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Abstract 
 

In the formal modelling of problems, a variety of techniques and approaches have 

been developed. Although at times this diversity has caused misunderstandings 

between groups there are now many examples of dialogue between approaches and 

fruitful ventures as the result. These experiences are gradually developing the 

principles of a multi method form of modelling, which, seeks to analyse, accommodate 

and benefit from the features of more than one modelling approach in a single study. 

However, different modelling systems have different underlying principles and it is 

important to recognise these in order to avoid the unsafe translation of ideas and 

prejudices from one system to another. This paper looks at two seductive pitfalls: 

Comparing system dynamic models with analytical differential equation models and 

treating the concept of „randomness‟ as if it were the same across modelling systems 

The potential for misunderstandings is underlined with a few examples from 

established literature. 

 

1. Introduction 
Modelling based on sound mathematical principles is well established in what Wigner 

(1960) calls its “unreasonable effectiveness”. Modelling when applied appropriately 

support the solution of problems and the understanding systems where such qualities 

are lacking. Within the sphere of model construction and realisation many approaches 

and techniques exist, each suggesting different ways of looking at a given problem. 

As such models are now, typically, solved numerically using software they provide a 

very direct realisation of the metaphor claiming computers as “bicycles for the mind”; 

extending the limits of human reasoning to the questions within our conception, yet 

previously beyond our reach.  

 

There are a growing number of examples where different forms of modelling enter a 

dialog in search of some fruitful co-operation. Early examples of these conversations 

were often sterile or bruising affairs. Recently however, a succession of studies has 

explored the relationship between different modelling methods, mapping both their 

differences and areas of common interest. While this work has prompted some 

interesting discussions, reshaping and transcending methodological boundaries, 

modellers would do well to tread carefully. Beyond the variously distinct methods, 

literature which tackles abstract modelling in general terms warns that there are 

dangers in our assumptions that ideas will translate neatly between those different 

worlds. Our basis for discussion will be „touchstone texts‟, established literature for 

the field, rather than the modellers opinions or prejudices. 



 

This paper aims to explore a number of dangers, or pitfalls, which come into play 

when comparing and combining modelling approaches. The first pitfall explored is 

the differences in models based on their conceptualisation. To illustrate this we 

compare a System Dynamics model of the type described by Sterman (2000) and an 

Ordinary Differential Equation model of the type described by Boyce & DiPrima 

(2005) and present how the different approaches impact what should technically be 

equivalent studies. Next we focus on the concept of randomness and how it is 

presented in a variety of modelling approaches. Using an inherently stochastic 

problem, the tossing of coins, key underlying concepts in each method are exposed. 

Additional some examples of incautious comparisons of those falling into the traps, 

are examined. 

 

2. Conceptualisation in SD and ODE models 
 

Consider the proposition: “How can System Dynamics (SD) models and Ordinary 

Differential Equation (ODE) models be compared?” To many this question is plainly 

a tautology. Surely SD models are simply a form of ODE model and those who are 

not aware of this are sadly under educated. Indeed, in mean company such a question 

may even attract contempt or derision. Reactions also lean the other way too; ODE 

and SD models are not made to be compared. One is a simulation with a graphical 

form the other is simply an equation to be solved analytically or using a computer 

based tool. However on closer examination the issue is not so straight forward. 

 

ODEs as described in texts such as Boyce & DiPrima (2005) or Mesterton-Gibbons 

(1995) are a fundamental approach for applied mathematicians they are used to 

predict the change in relationships between quantities and are also used across a wide 

range of areas including applied sciences. As well as their equation form they may 

also be presented in their „box diagram‟ form. 
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The system of equations for this Volterra population model above would be 

represented in box form as seen in figure 1: 
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Figure 1 Box diagram for Volterra population model 

 

Their long heritage means that they are often still solved analytically and in contrast 

to SD models guidelines on their formulation are covered only briefly in the literature. 

