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Abstract 

There has been a renewed interest over the last few years in limits to various earth bound systems and 

processes. This has been instigated by the work of Rockström and colleagues on planetary limits. 

Essentially, the planetary limit concept can be understood as a modern update to the seminal system 

dynamics work on limits to growth. The central idea of planetary limits is to identify thresholds in various 

earth bound systems and processes that, if crossed, would push the earth system out of its Holocene state. 

This work has been criticized for overlooking key feedbacks between the various earth bound systems and 

the ignoring the uncertainty that is intrinsic to any assessment of these limits. In this paper, we address 

these issues by using integrated system dynamics models in an exploratory way. We demonstrate this 

approach by investigating limits to planetary fresh water use using two world water models, namely 

ANEMI and WorldWater. The initial results suggests that sever water shortage is driven by the need to 

dilute waste water, and food demand and production. We discuss directions for improving the overall 

methodology and the case specific application.  

1 Introduction 

In the Nature article ‘A safe operating space for humanity’, Rockström et al. (2009) introduce the concept 

of a safe operating space for humanity. A safe operating space is the space for human activities that will 

not push the planet out of the ‘Holocene state’ that has seen human civilizations arise, develop, and thrive. 
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The concept is inherently anthropocentric and excludes non-human events and processes that could push 

the planet out of the Holocene state. Rockström et al. have identified nine earth-system processes and 

associated thresholds which, if crossed, are expected to generate unacceptable environmental change. 

These include climate change, rate of biodiversity loss, interference with the nitrogen and phosphorus 

cycles, stratospheric ozone depletion, ocean acidification, global freshwater use, change in land use, 

chemical pollution, and atmospheric aerosol loading. For all nine earth-system processes identified 

associated preliminary boundaries are given by Rockström et al. (2009). However, for only three of them, 

notably, climate change, rate of biodiversity loss, and the nitrogen cycle, are these boundaries 

substantiated theoretically and methodologically. The thresholds for the other six, including the global 

fresh water cycle, are tentative ‘best guesses’ (Rockström et al. 2009). For water, Rockström et al 

maintain that the boundary must be set to safely sustain enough green water for moisture feedback while 

allowing for terrestrial and aquatic ecosystem functioning and as a first attempt propose runoff depletion 

in the form of consumptive blue water use as a proxy. Based on global fresh water cycle assessment 

studies, Rockström et al set the threshold for global fresh water use at a range of 4000 to 6000 cubic 

kilometers per year. 

 

Although we do subscribe to Rockström et al.’s ambition and concepts, there are nevertheless several 

problems associated with the approach they advance. A first problem is the ambiguous treatment of 

reductionism versus holism. While the authors clearly recognize thresholds and threshold behavior as a 

systemic and emergent property, Rockström at al. embark on a reductionist approach by reducing the earth 

system to nine biophysical processes and define planetary boundaries internal to these subsystems. Such 

an approach is bound to overlook the impacts of the dynamic interactions between the subsystems. For 

example, climate change speeds up the hydrological cycle, thus changing the limits to planetary fresh 

water use. The concept of global limits as introduced by Rockström et al ignores these feedbacks. To 

further complicate the study of global limits, our understanding of the global system is rife with 

uncertainty: structural uncertainties exist in the relation between climate change and renewable fresh water 

resources (Oki and Kanae 2006); local conditions, regional variations, the role of management, and 

financial and institutional capacity are being ignored by focussing on the physical system only (Molden 

2009). 

 

The presence and potential crucial importance of feedbacks between the various earth systems and their 

associated limits, suggests that a system dynamics investigation could be fruitful. Central to system 

dynamics is the focus on the use of models to explore the link between the system structure and the 

evolutionary behaviour over time arising out of this system structure (Lane 2000). That is, the behaviour 



of a system is to be explained by offering a causal ‘theory’, or dynamic hypothesis, for the behaviour 

(Lane 2000; Sterman 2000). In turn, this causal ‘theory’ or dynamic hypothesis can serve as the basis for 

interventions in the structure in order to change the resulting behaviour. This causal theory of the dynamic 

behaviour should be endogenous. That is, it should explain how the dynamic behaviour arises within the 

internal structure of the system (Richardson 2011). This endogenous view addresses the critique of 

reductionism that has been levelled at the idea of global limits.  

