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Abstract 

Understanding project dynamics is one of the core application areas for system 

dynamics. Despite a long tradition of modeling the interactions between multiple phases 

in a project model, the strength of these feedback mechanisms have not been rigorously 

estimated. In this article we take a step towards addressing this shortcoming by 

estimating the feedbacks between design and construction phases of construction 

projects. We estimate the parameters of three hypothetical feedback relations between 

design and construction with data from 15 construction projects. Consistent with previous 

qualitative evidence, the estimated factors reveal that undiscovered design rework 

diminishes construction quality and production rate significantly and construction 

completion speeds up the detection of undiscovered design rework. We also assess the 

predictive power of our model using another set of 15 empirical cases. The model 

showed excellent fit to the calibration data calibration and good prediction in validation. 
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Problem statement 

Project modeling has a long history in the system dynamics literature. Starting 

with a model that informed the arbitration of a ship building project lawsuit (Cooper 

1980), this line of modeling has grown to one of the most successful areas of system 

dynamics practice (Lyneis and Ford 2007). While the rework cycle is at the core of 

project models, from early on the modelers identified the importance of disaggregating 

these models to include multiple phases or task groupings (Lyneis and Ford 2007). 

Formulating the multi-phase project models were discussed in detail by (Ford & Sterman, 

1998) in the semiconductor industry and many applications have used different variants 

of this formulation ((Khoueiry, Srour, & Yassine, 2013; Lee, Han, & Peña-Mora, 2009; 

Park, Kim, Lee, & Han, 2011) ). In this formulation each phase of the project is modeled 

separately, with the knock-on effects of the quality and progress of each phase on the 

successive phases. Different effects could be conceived in this set up, the most prominent 

of which are the impact of early phase quality on later phase productivity, the effect of 

early quality on later quality, and the effect of later completion of tasks on the discovery 

of errors in earlier phases. These effects could then activate endogenous rework, schedule 

pressure, and morale loops within different phases, leading to much variability in project 

performance, quality, and costs (Ford and Sterman 1998; Lyneis and Ford 2007). 

However, the strength of these feedback mechanisms has been assumed based on 

qualitative knowledge of each case, and rigorous empirical estimates are lacking in the 

literature. This shortcoming in the literature may be partially due to the complexities of 

collecting time series data required for such estimation tasks and partially due to the one-
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off nature of many dynamic models of projects which limits the statistical power which 

can be expected from estimation.  

The latent impact of design error on construction phase has been studied by some 

statistical research. Baruti and colleagues (Burati, Farrington, & Ledbetter, 1992) 

reported that design failure or defect is responsible for 79% of the total change costs, and 

9.5% of the total project cost. Cusack (Cusack, 1992) showed that documentation errors 

increase project costs 10%. Hanna and colleagues (Hanna, Camlic, Peterson, & 

Nordheim, 2002) found that design errors lead to 38%-50% of change orders in the 

projects under their studies. An recently, Lopez and Love (Lopez & Love, 2012) showed 

that the average of direct and indirect cost for design errors is about 7% of contract value. 

Nevertheless such estimates at a level of aggregation useful for dynamic modelers are 

lacking. In light of the important roles these feedback effects play in typical project 

models, a more reliable quantitative estimate will strengthen practical models for project 

planning and project dispute resolution, and provide better grounding for future 

theoretical work. 

Methods and Data Overview 

In this study, we quantify the design-construction feedback relationships in 

design-bid-build (DBB) construction projects1. A generic dynamic model with two 

phases of design and construction is developed based on the SD literature. Historical data 

from 30 building construction projects is used to estimate and validate the model. The 

model is calibrated with 15 randomly selected projects and the other 15 projects are used 
                                                 
1 DBB is a project delivery method which design and construction are performed in two separate phases 
with no overlap. Design-Build (DB) and Construction Management (CM) are the other examples. 
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for validation. The calibration process is used to estimate three distinct effects: 1) impact 

of design quality on construction quality, 2) the effect of design quality on construction 

productivity, and 3) the effect of construction progress on error discovery rate in design. 

The validation process informs the feasibility of using simple SD models to estimate the 

likely distribution of project outcomes for new projects, a key step in project planning 

activities. 