They have a plethora of classifications many related more complex variants. None the 

less, Forrester (1961) states that, SD models are essentially systems of ODEs typically 



with non linear properties. One might assume therefore that valid ODE models and 

valid SD models would be equivalent. Such an assumption would, I suggest, be a 

pitfall as it ignores the important role of conceptualisation inherent in the two 

different styles. 

 

Consider, for example, the differential equation model for the spread of diabetes in 

Morocco of Boutayeb, Twizell et al. (2004) presented as a box diagram in Figure 2. 
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Figure 2 Differential equation model from Boutayeb (2004) 

 

I is the diabetes incidence rate, D is the population with diabetes, C is the population 

with treatable complications. Constant coefficients are used to describe the fractional 

rates of exchange between populations; μ is the natural mortality rate, λ is the rate at 

which complications are developed, δ is the rate at which complications become 

severe and untreatable, ν is the rate of mortality due to complications, γ is that rate at 

which people with complications recover through treatment. 
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Figure 3 Diagram from Boutayeb et al (2004) adapted to system dynamics form 

 

In an experiment undertaken at the 2006 UK System Dynamics Society annual 

meeting, participants were asked to look at a System Dynamics model translated 

directly from Boutayeb, Twizell et al. (2004) presented in Figure 3. The original 

model uses first order differential equations, the same as those underlying an SD 

model and therefore the two models can be considered exactly equivalent. The 

participants, comments and complaints focussed on the following issuesl: 

 



 Lack of sophistication in segmenting populations. 

 Lack of causal relationships accounting for the rates of movement.  

 Lack of points of intervention; areas in the model where change could be 

affected. 

 

These observations could be explained in terms of the differences such as tractability;  

The simplicity of segmentation may be related to tractability issues. Since no 

endogenous feedback hypothesis is required the causal structure, that would typically 

be included supporting the dynamic hypothesis of a System Dynamics model, is 

unnecessary. The missing points of intervention are unnecessary in a differential 

equation model as the iterative experimentation cycle, typical in a based method 

simulation method is not applied. However perhaps there is something more at the 

root of these observations; an implicit assumption about the purpose of modelling.  

 

The model of Boutayeb, Twizell et al. (2004)is adequate for its stated purpose; “to 

show that investment in primary health care is a necessary and cost-effective strategy 

[in order] to control the incidences of diabetes and its complications”. Its model is 

very concise, particularly the equation form and therefore easily communicable to an 

audience of mathematicians. The intention of the model is to describe the level of 

incidence rather than to investigate the dynamics of the problem or the effects of 

policy changes.  

 

The example may demonstrate a relationship between the purpose, what the model is 

intended to do, the conceptualisation, which part of the problem are important, and the 

process,  how the purpose is realised. All three are influenced by the choice of method. 

In Boutayeb, Twizell (2004) the segmentation of the Differential Equation model was 

addressed in a separate section by redefining the model using partial differential 

equations with age as a second independent variable. This approach has no direct 

equivalent in System Dynamics and therefore could not be suggested by practitioners 

of that method. 

 

On the whole then, although the models appear to be equivalent the guidelines for 

using the two different methods, in terms of how you reason about the problem, 

collect and manage data differ enough the a good enough model in one world falls 

short in the other. The pitfall here is to underestimate the subtle complexity the 

established modes of conceptualising the problem have on the finished model. The 

next section looks at how five different modelling methods manage to incorporate the 

concept of randomness and into their models.  

 



3. Considering the Role of Randomness 
 

A typical division when considering the properties of modelling systems, is made 

between the stochastic and the deterministic methods. Conventional wisdom would 

suggest that such categories make it easier to choose between methods, or judge 

approaches for their compatibility in advance of their use. However the role of 

randomness in modelling varies considerably. A closer examination of the issue in 

each case reveals some underlying principles different systems of modelling. In this 

section we shall consider five different approaches Differential Equation Modelling, 

System Dynamics Modelling, Stochastic Process Modelling, Econometric modelling 

and Discrete Event Simulation modelling. 

