a statistical model. The AIGhi a test of the model in the usual sense
of hypothesis testing; but, it is a tool for modelection. In the table, we have three values
of AIC: 1) The model using x1 and x2, 2) the modé&hout x1 and 3) the model without
x2. The best of the three models is chosen acaprdirthe lower AIC for each treatment.
From the AIC values one may also infer that thertagalels are roughly using x1 and x2.