The dataset includes, for each project, the (initially) estimated duration (duration 

based on planning), estimated cost, actual duration, actual cost, and the cost trajectory of 

project over time based on owner payments, all separable by the design and construction 

phases. The sample statistics for estimated time to finish (F0), the ratio of actual to 

estimated time to finish (F/F0), estimated cost (W0) and the ratio of actual to estimated 

cost (W/W0) are shown in Table 1 for design (D) and construction (C) phases of 

calibration and validation projects.  

Table 1: Descriptive statistics of calibration (n=15) and validation (n=15) data 
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Model development 

The construction project model is developed at the level of design and 

construction phases. In each phase, the completion of tasks was followed by a review 

process (called “design review” and “inspection” in the design and construction phases 

respectively (Figure 1)). The conjunction of the work and review activities is modeled 

utilizing the simple rework cycle concept developed by (Richardson G. P. and Pugh, 

1981). While more complex rework cycle formulations exist (e.g. see (Ford & Sterman, 

1998; Rahmandad & Hu, 2010) ) the simple 3-stock formulation is consistent with the 

level of aggregation available from our data, which does not include details on individual 

tasks or rework items, and therefore appropriate for the current application. 

 
Figure 1: Construction project work flow 

Figure 2 overviews the model developed in Vensim. The model captures two 

phases of design and construction in two separate rework loops. The rework loop 

parameters of production rate (P), error rate (E) and time to detect undiscovered rework 

(D), are normalized by project initial values i.e. initial work (W0) and Duration (T0) to be 

comparable across different projects. 

In reality the start and finishing of each DBB project are regulated by five events: 

1) Design Start, 2) Construction Document (CD) Finish, 3) Construction Start, 4) 

Design ConstructionReview Inspection

Design Phase Construction Phase
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Construction Finish, and 5) Design Service (DS) Finish. Design Start, “D Start”, is the 

event that initiates design. Design finishes when construction documents (CD) are 

approved and delivered for bidding process. We track the time at which the design phase 

is perceived to be complete by the variable “D CD Finish”. We assume the design phase 

is completed when the approved design work passes a threshold (99%) of initial design 

work. Design CD finish triggers the start of the bidding process, during which neither 

design nor construction activities progress. The next event, the construction start 

(“C_Start”), commences at the end of the bidding process. Construction proceeds until 

“Construction finish” event occurs. “Construction finish” event is triggered where the 

construction “Approved work” passes a threshold (99%) of initial construction work.  

Meanwhile, some design reworks/errors may remain undiscovered by the design finish. 

These are eventually discovered and fixed during construction phase. In DBB projects, 

usually the same architectural and engineering (A/E) designer is enrolled to provide 

design services (DS) during construction phase, therefore the initial design and later 

design services could be seen as the same process and are represented by a single stock 

and flow diagram. The last event is “D DS Finish”. We assume the design services during 

construction, “D DS Finish”, is completed when the approved design work passes a 

threshold (99%) of initial design work and undiscovered design rework stock level is less 

than (1%). We use our data to specify the “Design Start” and “Construction Start” events 

for each project, while the “D CD Finish”, “Construction finish”, and “D DS Finish” are 

all endogenously calculated.   

Phase inter-relationship between design and construction has been studied by 

many. Several hypotheses have been proposed to describe the design-construction 
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interaction mechanisms. Some researchers have proposed the design rework/error as the 

main contributor to (lack of) construction quality. (Lyneis & Ford, 2007)  call this as 

“errors build errors” effect which “undiscovered errors in upstream work products (e.g., 

design packages) that are inherited by downstream project phases (e.g., construction) 

reduce the quality of downstream work as these undiscovered problems are built into 

downstream work products”. They also cite the works of Pugh–Roberts Associates 

(PRA), (Abdel-Hamid TK, 1984; Ford et al., 2004; Lyneis, Cooper, & Els, 2001), Ford-

Sterman, and Strathclyde models as examples. Some others have proposed design change 

as the main contributor to reduce construction labor productivity (Hanna, Asce, & 

Gunduz, 2004; Hanna et al., 2002; Hanna, Russell, Gotzion, & Nordheim, 1999; B. C. W. 