 

To cope with uncertainty, an exploratory modeling approach is necessary. As detailed by Bankes (1993), 

there are broadly speaking two main purposes for making models: consolidating known facts into a model 

for predictive use, and the explication of our uncertainty and encapsulation of the uncertainty in an 

ensemble of models for exploratory use. The aim of the exploratory use of models is to support reasoning 

under uncertainty. The presence of uncertainty implies that there are different plausible hypotheses about a 

system. Exploratory modeling support the construction of valid arguments by conducting experiments 

with ensembles of models that capture the set of plausible hypotheses about a system, and to explore the 

implications of the different possible combinations of these hypotheses (Weaver, Lempert et al. 2013). 

The predictive use hinges on the ability to validate in a strict sense (Hodges and Dewar 1992) the 

correspondence of the model to the real world. For many systems, like the earth system, this is next to 

impossible for reasons outlined by e.g. Sterman (2000). However, it is still possible to use the available 

information, knowledge, and existing models for exploratory purposes.  

 

In order to address the combined challenge of studying limits to the planetary fresh water cycle in a non-

reductive fashion in the presence of a wide variety of uncertainties, we combine system dynamics 

modeling with an exploratory modeling approach. In short, we use exploratory system dynamics modeling 

and analysis (Pruyt 2007). Rather than developing new models from scratch, we use existing integrated 

system dynamics models of the planetary fresh water cycle, and explore the dynamics of these models 

across a wide range of uncertainties. Specifically, we use ANEMI (Davies 2007; Davies and Simonovic 

2008; Davies and Simonovic 2010; Davies and Simonovic 2011) and WorldWater (Simonovic 2002). 

These models are substantially different in their dynamic hypothesis; WorldWater is an extension to 

World3, while ANEMI brings together models of key earth subsystems (e.g. climate, the carbon cycle, 

and global economics). We analyze each world water model in isolation, in light of the literature identify 

uncertainties associated with the global water cycle, and explore the implications of these uncertainties for 

the behavioral dynamics of both models. By comparing these two analyses, we draw wider conclusions 

about limits to planetary fresh water use. 

 



In section 2, we provide background material on the modeling of the global water system, focusing in 

particular on ANEMI and WorldWater. In section 3, we provide details on exploratory system dynamics. 

Section 4 contains the analysis of both models. In section 5, we discuss the results. Section 6 contains our 

conclusions.  

2 Modeling the global water system 

There are various modeling approaches that can be used to model the planetary fresh water cycle. 

Modeling choices depend on the purpose of the modeling exercise (global distribution of hydrological 

processes, global distribution of sectoral water use and availability, integrated assessment), model 

structure (grid based, grid based interaction, grid based processes, hydrological units based interaction, 

hydrological unit based processes, and all sorts of hybrids and cross-overs), data availability, format, and 

temporal and spatial specifications. Often these model characteristics interact and pragmatic choices are 

made that serve the specific purpose of the modeling exercise. Models that focus on the global 

characteristics of hydrological processes often use grid based approaches combined with a routing scheme 

for river discharges. Good examples of these macro-scale hydrological model (MHM) are PCR-GLOBWB 

(Weiland, van Beek et al. 2010), VIC (Nijssen, O'Donnell et al. 2001), Macro-PDM (Arnell 1999), WBM 

(Vörösmarty, Green et al. 2000) and WGHM (Alcomo, Döll et al. 2003).  Models that in addition to the 

hydrological processes focus on water use mostly apply hydrological units like watershed as their smallest 

geographical units or apply hybrid approaches. For example the integrated water and food analysis model  

WATERSIM (de Fraiture 2007) uses river basins as its basic spatial unit for hydrological process, 

administrative units as the basic spatial units for policy and trade and their intersection as the basic spatial 

unit for the integrated model.  

 

Next to these detailed models that primarily focus on the hydrological processed, there is a class of 

integrated dynamic models. At present, several integrated dynamic water cycle models exist at both global 

and regional scales. These models have been used to define global or regional limits to the use of blue 

water. On a global scale, AQUA (Hoekstra 1998) and WorldWater (Simonovic 2002) are the most 

relevant and best known models. ANEMI is a more recent model in this same tradition (Davies and 

Simonovic 2010; Davies and Simonovic 2011). These models deviate from other world water models such 

as WaterGap (Alcomo, Döll et al. 2003) in that the various feedbacks between the water cycle, water use, 

socio economic developments, the climate, etc. are endogenous to the model. In contrast, in WaterGap for 

example, scenarios for population development, GDP, and electricity production are necessary inputs. 

