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Abstract 
Analysis work by the Software Engineering Institute (SEI) on data collected from more than 100 
Independent Technical Assessments (ITAs) of software-reliant acquisition programs has produced insights 
into some of the most common ways that programs encounter difficulties. This paper describes work done 
at the SEI that is based on these insights, and intends to mitigate the effects of both misaligned acquisition 
program organizational incentives, and adverse software-reliant acquisition structural dynamics, by 
improving acquisition staff decision-making. The research presented here uses a preliminary system 
dynamics model to analyze a specific adverse acquisition dynamic concerning the poorly controlled 
evolution of small prototype efforts into full-scale systems that is called “The Evolution of a Science 
Project.” The system dynamics model of the behavior is described, along with the results of simulations 
run using the model. The paper concludes with a set of lessons learned, as well as potential future 
research directions. 

1 Introduction 
Software-reliant systems are those that rely on software to provide their core mission functions—and the 
failure of programs developing these systems is an all too common occurrence for modern government 
acquisition. The Software Engineering Institute (SEI) is periodically asked to investigate the reasons why 
some software-reliant acquisition programs are seriously challenged, and even fail, despite the best efforts 
by government and industry to make them successful. The SEI works closely with, and in many cases 
conducts assessments of, individual software-reliant acquisition programs that are facing such challenges. 
These engagements have provided visibility into the processes and forces at work within these programs. 
Analysis work by the SEI on data collected from over 100 Independent Technical Assessments (ITAs) of 
software-reliant acquisition programs has produced insights into some of the most common ways that 
programs encounter difficulties. At a high level it has become evident that acquisition programs continue 
to regularly experience recurring cost, schedule, and quality failures, and program progress and outcomes 
often appear to be unpredictable and unmanageable (U.S. GAO, 2005).  

Furthermore, many acquisition leaders and staffers neither recognize these issues (despite their regular 
recurrence), nor understand how to manage them (Kadish, 2006). Despite best efforts by the Department 
of Defense to train and equip the acquisition workforce with the skills and guidance it needs to manage 
large, complex programs, significant challenges remain. Government and industry have an urgent need to 
help the defense acquisition workforce and their defense industry counterparts better recognize and 
understand the reasons behind the failures of many acquisition programs, and to provide guidance on how 
to mitigate or avoid these problems in the pursuit of better outcomes.  

One growing theme in acquisition is the prevalence of programs that are sometimes called “science 
projects,” (which may take the form of rapid prototyping efforts, advanced research projects, or Advanced 
Concept Technology Demonstrations) and the difficulties associated with evolving such efforts into larger 
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and more formal acquisition programs. The name “science project” refers to a program that starts out 
small and informally, often as an experimental development or prototype system to show proof of 
concept, and then grows in scope as demand increases. This paper describes a commonly recurring 
pattern of behavior seen by the SEI in software-reliant acquisition programs called “The Evolution of a 
Science Project,” and its analysis using system dynamics modeling and simulation. This pattern was 
identified over the course of multiple ITAs that gathered qualitative data on the behavior, and was 
endorsed as being timely and relevant in the current acquisition environment by both acquisition 
practitioners and executives.  

This paper provides an overview of the results developed in the initial year of work devoted to this effort. 
The purpose of this effort is to a) model and understand a timely and relevant dynamic that recurs 
frequently in software acquisition programs, and b) create a foundation of expertise and system dynamics 
modeling infrastructure that can be built upon in subsequent work. The concept of rework, which is a 
central idea behind the dynamics of “The Evolution of a Science Project,” is a major part of most project 
management models. Rework refers to the production of work in which some portion of the work has 
been done incorrectly, and is then classified as either discovered or undiscovered (i.e., latent) rework 
which will need to be performed again, often requiring unplanned effort. Rework is also sometimes 
referred to as “firefighting,” in the sense that as defects are inserted into the system, developers may be 
diverted to fix them, thus slowing progress and increasing schedule pressure, which can shortcut quality 
assurance processes, and so inject more defects.  