Ibbs, 1997; W. Ibbs, 2005; Moselhi, Assem, & El-Rayes, 2005). Building on these 

theoretical motivations we conducted five expert interviews with three senior project 

managers, in different positions to better understand factors influencing quality and 

productivity in design and construction phases. Three mechanisms were identified: 

1. Undiscovered design rework may increase construction error rate 

2. Undiscovered design rework may slow down construction production rate 

3. Construction progress may increase the detection rate of undiscovered 

design reworks 

These mechanisms are consistent with the previous system dynamics research 

(Lyneis & Ford, 2007). We therefore model three feedback mechanisms between design 

and construction phases. We capture the first knock-on mechanism, “Factor>A”, in 

Equation 1. We assume the construction error rate is a function of the undiscovered 

rework in the design phase multiplied by a project-specific parameter representing base 
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construction error, Equation 2. The design undiscovered rework, “D 

UndiscoveredRework”, is divided by design initial work, “D W0”2, for being scaled 

between -1 and +1. We allow for negative rework to capture scope reduction in 

construction. 

"Factor A" = (1+Max(0, "D UndiscoveredRework"/"D W0"))^a 
Equation 1 

(1) 

"C InfluencedErrorRate" = MIN(1, "C E" * "Factor>A") 
Equation 2 

(2) 

In the absence of data on human resources allocated to the project, in each phase a 

single productivity parameter is used to capture both the number of project employees 

and the productivity per full-time equivalent (FTE). While this factor, “D P”, is assumed 

constant in the design phase for each project (but different across different projects), the 

construction work rate is impacted by the undiscovered rework in the previous (i.e. 

design) phase, through the “Factor>B” effect (Equation 3). This is the second knock-on 

effect that we capture in our model. Equation 4 demonstrates how we normalize model 

parameter production rate (P), to be estimated in calibration, by initial work (W0) and 

estimated work duration (T0). 

"Factor B" = (1-Max(0, "D UndiscoveredRework"/"D W0"))^b 
Equation 3 

(3) 

                                                 
2 Variable names start with the phase (C for Construction and D for Design) followed by the descriptive 
concept. 



 Page 9 
 

"C Work rate" = "C W0" / "C T0" * "C P" * "Factor>B" 
Equation 4 

 (4) 

Rework discovery is assumed to happen through a first order draining from the 

stock of undiscovered rework. The time constant for this delay is set as another project-

specific constant (D) for the construction phase. However we assume the construction 

progress allows faster discovery of design problems and therefore will reduce the time 

constant for rework discovery in design phase, the third inter-phase factor we model 

(Equation 5). Equation 6 shows how the model parameter time to detect rework (D) is 

normalized and how Factor C influences design rework detection rate. 

"Factor C" = 1/(1+"C AcceptedWork"/"C W0")^c 
Equation 5 

(5) 

"D Detection rate" = "D UndiscoveredRework" / ("D D" *"D 

T0"*"Factor C") 

Equation 6 
(6) 

Figure 2 provides an overview of the causal relationships in the model. The 

switches and variables that regulate the timing of activation of different phases are not 

shown for clarity. Parameters that are calibrated are highlighted in bold and larger font, 

with exogenous variables such as initial scope and schedule in underlined italics. Full 

model documentation, following minimum model documentation guidelines (Rahmandad 

& Sterman, 2012) is available in an online appendix with the complete simulation 

models.  
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Figure 2: Overview of the model causal structure 

Model calibration 

Our goal in the model calibration is to estimate the parameters of our generic 

model to best represent the 15 randomly selected projects assigned for calibration. The 

model calibration result has two applications. First, we are able to find the range and 

distribution of project-specific parameters (i.e. error rate (E), production rate (P), and 

time to detect rework (D) for the two phases of design and construction). This 

information can then be used to form expectations on these parameter values when facing 

the task of estimating a new project. Second, we want to estimate the three inter-phase 

feedback effects (design quality on construction quality, design quality on construction 

productivity, and construction progress on design rework discovery rate). This 

information is valuable both theoretically, and for practical project planning purposes.  

Calibration is typically conducted as a numerical optimization to estimate model 

parameters, minimizing the error between the model outputs and data (Oliva 2003). In 

our project we define the objective (payoff) function to be minimized as a linear 
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combination of three error components; the squared percentage errors of time, total cost 

and cost curve, summed over both phases. Figure 3 illustrates the payoff function 

components.  