This implies that models like WaterGap cannot be used to investigate the impact of water shortages over 

time on how population or GDP evolves, nor can it cope with human adaptation to water shortage. For 



example, WaterGap will overestimate irrigation consumption in case of water shortage (Hunger and Döll 

2008). This advantage of integrated dynamic world water models, however, comes at the price of not 

being geographically explicit. In this paper, we concentrate our effort on two integrated global water 

models: ANEMI and WorldWater.  

2.1 ANEMI 

ANEMI, an ancient Greek term for the four winds, heralds of the four seasons, links physical systems 

such as climate, the hydrological cycle and the carbon cycle with socio-economic systems, including 

economy, land use, population change and water use (Davies and Simonovic 2010). It was designed as an 

integrated assessment model that would permit the assessment both of socio-economic policies and 

uncertainties about the overall system (Davies and Simonovic 2010). ANEMI is a system dynamics 

model, focusing in particular on the importance of the feedback relations between the various physical and 

socio-economic subsystems, and the dynamics arising out of these feedbacks, rather than aiming at 

providing detailed predictions.  

 

ANEMI is a system dynamics model. Central to system dynamics models is the endogenous point of view 

(Richardson 2011). According to this view, the dynamic behavior of a system arises within the internal 

structure of a model. This view implies a closed system boundary, where the behavioral dynamics of the 

system arise out of interacting feedback loops. Thus, in system dynamics, a system is viewed as an 

ongoing interdepended, self-sustaining, dynamic process. That is, the observed behavior of a system is to 

be understood as arising out of the internal structure of the system. This internal structure of a system is 

conceptualized using stocks and flows, and relations between them. System dynamics is a modeling 

method for understanding the behaviors of nonlinear, dynamic and complex systems and for policy 

analysis and design (Sterman 2000). 

 

ANEMI is composed of nine subsystems: climate, carbon cycle, economy, land-use, population, 

agricultural production, natural hydrological cycle, water use, and water quality (Davies 2007; Davies and 

Simonovic 2008; Davies and Simonovic 2011). Fig. 1 shows the main feedback structure of the model. 

The positive or negative sign associated with each arrow indicates the direction of change one model 

component has on the other model component. The names next to each arrow indicate which aspect of the 

model component causes a change in the other model component. The closed loop structure of the model 

implies that model behavior emerges endogenous feedbacks (Davies and Simonovic 2010). The model has 

been validated through comparison with government statistics, scientific data, results from other models, 

and socio economic data (Davies 2007; Davies and Simonovic 2008; Davies and Simonovic 2010; Davies 

and Simonovic 2011). 



 

Fig. 1. Model components and their feedbacks (Davies and Simonovic 2011) 

The climate sector is an upwelling diffusion energy balance model based on the box advection diffusion 

model of Harvey and Schneider (1985). The carbon cycle is based on Goudriaan and Ketner (1984), where 

the oceanic sector is modified based on Fiddaman (1997). The land use system is based on Goudriaan and 

Ketner (1984). The population component is based on Nordhause and Boyer (2000) and Fiddaman (1997). 

However, the dynamics are endogenous by including water stress (Davies and Simonovic 2010). The 

economic components is inspired by the updated DICE model (Nordhaus 2008)1. The three water parts 

and the agricultural production are unique to ANEMI, but build on earlier work (e.g. Shiklomanov 2000; 

Simonovic 2002). The water use model is similar to WaterGAP 2 (Alcomo, Döll et al. 2003). Water 

quality is comparable to how it is handled in WorldWater (Simonovic 2002). Surface flow, and the 

hydrological cycle are influenced by Chanine (1992), Shiklomanov (2000), and Simonovic (2002). The 

agricultural component is the latest addition to ANEMI and is based on Bouwman et al. (2005), Siebert 

and Döll (2010), and FAO data (Davies and Simonovic 2011). 

2.2 WorldWater 

The WorldWater model (Simonovic 2002) is based on the well-known World3 model (Meadows, 

Meadows et al. 1972; Meadows, Behrens III et al. 1974). World3 is a system dynamics model of world 

scope. It comprises five main sectors: population, agriculture, non-renewable resources, economy and 

persistent pollution. In WorldWater two new sectors are introduced: water quantity and water quality, 

together with various addition feedbacks between the two new sectors and the other parts of the model. 