Project management dynamics have been studied using system dynamics modeling for over thirty years. 
Seminal works in the area include: 

• Ken Cooper, “Naval Ship Production: A Claim Settled and a Framework Built”  (Cooper, 1980) 

• Tarek Abdel-Hamid and Stuart Madnick,  Software Project Dynamics  (Abdel-Hamid & Madnick, 1991) 

• David Ford and John Sterman, “Dynamic Modeling of Product Development Processes”  (Ford & 
Sterman, 1998) 

• Raymond Madachy,  Software Process Dynamics  (Madachy R. J., 2008) 

Rework continues to be the subject of research in system dynamics (Li, Taylor, & Ford, 2011)  (Li Y. , 
2011) (Taylor, Ford, & Johnson, 2005)  (Lyneis & Ford, 2007). In addition, rework is inherent in software 
development, often resulting in substantial cost and schedule growth, in part because of the feedback that 
it presents. Without tooling such as system dynamics modeling that can be used in its study, rework 
presents a complex and nonlinear problem that is generally intractable to traditional analysis methods. 
Software-specific research involving rework involves work in the area of software development projects  
(Birkholzer, et al., 2010) (Raffo & Kellner, 2000) (Scacchi & Mi 1993)  (Madachy, Boehm, & Lane, 
2006, May), and, to a lesser extent, software acquisition  (Wirthlin, Houston, & Madachy, 2011) 
(Haberlein, 2004) (Abelson, Adams, & Eslinger, 2004, January) (Scacchi & Choi, 2001) (Buettner, 2008) 
(Choi & Bae, 2006).  

The key questions that this work is attempting to answer are as follows: 

• Can the management and software development aspects of software-reliant acquisition programs be 
cost-effectively modeled using system dynamics such that the simulation results reasonably and 
consistently conform to the outcomes seen in actual programs? 

• Can the results of such modeling be used to produce practical insights into different ways to improve 
the conduct and management of software-reliant acquisition programs? 
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This paper characterizes our hypothesis regarding the problem regarding system acquisitions that involve 
the development of an early science project to explore key issues. The causal structure underlying our 
hypothesis is described as a causal loop diagram, which in section 3 is refined into a full system dynamics 
simulation model. The next section outlines some of the preliminary results of the simulation with key 
observations that support our hypothesis. The last section summarizes the paper, describes some key 
lessons learned through our modeling effort, and describes remaining work to be done. The appendices 
provide an overview of the system dynamics method and notation, the models developed, and an interface 
used to interact with the model simulation. This paper is a summary of the full report (Novak, Moore, & 
Alberts, 2012). 

2 Problem Characterization 
We hypothesize that the root cause for the problematic behavior experienced during the transition of many 
science projects is due to the fact that 

• software development of the prototype is driven by schedule and the development of new features, 
with little focus on quality and robustness.  

• the code from the science project prototype is used as the foundation for the production system 
because of the perception that starting over would unacceptably delay deploying new capabilities to 
the field (the architecture and design of the prototype might also be used, but in many cases these do 
not exist, and when they do, they are frequently poorly documented).  

• the transition from prototype development to production system development is delayed later than 
necessary, both to try to field a system more quickly, and perhaps consciously, to avoid the effort and 
overhead of formal program rigor. 

Early in the life cycle of a science project, development results in a working prototype that has attractive 
external capabilities, but also high defect rates, poor code quality (i.e., complex and poorly structured 
code), and poor system documentation. The use of the prototype as the basis for a production system and 
the late transition of the prototype to production development inject a significant level of latent defects 
into the system. When discovered incrementally later in development, the latent defects and poor code 
quality lead to a “ripple effect” of rework across the phases of the development (Cooper, 1980)  (Taylor, 
Ford, & Johnson, 2005, July). This creates schedule pressures in the production development that can 
magnify the ripple effect further. The ripple effect is depicted in Figure 1 below, notionally graphing 
discovered quality issues during production development over time. Discovered quality issues rapidly 
increase to a peak, in many cases leading over time to additional consequential issues—and then 
gradually decline as development resources are reallocated to rework them, with this rework itself 
introducing a smaller level of quality issues that will have to be reworked.  
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Figure 1: Notional Problem: Ripple Effect Due to Incremental Discovery of Science Project Quality Issues 
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We believe that the ripple effect described above can cause the “90% syndrome,” as depicted in Figure 2, 
where latent defects that have accumulated during the science project phase slowly come to light during 
the production development in the later stages of the project. During the latter stages of development a 
much larger percentage of the effort is devoted to rework rather than development. That situation, 
combined with the fact that undiscovered work comes to light only incrementally over the lifetime of the 
project, results in the slowed progress inherent in the 90% syndrome.  
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Figure 2: 90% Syndrome Due to Rippling Rework in the Production Development 

Figure 3 (depicted on the next page) presents a causal loop diagram1 that refines the causal hypothesis 
described above. The left side depicts the primary aspects of the development of the science project 
prototype. The right side shows the transfer of that prototype to production development. The 
development of the science project is motivated by urgent demand for the new capabilities in the field. 
The purpose is to build a small prototype system to produce a compelling “proof of concept” 
demonstration to help garner support for full-scale production development.2 The project is often 
(although not always) initiated and managed by the user or operational community. The software 
development is often done in-house by existing staff, and if a contractor is used the contract vehicle may 
be Time and Materials (T&M) or Indefinite Delivery/Indefinite Quantity (IDIQ) without explicit 
schedules or deliverables, in order to keep the development effort as informal as possible. The effort is 
generally both schedule and feature driven to get key functionality to users as quickly as possible. The 
(blue) feedback loop on the left side of Figure 3 shows that schedule pressure can result in a reduction in 
the rigor of quality assurance (QA) processes, with a commensurate reduction in the staffing of rework to 
fix quality issues in the prototype. This results in more effort being put into developing features and a 
reduction of schedule pressure compared to what it would have been otherwise.  