 
Figure 3: Calibration payoff function components 

Equation 7 and Equation 8 formulate the payoff functions of design and 

construction respectively. Equation 7 includes four elements for the design phase: 1) the 

squared percentage3 error of design construction document finish (D_CD), 2) the squared 

percentage error of design services during construction (D_DS), 3) the squared 

percentage error of design total cost (D_CT) and 4) the squared percentage error of 

design cost curve (D_CC(t)). Equation 8 formulates the construction payoff function in 

                                                 
3 In calculating the percentages we use the average of actual and simulated in the denominator. This avoids 
division by zero early in the calibration process while keeping the payoff function robust. The alternative 
formulation that includes only the actual values in the denominator makes not qualitative difference in the 
results but leads to more computational errors. 
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the same manner, except that the construction payoff function has only one component 

for time, which is construction finish time (C_F).  
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Equation 8 
(8) 

The errors are normalized into percentages so that they could be linearly 

combined using weights which represent the relative importance of different components. 

These weights are specified subjectively based on the researchers’ relative confidence in 

the precision of the data and the amount of information they embed. For example cost 

curve errors are calculated based on multiple data points (based on monthly data) which 

conceptually captures more information about cost variation whereas final time and final 

cost are a single number (fewer data points). However, as the cost curve was retrieved 

from the project invoice log, their level of precision is less than ideal. Therefore we 

reduce the weight for the cost curve and increase it for the final time and cost. 

Consequently the following weights are used in the calibration results reported here: 

𝑊𝐷_𝐶𝐷 = 1
3

,𝑊𝐷_𝐷𝑆 = 1
3

,𝑊𝐷_𝐶𝑇 = 1
6

,𝑊𝐷_𝐶𝐶 = 1
6
 , and 𝑊𝐶_𝐹 = 1

2
, 𝑊𝐶_𝐶𝑇 = 1

4
,𝑊𝐶_𝐶𝐶 = 1

4
. 

Finally, the design and construction payoff functions are combined with equal weights 



 Page 14 
 

(𝑊𝐷 = 1
2

,𝑊𝐶 = 1
2
 ), to construct the total payoff to be minimized (See Equation 9). We 

perform some sensitivity analysis on the assumptions regarding the weights for the payoff 

function and find little substantial differences in insights within reasonable ranges for 

these parameters (See the section “Robustness of Calibration Results”). 

𝑃𝑎𝑦𝑜𝑓𝑓 = 𝑊𝐷 𝑃𝑎𝑦𝑜𝑓𝑓𝐷𝑒𝑠𝑖𝑔𝑛 +  𝑊𝐶  𝑃𝑎𝑦𝑜𝑓𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 
Equation 9 

(9) 

For calibration, 15 projects out of the 30 projects are randomly selected. Each 

project is simulated separately in the model. However, to maximize the statistical power 

in estimating the inter-phase feedback effects, we assumed the parameters for those 

effects, a, b, and c, are common industry-wide and thus are the same across these 15 

projects. Therefore the 15 projects are linked together through these parameters and this 

requires simultaneous estimation of all projects (rather than one-by-one estimation). As a 

result, we classify the model parameters into two categories: 1) project-specific 

parameters which are independent from one project to another, and 2) industry 

parameters which are common across all projects. The project-specific parameters consist 

of production rate (P), error rate (E) and time to detect undiscovered reworks (D) for each 

phase (a total of 6 parameters for each project), while the industry parameters include a, b 

and c. Calibration was conducted in Vensim DSS 5.8 by simultaneously estimating the 

project-specific and industry parameters over 15 calibration projects, leading to a total of 

93 (=15*6+3) parameters to be estimated.  
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The large parameter space required us to perform the calibration in three phases. 

In the first phase, we conducted a global search with multiple start points in the parameter 

space using a course time step (TS=0.25) and relatively large fractional tolerance of 

0.003. In the second phase we first fixed industry parameters a, b, and c (using values 

from step 1) and optimized the model, project by project, with project specific parameters 

P, E, and D (15 separate calibrations). Then we fixed project specific parameters P, E, 

and D and optimized the model on all projects with industry parameters a, b, and c. These 

steps were repeated iteratively until we converged. In phase three, we switched back to 

more precise time step of 0.0625 and fractional tolerance of 3E-5 to find tune the optimal 

point found approximately in phase two. For more details, please see model 

documentation in the online appendix.  

Following this procedure, industry parameters were estimated as a=2.169, 

b=2.232 and c=1.104. Table 2 shows the mean vector, standard deviation vector and 

correlation matrix of the project specific calibrated parameters.  