                                                      
1 We are well aware of the fact that there is an extensive critique in the SD literature on DICE. However, it is 

explicitly not the purpose of this research to develop new models. Rather, we start from the available models and 

explore the implications they hold for world water dynamics. In future work, the implications of the critique on 

DICE on world water dynamics might be investigated, for they arguably reflect different hypotheses, and thus are a 

source of uncertainty. 
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The total water stock in the model includes precipitation, ocean resources and non-renewable groundwater 

resources. The model also takes into account water recycling as a fraction of water use. The water use side 

is modelled in a traditional way to include: municipal water use for the needs of population, industrial, and 

agricultural water needs. However, the most important difference between the WorldWater and other 

global water models is in its ability to address the needs of freshwater resources for transport and dilution 

of polluted water. The original version of WorldWater is built on top of the world3 model that ships with 

Stella. We have re-implemented the model in Vensim. Full details on the model and model testing are 

provided in Simonovic (2002).  

3 Exploratory System Dynamics 

Exploratory system dynamics modeling and analysis has been receiving increasing attention over the last 

several years. Pruyt (2007) introduced the explicit combination of exploratory modeling and system 

dynamics under the label ‘exploratory system dynamics modeling and analysis’. He argued that this 

ESDMA approach is particularly appropriate for (i) systematically generating, exploring,  and analyzing 

all (sorts of) plausible dynamic behaviors over time, (ii ) directly searching for tipping folds, 

vulnerabilities, leverage points, et cetera, and (iii ) designing adaptive policies and testing the robustness 

of policies over the entire uncertainty space. ESDMA has been demonstrated with a variety of cases and 

for different purposes. Kwakkel et al (2013) use ESDMA for the identification of possible future 

undesirable behavior modes of the copper price. Kwakkel and Pruyt (2013) present three cases to 

demonstrate the benefit of ESDMA for foresight. Hamarat et al. (2013) use the approach for the 

development of a robust policy for realizing a transition towards more sustainable energy generation. 

Many more examples can be found in the proceedings of the last few International System Dynamics 

conferences (e.g. Pruyt 2010; Pruyt 2010; Pruyt and Hamarat 2010; Pruyt, Kwakkel et al. 2011; Pruyt and 

Kwakkel 2012) 

 

The exploratory use of system dynamics models, however, is not something new. Rather, it goes back to 

some of the founding ideas of system dynamics.. In his earliest work, Forrester emphasized the 

experimental use of simulation models (Forrester 1961; Richardson 2011), and according to Lane (2010), 

experimentation is part of the analytical kernel of system dynamics. Similarly, Meadows and Robinson 

(1985: p. 394) already argue that it is “important to study deeply the model sensitivity with regard to these 

variables [about which there is lack of data and/or knowledge] and to present a spectrum of runs under 

different hypotheses, covering the range of their variation”. In line with this, Moxnes (2005) has argued 

that traditional sensitivity analysis needs to be extended from judging the sensitivity of model behaviour to 

uncertain assumptions about model formulations and parameter values to testing the sensitivity of policy 



recommendations to uncertain assumptions. Ford and Flynn (2005) have proposed a simple statistical 

screening technique to identify the most influential uncertain inputs in a system dynamics model. 

Moreover, a long standing argument in the system dynamics literature is the need of computer simulation 

to rigorously deduce the consequences of the complex relationships with feedbacks and delays (e.g. Lane 

2000). This same argument can be extended to apply to rigorous experimentation with computer models in 

the presence of uncertainty. Here too, we content that the capability of the human mind to correctly infer 

the joint consequences of the different uncertainties is deficient, and needs to be complemented by 

computer experimentation. In light of these considerations, we suggest that the combination of exploratory 

modelling and system dynamics is not a revolutionary new way of modelling, but rather an evolution of an 

idea from the earliest days of the field. 

 

A system dynamics model offers a causal theory about a particular phenomenon (Lane 2000; Sterman 

2000). This implies that a model is a concentration of assumptions or hypotheses about causal laws, that 

jointly offer a plausible representation and explanation of the phenomenon of interest. Uncertainty implies 

that one or more of these hypotheses are contested, and could be substituted for another hypotheses. We 

speak of two different models if the two models are not identical in all respects. So, changing a single 

parameter value for a given model results, according to this definition, already a different model. 