1 A causal loop diagram shows qualitatively how related variables affect each other. The nodes indicate variables, 
and the connecting arrows show the nature of the relationships between them. When an increase in one variable 
causes an increase in the variable it is connected to, the connecting arrow is marked with a “+”. When a change in 
one variable causes the opposite change in the variable it is connected to, the connecting arrow is marked with a “-“. 
A loop made up of nodes and connecting arrows that continually moves in the same direction is called a 
“reinforcing” loop. A loop where the values of the nodes oscillate back and forth is called a “balancing” loop. Two 
parallel lines placed across a connecting arrow indicate that there is a delay in the propagation of the value across 
the arrow. A more detailed discussion of the notation for causal loop diagrams may be found in Appendix B of this 
paper. 

2 It should be noted again that this scenario is not what would be done when following an evolutionary prototyping 
approach in support of agile development method, where formal steps would be taken to ensure the quality and 
robustness of the evolving prototype. 
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Figure 3: Causal Loop Diagram of "The Evolution of a Science Project" 
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While reducing the rigor of the QA processes enables more rapid development of features, it also has 
clear repercussions on the quality of the prototype as depicted in the upper portion of the Science Project 
sector. Reduced QA rigor leads to the generation of more software quality issues, which are initially 
unknown (or undiscovered) by the project team. It also makes it difficult to discover and fix these quality 
issues (fewer QA inspections, etc.) when staffing of rework is diminished. The result is that quality issues 
are rampant in the prototype when the decision is made to transition the system to a formal acquisition 
program, especially when the project resists making that transition as soon as possible after proving 
viability. This dynamic is supported by and consistent with a ripple effect exhibited in previously 
developed project management models (Taylor, Ford, & Johnson, 2005). 

The decision to reuse the prototype in production development may be irresistible. As was pointed out 
previously, having operational people manage the project instead of software development or acquisition 
professionals may prevent them from seeing the longer-term consequences of using a prototype as the 
basis for production development. Upon the decision to reuse the prototype, as shown on the right side of 
the Production Development sector, the production development inherits the work that has been 
completed on the prototype. Unfortunately, it also inherits the prototype’s quality issues. Most significant 
is the large stock of undiscovered quality issues. While the production development adopts a quality-
driven development approach appropriate for a formal acquisition program, as shown in the (green) 
feedback loop, the discovery of prototype quality issues creates a ripple effect of rework across the phases 
of the production development. 

Of course, the production development effort is not immune to its own schedule pressure. While some 
level of defects was expected, the incremental discovery of latent prototype quality issues stemming from 
significant architectural and design flaws was not fully considered in the schedule for the production 
development. The large amount of rework caused by the ripple effect of the incrementally discovered 
quality issues throws the production development off schedule, thus increasing pressure on development 
staff and as a consequence, increasing the injection of quality issues during development. This effect 
magnifies the ripple effect further as seen in the (purple) feedback loop on the right side of Figure 3.3 

It might appear that if the program management simply did a better job of planning for the additional 
rework caused by the prototype, the problems could be resolved. However, it is the existence of 
fundamental issues with the prototype software’s architecture and design that led to much of the 
undiscovered (and unsuspected) rework that will have to be done—and the effort that will be involved to 
address those issues will be both substantial and especially difficult to estimate. The conclusion is that the 
causal mechanisms described above may be the determining factor behind the poor performance of many 
science projects even after they have transitioned to a formal acquisition program.  

3 The Simulation Model 
A quantitative system dynamics model refines and describes the relationships presented in the causal loop 
diagram using mathematical equations. This is done by adding two new concepts to the modeling 
notation: stocks and flows.  

1. Stocks represent accumulations of physical or non-physical quantities, and flows represent the 
movement of these quantities between stocks. Stocks are depicted as named boxes within the model.  

2. Flows are depicted as double-lined arrows between the stocks with a named valve symbol indicating 
the name of the flow. Flows that come from (or go to) a cloud symbol indicate that the stock from 

3 Note that in the diagram, QA Work to Do has the same influence on both released work, and remaining work to do. 
This is simply a reflection of the fact that as the amount of QA work increases, it results in both more released work, 
and more remaining work to do (i.e., rework). 
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which the flow originates (or to which the flow goes) is outside the scope of the model, and 
presumed to be infinite.  