Differential Equation (DE) Modelling 

A superficial assessment of DE modelling, typically classified as a continuous, 

deterministic approach, finds that the approach does not use randomness in models. 

This perception may be because classical DE models are often applied to problems 

that are intrinsically continuous and deterministic, however differential equations, as a 

field of mathematical study, are very diverse. A special class of DE, Stochastic 

Differential Equation (SDE) models, include at least one stochastic process term in 

their definition. The role of the stochastic term is typically to model error or variation 

from the deterministic value of the equation (Gard 1988, Øksendal 2003). 

Additionally difference equations, which model similar patterns of behaviour using a 

discrete time step, are well established and (Edwards 2001) among others 

demonstrates their use although their appearance in modelling texts is less frequently. 

The majority of DE models used in teaching, and perhaps in practice, are classical DE 

models rather than difference equations or SDEs. 

 

Classical DE modelling is often applied to problems, such as motion, mechanics and 

other applications in the physical sciences and was originally, as (Boyce, DiPrima 

2005) notes, the main reason for their development. In these applications continuous, 

deterministic behaviour is satisfactorily described by continuous deterministic models. 

However for models where uncertainty, or human agency, is present such as 

population growth, epidemics and similar problems, continuous deterministic 

descriptions appear inadequate. For example the problem of whether an infectious 

illness is caught on exposure appears to be a discrete, probabilistic problem.  

 

The use of classical DE models in such problems rests on what (Dym 1980) call the 

„continuum hypothesis‟ whereby the model is formulated so that the main subject is 

treated as a field or continuum regardless of its observable composition. Using the 

example of a traffic flow analysis model (Dym 1980) details some of the requirements 

and restrictions the continuum hypothesis places on the formulation of the model. For 

example measures of traffic flow, and traffic density are in the model are based on 

aggregate values with appropriate scaling to maintain the continuum hypothesis. The 

DE model in this case has a necessarily macroscopic outlook. With the continuum 

hypotheses established, by virtue of the Strong Law of Large Numbers, a probability 

distribution is replaced by a flow equivalent to the mean value of the distribution.  



The Coin Tossing Problem 

To illustrate the role of randomness in different systems of modelling consider an 

inherently stochastic problem, such as tossing coins. Imagine a scenario where coins 

arrive at a rate t. The probability of a coin showing heads is p and the probability of 

showing tails is q. Those that show heads are placed in basket H and those showing 

tails placed in basket T.  Models can be made in each system to investigate the 

contents of the baskets H and I after a fixed period of time t has elapsed, assuming 

that both assuming p and q have the value 0.5. 

 

                                                                                                                                                                                                                                                                                                                                                                    

The DE model for the Coin Tossing problem has the form presented in Figure 4: 

 
Figure 4 Differential equation model of the Coin Tossing Problem 

 

In accordance with the continuum hypothesis, assuming p and q to be 0.5 does not, in 

this case, assert that all the coins are fair, rather that on average they are fair.  

 

System Dynamics (SD) Modelling 

SD models have a strong relationship with classical DE models and in practice 

representing randomness in both approaches is similar. The effect of variations 

considered random in the micro scale may be averaged into flows as with DE models. 

For example modelling the coin tossing problem using SD constructs (Figure 5) 

appears very similar to the DE approach. Both rely on the continuum hypothesis 

although in the case of SD implicitly so.  