Admittedly, the difference between the two models in this case would be a difference in degree, rather 

than a difference in kind.  

 

The aim of exploratory system dynamics is to systematically and comprehensively study the behavior of 

the system across the key uncertain factors. These uncertainties span a space of possible models. Each 

point in this uncertainty space represents one particular combination of uncertain hypotheses. The 

challenge of exploratory modeling is to design a search strategy for understanding the characteristics of 

this uncertainty space. A distinction can be made between two basic search strategies in EMA: open 

exploration and directed search. Open exploration can be used to systematically explore uncertainty space. 

That is, open exploration aims at generating a set of computational experiments that covers the 

uncertainty. This exploration relies on the careful design of experiments and can use techniques such as 

Monte Carlo sampling, Latin Hypercube sampling, or factorial methods. An open exploration can be used 

to answer questions such as “under what circumstances would this policy do well?”, “under what 

circumstances would it likely fail?”, and “what kinds of dynamics can this system exhibit?”. An open 

exploration provides insight into the full richness of behaviours of the ensemble of models.  

 



Directed search, in contrast, is a search strategy for finding particular points in the uncertainty space that 

are of interest. Directed search can be used to answer questions such as “what is the worst that could 

happen?” What is the best that could happen?” “How big is the difference in performance between rival 

policies?”. A directed search provides detailed insights into the dynamics of specific locations in the full 

space of plausible models. Directed search relies on the use of optimization techniques, such as genetic 

algorithms and conjugant gradient methods. Active non-linear testing is an example of a directed search 

strategy (Miller 1998). Open exploration and directed search can complement each other. For example, if 

the open exploration reveals that there are distinct regions of possible dynamics, directed search can be 

employed to identify more precisely where the boundary is located between these distinct regions.  

4 Cases 

4.1 ANEMI 

4.1.1 Uncertainties 

Table 1 contains an overview of the parameters and their ranges that are to be explored. For this paper, we 

concentrated on parameters related directly to water use. The documentation of the model was reviewed 

and parameters that were either explicitly denoted as a guess or assumption, or for which divergent 

possible values were named were included in the analysis. The parameters include various time series that 

describe developments over the full runtime, such as the changing demand for food per person per year. 

These time series were replaced with sigmoid functions:  

 

 

 

Here, α, β, γ, δ, are uncertain parameters that can be explored; α and β control the upper and lower limit of 

the sigmoid, γ controls when the sigmoid is half way between the two limits, and δ controls the slope.  

 

Table 1. The uncertainties and their ranges 

uncertainty description range 

Agricultural Blue Water Dilution Factor factor for dilution of polluted agricultural blue water 5-10 

Agricultural Polluted Fraction percentage of return flow of agricultural blue water 

that is polluted 

0.7-0.95 

Average Virtual Water Content of Crops virtual water in crops in m3/Gcal 400-500 

Average Virtual Water Content of Fodder virtual water in fodder in m3/Gcal 200-300 

Base Specific Water Intake base value for water intake in agriculture in 9000-12000 



m3/ha/year 

Base Returnable Water base value for water return flow from agriculture in 

m3/ha/year 

10-50 

Base Precipitation Multiplier increase of precipitation due to increasing global 

temperature in %/Celsius 

3-4 

Domestic Dilution Factor factor for dilution of polluted domestic water 5-10 

Domestic Polluted Fraction percentage of return flow of domestic water that is 

polluted 

90-100 

Fractional Usage of Desalination Capacity fraction of desalinization capacity that is being used 0.3-0.7 

Fcl simple area weighted cloud fraction 0.5-0.6 

Gamma d factor affecting increase in water demand per person 

due to gdp/capita increase 

2.2e-10-2.2e-06 

Industrial Dilution Factor factor for dilution of polluted industrial water 5-10 

Industrial Polluted Fraction percentage of return flow of industrial water that is 

polluted 

38-46 

Max Groundwater Withdrawal maximum amount of ground water withdrawal in 

km3/Year 

7-10 

Maximum Establishment of Desalination Facilities maximum amount of desalinization capacity in 

km3/year 

25-40 

Percent Domestic Withdrawal percentage of domestic withdrawal that is consumed 80-90 