Table 2: Descriptive statistics and Correlation matrix of calibrated parameters 

 
Mean StdDev D_P D_K D_D C_P C_K C_D 

D_P 0.95 0.23 1.00      
D_K 0.20 0.16 0.45 1.00     
D_D 1.62 1.54 -0.19 -0.60 1.00    
C_P 0.87 0.42 0.33 0.30 -0.15 1.00   
C_K 0.02 0.21 -0.06 -0.52 0.06 -0.17 1.00 

 C_D 0.38 0.49 0.09 -0.10 -0.05 -0.54 -0.03 1.00 

Figure 4 and Figure 5 show the absolute percent error (APE) of time finish, final 

cost and cost curve of design and construction, respectively, for the 15 projects used in 

validation . “D_Valid” and “C_Valid” are the weighted average errors linearly combined 

with the same weights used in the payoff function. The sequence of projects on horizontal 
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axis is based on these two values sorted in descending order. Figures 6 and 7  depict two 

(2) examples of calibrated projects. 

 

 

 
Figure 4: Design calibration error 
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Figure 5: Construction calibration errors 

 
Figure 6: Simulation result of Project P008 (Best fit).  Design CD Finish = 29.1 (Simulated), 29.4 

(Actual). Construction Finish = 80.5 (Simulated), 81.2 (Actual) 
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Figure 7: Simulation result of Project P040 (Worst fit). Design CD Finish = 6.5 (Simulated), 6.6 

(Actual). Construction Finish = 48.7 (Simulated), 44.3 (Actual) 
 

Robustness of Calibration Results 

We conduct two sets of sensitivity analysis to assess the robustness of calibration 

results. First we evaluate the confidence we can have in the values reported for the 

feedback parameters a, b and c. Specifically, we change these parameters around their 

estimated value and measure the fractional change in the payoff. In the absence of formal 

maximum likelihood interpretation for the payoff function, we heuristically use a 20% 

change in payoff as a threshold that signals incongruence between the parameters and the 

data4. The results (See figure 8) suggest rather tight ranges of ±30%, ±20% and ±10% for 

                                                 
4 While the complex non-parametric structure of the distributions rule out theoretical proofs, we think the 
20% threshold is conservative. For demonstration, consider a maximum likelihood based payoff function 
with normally distributed errors (which, similar to our setting, leads to normalized squared error terms in 
the log-likelihood function). For a sample with N effective data points (e.g. total data points minus the 
number of parameters), the range of a typical log-likelihood function at the best fit position is (roughly 
speaking, being a chi-square distribution with N degrees of freedom) around N. In such setting, depending 
on the confidence levels required, a reduction of approximately 4 units in the log-likelihood (i.e. 4/N in 
fractional terms) signifies reasonable confidence intervals. With an N value well above 100 in our setting 
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these three theoretically important parameters:  a, b and c respectively. The sensitivity 

analysis also suggests the most robust parameter is c (i.e. effect of construction progress 

on rework discovery rate) followed by b (effect of design quality on construction 

productivity). 

 
Figure 8: Significance of Parameters a, b, and c in payoff function 

A second sensitivity analysis is conducted to assess the weighting functions used 

in defining the calibration payoff. Ten (10) different scenarios are defined with different 

set of weights listed in Table 3. Model is calibrated again under each scenario. The 

impact of error weight on different scenarios is calculated by the average of absolute 

percentage change of calibrated parameters. The result shows only 1% to 7% variation on 

calibrated parameters as the result of different error weight scenarios across different 

scenarios. These findings suggest that the calibration results are reasonably robust to the 

payoff weights used. 

                                                                                                                                                 
(15 projects multiplied by 5 single data points and 2 time series of approximately 10 data points each for 
each project, minus the 93 parameters estimated) we could feel confident that a fractional change in payoff 
of 20% (5 times the upper bound on 4/N) is fairly conservative and thus we can feel comfortable that the 
true values for these parameters fall within the given range. 
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Table 3: Scenarios of error weight sensitivity analysis 
Scenario WD_CD WD_DS WD_CT WD_CC WC_F WC_CT WC_CC 

1 1 1 1 1 1 1 1 
2 1 1 2 1 1 2 1 
3 1 1 1 2 1 1 2 
4 20 20 1 1 2 1 1 
5 2 2 10 1 2 1 1 
6 2 2 1 10 2 1 1 
7 2 2 1 1 20 1 1 
8 2 2 1 1 2 10 1 
9 2 2 1 1 2 1 10 

10 20 20 10 10 2 1 1 

Inter-phase Project Feedback Effects 

Figure 9 and Figure 10 show the impacts of Factors a, b and c on construction 

error rate (C_E), construction production rate (C_P) and time to detect undiscovered 

design rework (D_D) using the calibrated values (a=2.169, b=2.232 and c=1.104). 