 
Figure 5 System dynamics model of the coin tossing problem 

Randomness is rarely included explicitly in models and the reasons why capture some 

important properties of the approach. Because of the way SD models are structured 

where, random inputs to the system do occur they are often smoothed out by the effect 
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of delays and aggregation (Forrester 1961). SD modelling also assumes an 

endogenous feedback-based hypothesis about the behaviour of the problem. The 

premise is that the behaviour of the problem can be explained by the interaction of 

internal variables. Complex system behaviour may be explained through the non-

linear dynamics of a model‟s feedback structure whereas such behaviour may be 

described as randomness in the absence of any other available explanation. The 

endogenous feedback hypothesis favours the inclusion of a closed information 

feedback loop in the model, including as many of the causal variables as necessary to 

understand the behaviour of the problem. As a result (Sterman 2000) argues that 

genuinely random behaviour is uncommon: “Many variables appear to vary 

randomly. In most situations, randomness is a measure of our ignorance, not intrinsic 

to the system…. When we say there are random variations in , say, the demand for a 

firms product, what we actually mean is that we don‟t know the reasons for these 

variations…people tend to call the residual random as if the customers were somehow 

rolling dice to decide whether to buy the product” 

 

However, the effect of exogenous randomness is treated differently. After the 

feedback properties in the model have been established (Forrester 1961) recommends 

the use of randomness or “noise signals” in the system inputs to test the its robustness. 

(Sterman 2000) describes how noise can be used to excite the latent dynamics in a 

model or unfreeze a system stuck in local optima. 

Stochastic Process (SP) Modelling 

It may fairly be claimed that randomness is a pre-requisite in order for SP models to 

be used effectively. The form and structure of SP models is diverse, discrete and 

continuous forms are equally common and SP models can also consider the stochastic 

properties of individual occurrences as well as macro level trends. However in all SP 

models randomness is the key generating principle by which problems are described, 

represented and solved. An integral part of the approach is to characterise and bound 

randomness in the behaviour or state of the problem over time. The use of SP 

modelling in uncovering deterministic properties of stochastic problems is a common 

application. Mesterton-Gibbons (1995) and Bunday (1986) demonstrate the use of 

calculus and SP modelling find the underlying stationary distributions of some SP 

models. 

 

Uncertainty, or randomness, in the problem is modelled by random variables in the SP 

model. As Edwards (2001) describes, an appropriate pattern or distribution must be 

assigned to each variable in the model building process. Once constructed the SP 

model may provide incite into three key issues; What are the possible behaviours or 

states for the problem? What is the probable behaviour or state for the problem? How 

probable is a given state or behaviour? 

 

In discrete models, without the continuum hypothesis restriction, it is relatively easy 

to model micro level uncertainty. For example for in the Coin Tossing problem the 

behaviour of an individual coin can be described at micro level using a simple 

Markov chain model (Figure 6); 
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Figure 6 Markov chain model for tossing an individual coin 

However the Coin Tossing problem as originally presented could be modelled using 

the binomial distribution. This is a discrete probability distribution that models events 

with two possible outcomes. 
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Based on the original values of p and q the model expects 500 occurrences of heads 

from 1000 instances of tossing the coin. It is possible to test the validity of the model 

using statistical methods using samples from the population if necessary. Notably in 

this model the assumption is that all the coins are fair. In the case of the Coin Tossing 

problem, with certain limits, the continuous normal distribution it is considered an 

acceptable approximation to the discrete binomial distribution creating a continuum 

hypothesis for the model. 

Econometric Modelling 

Most principles of economic theory are deterministic, describing a concrete 

relationship between variables that behave, ceteris paribus, as described by theory.  

Begg, Fischer et al. (2005) provides the example of the Keynesian macro-economic 

consumption function relating spending, with household income. 

cYAC   

Where C is total Consumption, A Autonomous consumption, c the marginal 

propensity to consume and Y household income.  

However econometric modelling and econometric methods, integrating theory with 

data and statistical techniques is very diverse with many variations available to the 

modeller. All econometric models are based on observed data and the role of 

randomness in data analysis is central, if occasionally not fully acknowledged; many 

courses in econometric modelling require advanced study of statistical distributions 

and probability theory as a prerequisite. Structural models must account for 

uncertainty in the relationship between the sample and population data. An analysis of 

sampling theory is beyond the scope of this study however Cuthbertson, Taylor et al. 