Stable and Useable Runoff Percentage fraction of runoff that can be used, taking pollution 

dilution into account 

30-40 

Yield Ratio for rainfed to irrigated agriculture yield fraction of rain fed agriculture as compared to 

irrigated agriculture 

0.4-0.8 

Wastewater Dilution Requirement multiplier for dilution of polluted water 6-10 

Technological Change for Consumption in Agricultural 

Sector lookup 

transient scenario for technological change in 

agriculture affecting water consumption 

sigmoid function 

Technological Change for Withdrawals in Agricultural 

Sector lookup 

transient scenario for technological change in 

agriculture affecting water withdrawal 

sigmoid function 

Crop Productivity Gains lookup transient scenario for gains in crop productivity sigmoid function 

Percentage increase in irrigated area lookup transient scenario for increase in irrigated area sigmoid function 

Global Per Capita Food Consumption lookup transient scenario for increase in food consumption sigmoid function 

4.1.2 Open exploration 

In order to investigate the consequences of these uncertainties on model behavior, we generated a Latin 

Hypercube sample of 10,000 experiments and explored the model behavior across these 10,000 

computational experiments. As outcome indicators, we focused on water stress and the world population. 

Water stress is a proxy for the severity of water shortage. Formally, it is in this model defined as the water 

use per year divided by the yearly renewable flow. Thus, water stress is the fraction of the renewable flow 

being used. In the literature on water stress, values higher than 0.4 are considered to indicate sever water 

shortage.  

 



Figure 1 shows the bandwidth, or envelope, of the results in shaded grey, with a set of example model 

runs imposed on top. On the right hand side, a Gaussian Kernel Density (KDE), which is like a continuous 

histogram, is shown. As can be seen, the behavior of the examples appears to be broadly similar for both 

outcome indicators. We can also see that the majority of runs results in a water stress of around 0.35 in 

2100, while already climbing to this value around 2030. With respect to population, we see that the model 

project slow stabilizing growth. There is no indication of population collapse induced by water shortage 

across the 10,000 experiments.  

 

 

Figure 1: Envelopes and exemplar runs for water stress and population 

The next question is to understand what drives model behavior, given the limited behavioral diversity 

generated by the model across the 10,000 runs, we concentrate on the runs that result in severe water 

stress. To this end, rather than looking at behavior, we concentrate on the maximum value for water stress 

encountered over the run. Figure 2 shows a histogram for this. As can be seen, the maximum water stress 

ranges from around 0.32 up to 0.55. There also appears to be a second ‘hump’ around 0.43.  

 



 

Figure 2: Histogram of the maximum value of water stress encountered for each experiment 

In order to identify the experiments that produce high values of water stress, we concentrate on the cases 

in this second ‘hump’ and beyond. We use the Patient Rule Induction Method (PRIM) (Friedman and 

Fisher 1999) to identify the region in the uncertainty space that produces runs with high water stress 

values. Knowing the parameterizations under which high water stress occurs offers a starting point for 

identifying the dominant feedback mechanisms that drive water stress. PRIM is machine learning 

algorithm. More specifically, it is a rule induction algorithm that aims at finding hexagonal subspaces, or 

‘boxes’ which contain a high concentration of the experiments of interest. PRIM is the most used machine 

learning algorithm for analysis exploratory modeling results (Lempert, Bryant et al. 2008).  There are 

1919 cases with a maximum water stress value higher than 0.43. Table 2 shows the identified boxes. We 

found two boxes that jointly contain around 50% of the high water stress cases. For comparison we also 

show the box limits of the full space.  

 

 By comparing the box limits of box 1 and box 2 with the rest box, one gains insight into the most 

important uncertainties that drive water stress. The more restricted an uncertainty is, the more it drives 

water stress. The dimensions are sorted based on their degree of restrictedness in box 1. As can be seen, 

the food consumption and the yield of rainfed agriculture as compared to irrigated agriculature are two 

main drivers for water stress. That is, a high demand for food, and a low yield from rainfed agriculture 

produce high water stress. The reason being that in order to meet food demand, substantial water is 

necessary to produce sufficient food. A different mechanism that is important is related to the dilution 

factor. This factor specifies how much water needs to be mixed with used water in order to meet a 



minimum water quality standard. The lower this value, the more concentrated the pollution is, and the  

more water is needed to dilute it.  