Looking at the simulations pertaining to calibration and validation project data reveals 

that the fraction of undiscovered design error on initial design work does not exceed the 

range of ±20%, which confines impact factors A and B up to 50%. Factor C’s input, 

construction progress, ranges on the full scale of 0 to 1 which can half the rework 

discover time in design phase. 

 
Figure 9: Factor A and B 

 

 
Figure 10: Factor C 
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Predicting the Performance of New Projects 

The parameters estimated in the previous section can be used to forecast the 

trajectory of a completely new project before it has started. A simplistic approach is to 

use the average of the 15 set of calibrated parameters for the parameters of the prediction 

model. This approach, however, ignores the significant variability observed in parameters 

across different projects. Ignoring the variability would give more confidence to the 

projections than is warranted and deprives the user from the much valuable information 

regarding the expected distribution of potential performance outcomes. To address these 

concerns, we use a more realistic approach which assumes the six project-specific 

parameters are random variables with a given mean and covariance structure, available 

from our estimated parameters. We will then generate 1000 samples with the same mean 

and covariance matrices for these six (6) parameters, 3 project-specific parameters for 2 

sets of design and construction, using the variance-covariance method. We assume the 

parameters are correlated and normally distributed. The set of random values, R, is 

produced by uniform random values between 0 and 1, R0-1, using Equation 10. Matrix U 

is the square root of covariance matrix, ∑5, calculated by Cholesky decomposition 

method. Table 2 reports the mean, standard deviation, and correlation matrix used for this 

analysis. 

[R]=[µ]+ [U]*[R0-1] 
Equation 10 

(10) 

                                                 
5 [∑] = [D][ρ][D] where; [ρ]=correlation matrix, [D] = Diagonal(σ), and σ=Standard deviation vector.  
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Where:  [∑]=[U]T [U] 
Equation 11 

 (11) 

Next, a Monte-Carlo simulation generates the distribution of model outcomes 

using sample R and with a given plan (i.e. D_C0, C_C0, D_T0, and C_T0).  Figure 11 to 

Figure 16 show the simulation result for an example project with the initial scope of 

$1.4M (D_C0) and $17.7M (C_C0), and scheduled duration of 12.8 months (D_T0) and 

17.4 months (C_T0), for design and construction respectively. Initial scope and schedule 

are typically available at the beginning of any project, but are unreliable and often 

underestimate the actual costs and schedule significantly. These estimates are the only 

project-specific inputs we need in our model to generate the predicted performance 

projections for a new project. The project above is simulated with the 1000 sets of 

randomly generated parameters discussed above. 15% of the samples were found 

infeasible as they did not result in design and construction completion in a reasonable 

amount of time.  
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Figure 11: Distribution of design finish, 

Mean=15.5, StDev=4.20, Actual=18.1(month) 
 

 
Figure 12: Distribution of construction finish, 
Mean=53.0, StDev=23.93, Actual=65.9(month) 

 

 
Figure 13: Distribution of design final cost, 
Mean=$1.7M, StDev=$0.33M, Actual=$1.5 

 

 
Figure 14: Distribution of construction final cost, 
Mean=$18.6M, StDev=$4.04M, Actual=$18.5M 

 

 
Figure 15: Distribution of design cost curve 

 

 
Figure 16: Distribution of construction cost 

curve 
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Validation: How well new projects can be predicted? 

Building on the idea above, we can now more formally assess the ability of the 

model to predict the actual performance of new projects, given their original scope and 

schedule. Specifically, we repeat the Monte-Carlo process above for the 15 validation 

projects, using the 850 feasible random parameter sets. We consider four metrics 

including construction document finish time (D_F), design cost (D_C), construction 

finish time (C_F), and construction final cost (C_C). The distribution of samples 

produced by the Monte-Carlo simulation should be compared with the actual values for 

each metric and each project.  For ease of comparison in each project, these simulated 

metrics are normalized against the actual values in that project so that the value one 

represents the true value. These results are reported in Figure 17 to Figure 20 in boxplot 

format. The box represents interquartile range (IQR) which is the distance from first (25th 

percentiles) and third quartiles (75th percentiles). The whiskers identify the maximum and 

minimum values. The plus symbol in the box interior represents the mean and the 

horizontal line in the box interior represents the median. The solid line at value 1 

represents the true value. 
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Figure 17: Boxplot of normalized design construction document finish (D_F) 