(1992) and Greene (2003) address how properties of sample data affect the estimates 

of the β coefficients in regression models.  

 

Structural models also must account for uncertainty, usually called error or 

disturbance, in the accuracy of the observations. Cuthbertson, Taylor et al. (1992) 

describes the structure of a Classic Linear Regression Model (CLRM) of the 

Keynesian consumption function. 

tt xy   21  

Where the εt term represents the quantity of error.  



 

The most common approach in structural models, such as CLRMs, is to consider this 

error as stochastic, belonging to a normal distribution with a constant finite variance 

and a mean of value of zero. Like the other structural variables error terms are 

considered to be independent of each other and non-auto correlated. Greene (2003) 

examines the statistical principles that support these assumptions and examines the 

issues of auto correlated error in the context of time series. 

 

Cuthbertson, Taylor et al. (1992) describes time series data, used to create 

econometric models, as the realisation of a stochastic process. As such, time series 

models such as AR, MA and ARMA models, described in Chapter 3, propose a 

structure for a stochastic process that produced the time series data. AR models 

consider the effect of autoregressive stochastic elements over a specific number of 

time periods. MA models consider variation on a mean value plus stochastic elements 

over a specific number of time periods. ARMA models include both properties. Terms 

in the proposed models still require residual coefficients to be calculated form 

observed data. 

 

Although stationary time series models are the most common use of stochastic models 

in econometrics texts (Greene 2003) also includes non stationary processes such as 

random walks. Few texts advise under what circumstances such models are necessary 

however. The use of time series modelling in econometrics is a method for focussing 

solely on behaviour rather than cause or correlation they are therefore used analyse 

variables with poorly understood or innumerable influences, such as stock prices. 

 

The practical use of randomness in econometric models then is either as a tool to 

account for error or as a method to analyse data without proposing a causal structure 

for the underlying behaviour. Modelling the Coin Tossing problem using 

econometrics requires data observed by tossing a real coin and the proposal of a 

model that fits the observed behaviour. (Cuthbertson, Taylor et al. 1992) describes an 

equivalent problem where observed data is used to produce the Maximum Likelihood 

(LM) of the overall behaviour of the coins.  

 

It is hypothesised that the data belongs to a binomial distribution. The total number of 

heads observed is H and the unknown probability of a single observation of heads is 

П. From the definition of the binomial distribution the probability, P, of H 

observations in n tosses is given by. 
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Based on experimental observations where 518 occurrences of heads in 1000 trials. 

(Cuthbertson, Taylor et al. 1992) suggests that the modeller may experiment with 

values of П as 0.1, 0.2, 0.3 etc in order to find the value that given the highest value of 

P based on H=518 n=1000 however demonstrates that the LM, can be found by taking 

the first derivative, equating it to zero and simplifying to give. 
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Discrete Event Simulation (DES) Modelling 

For DES models, by contrast, stochastic behaviour is a key generating mechanism. 

DES modelling is supported by the assumption, that accurate imitation of the problem 

is sufficient to understand its behaviour and randomness, real or metaphorical, has a 

direct role in both the internal description of the model and the overall behaviour of 

the problem.  Although software is a flexible medium and DES models are able to 

include any behaviour that can be encoded, deterministic or stochastic, from the 

literature implementing random behaviour is clearly central to DES modelling. The 

description and implementation of random behaviour within the DES model is the 

subject more than 70 pages in (Banks 2001) and almost 200 pages in(Law, Kelton 

1991). 

 

The implementation of randomness in DES models is distinct to that in SP models.  

Whereas SP models conceptualise randomness, DES models actually recreate the 

random behaviour. DES models reproduce the behaviour rather than just describe it. 