 

Table 2: Box limits identified with PRIM 

uncertainty box 1   box 2   rest box 

 range range range 

beta food consumption 3303.14 - 3499.95 3155 - 3499.95 2500.03 - 3499.95 

Yield Ratio for rainfed to 

irrigated agriculture 

0.4 - 0.62 0.4 - 0.77 0.4 - 0.8 

Domestic Dilution Factor 5 - 8.53 5 - 8.83 5 - 10 

alpha crops 2 - 2.39 2 - 2.48 2 - 2.5 

gamma crops 1990.88 - 2010 1990.83 - 2010 1990 - 2010 

beta crops 0 - 0.48 0 - 0.5 0 - 0.5 

Agricultural Polluted Fraction 0.7 - 0.94 0.7 - 0.95 0.7 - 0.95 

Fcl 0.5 - 0.6 0.5 - 0.6 0.5 - 0.6 

gamma withdrawals 2000 - 2099.99 2000 - 2074.33 2000 - 2099.99 

alpha food consumption 1500.04 - 1999.96 1500.04 - 1975.46 1500.04 - 1999.96 

Max Groundwater Withdrawal 7 - 10 7 - 9.87 7 - 10 

delta irrigated area 15 - 40 16.44 - 40 15 - 40 

Domestic Polluted Fraction 90 - 100 90 - 99.52 90 - 100 

Fractional Usage of Desalination 

Capacity 

0.3 - 0.7 0.3 - 0.67 0.3 - 0.7 

gamma irrigated area 1980 - 2000 1982.11 - 1998.84 1980 - 2000 

gamma food consumption 1940 - 1960 1941.06 - 1958.88 1940 - 1960 

Industrial Dilution Factor 5 - 10 5 - 9.72 5 - 10 

Base Specific Water Intake 9000.17 - 11999.88 9692.04 - 11999.88 9000.17 - 11999.88 

 

In conclusion, the analysis of this model shows that the diversity of behaviors generated by this model is 

rather poor. The dynamics is roughly the same across the 10,000 experiments. Focusing on the maximum 

value of the water stress, we see that it is driven on the one hand by food demand and low yield figures 

from rainfed agriculture, and on the other hand by water pollution. High level policy implications that 

follow from this analysis include the need to maximize yields from rainfed agriculture, and the need to 

minimize the pollution due wastewater by increasing waste water treatment or making more effective use 

of water by matching water use to water quality.  

 



4.2 WorldWater 

4.2.1 Uncertainties 

In earlier analyses, Simonovic (2002) explored three scenarios: the base scenario from World3, a ‘double 

run’ scenario which includes strong technological development over a period of twenty years, and the 

stable run from Meadows et al (1992). Each of these scenarios involve a set of changes to several 

parameters, including the turning off or on of a technology, its maturation over time represented by a 

lookup, etc. Each of these changes has been included as a separate factor, allowing us to explore hybrids 

between these three scenarios. In addition, Simonovic (2002) list a number of additional major uncertain 

factors including the costs of various water resources, the rate of sustainable supply, and the ratio between 

water consumption and water withdrawal. These have been included too.  

4.2.2 Open exploration 

In order to investigate the consequences of these uncertainties on model behavior, we generated a Latin 

Hypercube sample of 10,000 experiments and explored the model behavior across these 10,000 

computational experiments. As outcome indicators, we focused on water scarcity and the size of the world 

population. Water scarcity is the unfulfilled water demand, and is a proxy for the severity of water 

shortage.  

 

 

Figure 3: Envelopes and exemplar runs for population and deficit 

 



Figure 3 shows the bandwidth, or envelope, of the results in shaded grey, with a set of example model 

runs imposed on top. On the right hand side, a Gaussian Kernel Density (KDE), which is like a continuous 

histogram, is shown. In contrast to ANEMI, WorldWater shows a substantially larger variety of behavioral 

dynamics. There are runs where population first rises, before it starts to drop at around 2020, after which 

in some cases it recovers again.  

 

Next, we investigate the deficit. Analogously the water stress in case of ANEMI, we concentrate here on 

the maximum value of the deficit over the run. Figure 4 shows the resulting histogram. Note that the y-

axis is log scaled. As can be seen, there is a substantial number of experiments where no deficit occurs et 

al. The maximum value for the deficit is around 40,000 km3.  