 
 

 
Figure 18: Boxplot of normalized design final cost (D_C) 
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Figure 19: Boxplot of normalized construction finish (C_F) 

 
 

 
Figure 20: Boxplot of normalized construction final cost (C_F) 

 

The best predictive model is the one which not only gets the performance 

measures correctly in average (i.e. no bias in the mean across many samples), but also 
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correctly estimates the variability expected in performance. For example the model would 

have been over-estimating the variance if the model’s mean performance always matched 

the actual numbers (i.e. all boxes were set squarely on value one), because the projected 

variability in outcomes was not borne out by the data. On the other hand, if most boxes 

were above, or below, the line one, we would identify a bias in the model’s predictions. 

To better assess the overall fit of the projected model metrics against the validation data, 

we create a variant of Q-Q plot which combines the data from all four metrics and 15 

projects into a single diagnostic graph. Consider n=60 (=15*4) actual metrics and their 

corresponding simulated distributions obtained through the Monte-Carlo results above. 

First we find what percentile each data point belongs to on the corresponding simulated 

distribution. The resulting data set includes 60 data points with different percentile 

values. We sort this dataset in the ascending order of percentiles and graph its values on 

x-axis against the y-axis of k/(n+1) for data point k (See Figure 21). A perfect match will 

be on the 45 degree line, where the empirical metrics match the corresponding percentiles 

in simulation distributions exactly.  A bias is identified if the graph is generally above or 

under the 45 degree line. A line steeper than 45 degree suggests the model is over-

estimating the variation in the actual metrics, i.e. it proposes many far-fetched values are 

possible, which actually never materialize in practice. Conversely, a less steep line than 

45 degree signals the model’s overconfidence in projecting as unlikely the values that are 

seen regularly in practice.  
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Figure 21: Q-Q plot, Percentile of true value against uniform distribution 

 

The linear regression analysis performed on the Q-Q data series shows a very 

good fit between the data and regressed line with R2 of 0.99. Moreover, 0.06 and 0.14 

units of deviations are found compared to the perfect theoretical values of intercept (0) 

and slope (1), respectively. While no bias is found for parameter estimates (i.e. at 50th 

percentile), these deviations are statistically significant, suggesting a steeper slope (i.e. 

model slightly over predicting the variance in the outcomes). This analysis shows that 

while the model is pretty close in predicting the distribution of empirical final metrics, it 

does predict a slightly fatter tail for these metrics, than empirically observed. This 

suggests the model predictions are slightly pessimistic in over-predicting variation. 

Table 4: Regression analysis result of Q-Q data series 

 
 

Coefficients Standard Error P-value
Intercept -0.064 0.010 0.000
Slope 1.143 0.018 0.000
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Conclusions 

This work is the continuation of our previous work (Parvan, Rahmandad, & 

Haghani, 2012). In this paper, we extended the design-construction feedback 

relationships to three: 1) Undiscovered design rework may increase construction error 

rate, 2) Undiscovered design rework may slow down construction production rate, and 3) 

Construction progress increase the detection rate of undiscovered design reworks. We 

measured these feedback relationships using the empirical data of 30 construction 

projects. The proposed system dynamics model is in line with the previous research (Ford 

& Sterman, 1998; Richardson G. P. and Pugh, 1981) and provides empirical estimates for 

some of the important feedback mechanisms discussed in the literature. These empirical 

estimates validate much qualitative hypotheses in this domain and suggest the inter-phase 

feedback mechanisms on quality, productivity, and rework discovery time are important 

and at a magnitude that can make a significant impact on project dynamics.  

Besides the estimation work, through our validation tests, the model was found to 

be a promising tool to simulate and predict construction projects. The model performed 

very well to match calibration sample projects. The performance of the calibrated model 

to predict validation sample project was fine, though it slightly over-estimated variation 

of outcomes. The small sample size in calibration may have led to unreliable random 

samples used for Monte-Carlo simulations, which would have then over-estimated the 

outcome variability.  

In our modeling and estimation we did not consider many potentially relevant 

factors such as project size, project type (new/renovation), location and project 
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complexity that may impact the project behavior and cost curve, and moderate the 

feedback effects of interest in our setting. Predictions may become more precise, if such 

data was available and used in the calibration-validation process.  
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