The behaviour of the elements within the problem, described by random processes, is 

imitated in the model. The generated behaviour is then analysed to understand how 

the elements interact to create the overall behaviour of the problem.. In many ways 

randomness in DES models could be considered the inversion of the econometric time 

series approach; Rather than starting with data, proposing structure and analysing the 

relationship in DES stochastic structure is proposed and integrated, data sets are the 

then generated and these are analysed, using statistical methods, to understand the 

overall behaviour. 

 

A DES model of the coin tossing problem, created using Arena, simulated the tossing 

of individual coins, randomly assigning values of heads or tails. Each run of the 

model, using a different set of random numbers, produces a different outcome and 

over successive runs collecting and statistically summarising the data the original 

distribution is confirmed. 

 
Figure 7 Discrete event simulation model of the coin tossing problem 

Establishing distributions in the problem and choosing appropriate distributions to 

generate behaviour in the DES model is therefore very important. (Law, Kelton 1991) 

provided examples of 18 different probability distributions that may be used in  

models. 

 

An insufficient knowledge of the workings and literature of other modelling methods 

can lead to confusion and increased risk of modelling failure. Unfortunately poorly 

formed models produce results just as the well formed ones do, the difference is their 

usefulness. Our final excursion looks at the kind of mistakes it is possible to make if 

your view of other modelling methods is developed without sufficient reference to 
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that systems core principles and techniques. They may cause the practitioner to 

misfomulate the model misread the results and miss important truths in the 

comparison. 

4. Conceptual Traps for the Unwary  
 

Modellers of different backgrounds are often prone to misunderstanding other 

approaches because of misconceptions of how those methods really work. Most 

modellers will have at least a superficial knowledge of other approaches and this of 

itself may be the cause of some confusion. (Meadows 1985) suggests that common 

misunderstandings, and conflict, in comparing models and modelling approaches 

stems from an unconscious tendency to judge the models and  methods of one system 

according to the principles and assumptions of another. For example, for practitioners 

using methods where a significant amount of data is collected prior to modelling, 

models formed from conceptualised relationships may seem to lack an evidence base. 

For practitioners of methods that emphasise causal mechanisms, models based on 

randomness may seem less than convincing.  

 

It is also possible that the full range and ability of an approach is not recognised even 

by its practitioners. Structural econometric models, for example, are sometimes 

portrayed as proposing linear relationships between the independent variables of the 

problem however, as (Greene 2003) makes clear, the underlying theory requires that 

only a linear function of the variable is compared, provided that the number of 

observations tested is sufficiently large. Other statistical techniques may be used to 

relax the assumptions of the simplest forms of linear regression. Such misconceptions 

are perhaps understandable in observers from other methods however it s not 

uncommon for practitioners to not fully understand the capabilities and assumptions 

of their own method. (Meadows 1985) refers to as the “selective blindness” of 

working within a particular system. 

Flawed Analysis, Misleading Conclusions 

In some cases a superficial appreciation of a particular method, coupled with analysis 

based on the values of a different one, are the cause of the misleading conclusions. 

(Atherton, Borne 1992), a general reference work on modelling and simulation 

discusses system dynamics during the entry for „Ordinary Differential Equations‟. 

“Biologists and Sociologists […] are often not well trained in numerical mathematics. 

For such individuals Forrester developed his method of rates and levels”. 

This is apparently a misunderstanding; arguably rates and levels have a more 

significant role in system dynamics modelling than simply to make up for a lack of 

mathematical training on the part of the modeller. Many relationships have non-linear 

properties which require considerable skill to conceptualise and solve mathematically. 

Rates and levels provide a form of conceptualisation that allows the modeller to focus 

on the qualities of the problem rather than the mathematical detail of the model. They 

also enable actors in the problem, who may not be trained in mathematics, to 

contribute to the construction and verification of the model. 

 

On reproducing the method from (Forrester 1961) for calculating level equations 

(Atherton, Borne 1992) states “This is obviously nothing but a reformulation of 

Eulers‟ integration. However, persons with weak mathematical background seem to 



be more at ease with the terms rate and level than with the term differential equation”. 