 

Figure 4: Histogram of the maximum deficit encountered for each experiment 

 

The next step is to investigate what drives the deficit. Given that the majority of runs shows no deficit, we 

focus the analysis on the presence or absence of a deficit. Again, PRIM is used to identify the subspaces in 

the uncertainty space that contain a high concentration of deficit experiments. Table 3 shows the resulting 

box limits that jointly explain 99% of the deficit cases. The deficit is primarily driven by the aow factor, 

which drives the pollution of waste water, the switch for using pollution reducing technology, and the 



average lifetime of industrial capital.2 The basic mechanism in this model that seems to be driving the 

deficit is the pollution of water and the need to dilute this waste water.   

 

Table 3: Box limits identified with PRIM 

uncertainty box 1 box 2 rest box 

 range range range 

factor aow 212.33 -   300.00 126.62 -    300.00 100.01 -    300.00 

switch ppoll tech 

PTD 

True true  True, False 

p avg life ind cap   14.22 -     18.00 14.00 -     18.00 14.00 -     18.00 

t policy year 1976 -      1995 1975 -      1995 1975 -      1995 

 

Figure 5 supports the conclusion that the main mechanism that drives the deficit is the need for dilution of 

waste water. This figure shows the relative usage for each water use type for the experiment with the 

maximum deficit. As can be seen clearly, over the course of 2000-2050, the need for dilution of water is 

the primary type of water use. Policy implications are straightforward: reduce waste water and make more 

effective use of water based on matching water quality with demand. 

 

 

Figure 5: The relative usage of water for the maximum deficit case. Blue is agriculture, green is industry, pink is dilution 

of waste water, light blue is municipal use, and yellow is reservoir losses.  

                                                      
2 It is surprising that using pollution reducing technologies increases the deficit. We are investigating whether this is 

due to an error on our part, or a correct conclusion. The final paper for the conference will be updated in light of this 

further investigation.  



 

5 Concluding remarks 

The starting premise of this paper was that any investigation of global limits needs to address the problems 

caused by the feedbacks between earth bound systems and processes, and the fact that our understanding 

of these systems is incomplete and intrinsically uncertain. We have argued that the first problem could be 

addressed by using integrated system dynamics models. In this way, an integrated endogenous view on 

global limits is taken. In order to address the uncertainty, we have argued that the exploratory use of 

models is a way of assessing the implications of the uncertainty. To demonstrate this approach, we 

analyzed two substantially different models of the global world water cycle, focusing on conditions under 

which there is sever water shortage.  

 

An issue complicating the analysis of the two models is the fact that the uncertainties explored for the two 

models are substantially different. As a result, it is only possible to draw conclusions about the models in 

isolation, rather than also being able to assess how the same uncertainty would play out in the different 

models. In future work, we intent to work towards identifying as many factors that are present in both 

models, in order to carry out such analyses. Similarly, there is only a partial overlap with respect to 

indicators. Both models include population, while the scarcity of water is represented as either water stress 

(ANEMI) or water shortage (WorldWater). In future work, we intent to develop one or more metrics that 

can be added to both models, resulting in commensurable models with respect to outcome indicators.  

 

A second issue is that the choice for integrated system dynamics models, while addressing the problem of 

interactions between earth bound systems and processes, results in a loss of specificity. A crucial issue in 

the global water cycle is the time and location of water availability.  The models used here are not 

geospatially explicit, and hence little can be said about how and where the severe water shortage will 

occur. A challenge for future research is to combine the strength of the endogenous view offered by 

system dynamics models with the geospatial detail over by hydrological world water models.  

 

Reflecting on the methodology, we only utilized one style of exploratory system dynamic, namely an open 

exploration. Future work could extend the analysis offered here by complementing it with a directed 

search into extremes that the models are able to introduce.  In particular, we are curious to test whether 

ANEMI can produce other behavioral dynamics than the limited set currently observed. Related to this, 

including the system dynamics critique on dice in our analysis could in fact help in producing a richer set 

of behavioral dynamics.  



With respect to limits to planetary fresh water use, we conclude that these limits are closely tied to the 

future demand for food, the yields of rainfed agriculture, and the extent to which waste water needs to be 

diluted. These conclusions are based on the exploration of ANEMI and WorldWater across uncertainties 

related to these models in isolation. Future work, or changing the uncertainties taken into consideration 

could change these conclusions. Still, the fact that in both models dilution of waste water is an important 

factor suggests that this finding is relatively robust.  
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