The failure of (Atherton, Borne 1992) to recognise any benefit of the approach, aside 

of an avoidance of complicated mathematics, is apparent. The use of Euler‟s 

integration, as the simplest and most well known numerical approximation, appears to 

play a role in this reasoning. Students of differential equations are well aware of its 

weaknesses and the relative strengths of more accurate alternatives such as Runge-

Kutta (h5). (Boyce, DiPrima 2005) devote a whole chapter to comparing Euler and 

other numerical solutions to differential equations. Although it is not certain (Atherton, 

Borne 1992) may be reflecting on the choice of an elementary numerical  

approximation as evidence of mathematical naivety.  However, the position of 

(Atherton, Borne 1992) overlooks that many system dynamics modellers are aware of 

other approximations and indeed the short comings of the Euler method. They offer 

the following reasoning for its use “In models of social and human systems the errors 

in initial conditions, parameters and especially model specification are large and the 

data [the model may be compared with] are often corrupted by significant 

measurement error. In such cases Euler‟s errors are inconsequential” (Sterman 

2000).  The Euler method is not integral to the system dynamics approach and most 

modern SD software offers a choice of numerical algorithms including both Euler and 

Runge-Kutta (h5). In the choice between methods it is left to the modeller to prioritise 

model execution time or accuracy of calculation. 

 

On the limitations of the Euler method (Sterman 2000) states “Euler integration is 

simple and adequate for many applications. However there are some systems and 

some model purposes, particularly in engineering and physics where Euler is not 

appropriate”. The comments of (Atherton, Borne 1992) may be based on the 

assumption that physical problems are the primary application area for both systems 

of modelling however this is not the case. 

Conflicting Assumptions 

In discussing the problem of using of expected or mean values in a model rather than 

considering the stochastic behaviour (Bartholomew 1973) states “Such calculations 

tell us, in an average sense what would happen if the model were allowed to operate 

and in this sense may be said to simulate the process…extensive use has been made of 

[such simulation techniques] by Forrester and his colleagues at the Massachusetts 

Institute of Technology”. The author appears to overlook two critical assumptions of 

in system dynamics modelling; Firstly, the Strong Law of Large numbers is deemed 

to apply and on that premise a distribution may be substituted by its mean. Secondly, 

in system dynamics modelling the basis of the dynamic behaviour is the complex 

causal relationships rather than stochastics. It is assumed, implicitly, that the 

phenomena of interest are behaviours produced by the interaction of causal trends and 

therefore simulation “in an average sense” is an appropriate way to examine them. 

The methods of (Bartholomew 1973) by contrast implicitly assume that phenomena of 

interest are produced by the interaction of stochastic behaviours in the problem. 

 

The cases cited above demonstrate that, whatever the facts unguarded comments may 

live on to haunt their owners, if nothing else live on. The essence of the multi method 

approach is that understanding concepts from other methods improves one‟s own 

practice. Rash comments are as much a pitfall as misunderstanding the problem in this 

case. 

 



5. Conclusions 
 

The opening section discussed the promise of increased fruitful dialogue between 

methods developing to establish a diverse skill set for modellers based on multiple 

perspectives The key role of conceptualisation was identified as a discriminating 

factor in transferring knowledge, skills and good practice. Expanding the range of 

techniques we saw how random features of a problem were incorporated into different 

models, suggesting different uses according to the properties of the problem. Finally 

we looked at how even the most experience and senior practitioners can be caught out 

if now fully aware of the quality of the comparisons they are making.  Although multi 

method approaches are still gaining credibility there are already some guidelines we 

can identify to avoid the most obvious mistakes. 

 

Future work in this area would include the exploration other areas such as how 

different systems, use data and the role of iteration in the development of models. 

Techniques currently gaining popularity such as agent based models would also be 

interesting for comparison. 
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