Figure 4 provides an overview of the system dynamics model. The three feedback loops used to describe 
the causal hypothesis in the last section also appear in this overview. The loops correspond with loops B2, 
R3, and R4 in the figure and are labeled with the same name and appear in the same color. The left side of 
the figure portrays the Science Project sector, and the right side shows the Production Development 
sector. The overview in Figure 4 provides an index to the structure of the full model presented in 
Appendix C and Appendix D. 

The overview presents both the primary and secondary feedback loops that are most important for 
describing the evolution of a science project. At this level there are nine feedback loops—five balancing 
loops and four reinforcing loops.4 The model embodies a simplified story of the evolution of a science 
project, which integrates the exposition of the feedback loops described in more detail in the next section. 
A more detailed version of this story, drawn from assessments of acquisition programs, can be found in 
the full version of the report. (Novak, Moore, & Alberts, 2012) 

Developers build features while reworkers fix quality issues. Developers may get pulled off 
development to do quality driven rework (feedback loop B1).5 However, science projects are largely 
schedule and feature-driven to satisfy users, so managers resist staffing rework at sufficient levels 
(B2). While new features may ultimately satisfy users (B3), in the short term they create heavy user 
demand, increasing schedule pressure (R1). Increased schedule pressure may increase short-term 
productivity (B4), but at the expense of more quality problems. Even worse, workers eventually start 
to burn out due to the increased work load (R2). The steady erosion of the QA processes and 
increasing problems in the field creates pressure to move to a formal acquisition program.  
As the science project transitions to production development, that development inherits undiscovered 
quality issues in the science project prototype.6 This creates a “ripple effect” of rework that is 
discovered incrementally through the production development (R3). All the while, the production 
development strives to approve and release work to increase the capability of the fielded system 
(B5). Unfortunately, schedule pressure during the production development mounts due to the 
incremental discovery of pre-existing quality issues (and thus additional rework) from the science 
project. The ongoing pressure creates quality problems in the production development as well, and 
magnifies the ripple effect of undiscovered quality issues (R4). 

4 The terms “balancing loops” and “reinforcing loops” are described in Appendix B as part of an introduction to 
system dynamics. 

5 Note in the diagram that more SP Reworkers results in an increase in both reworking success and reworking 
failure. This is a reflection of the fact that as the number of SP Reworkers increases, discovered quality issues will 
be dealt with more quickly through rework done in either a correct (successful) or incorrect (failing) manner.         
While seemingly counter-intuitive, this is simply a consequence of the increased amount of work being done. We 
assume that there is no change in the percentage of rework success due to an increase in SP Reworkers. 

6 While it looks like SP Discovered Quality Issues have to be rediscovered in the production development, the 
quality issues that are discovered during the science project development are immediately available as discovered 
quality issues in the production development, while the undiscovered quality issues take some time to discover 
during production development. This is signified by the delay mark on the arrow from SP Undiscovered Quality 
Issues to PD Discovered Quality Issues. This behavior is apparent in the mathematical formulas representing the 
simulation model, but is somewhat ambiguous at this qualitative level. 
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Figure 4: Overview of the System Dynamics Model 
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3.1 Science Project Sector 
The key stocks and flows in the Science Project (SP) sector are depicted in Figure 5 and are understood as 
follows:7 

• Worker reallocation (along the left middle of Figure 5): Science project personnel are either 
developers, i.e., writers of code to implement features; or reworkers, i.e., fixers of quality issues 
related to code defects, code quality, or software architecture. We assume a fixed number of 
employees working on the science project prototype, but with full flexibility to move staff between 
development work and rework based on the priorities of the project, with a small time lag to actually 
make the transition. Note that while the flow is only shown by the arrow to occur in one direction, a 
negative flow results in reworkers becoming developers. 

• Feature development (along the bottom right of the figure): The model starts out with a basic number 
of features to be developed. The stock and flow shows that features are developed at a rate 
represented by the “SP developing features” variable. In the model this rate is based on the number of 
SP Developers available and their (average) productivity,  

• Quality issue processing (along the top right of the figure): Quality issues injected into the software 
during development are initially unknown by science project personnel. Over time these quality 
issues may be discovered and, depending on the number of SP reworkers available, the associated 
software will be reworked. The rework may be successful, resulting in the correction of the problem, 
or may fail, leading to additional undiscovered quality issues. 
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Figure 5: Stocks and Flows in the Science Project Sector 

7 While there are additional stocks and flows in the full model shown in the appendices, we believe that the ones 
describe here are key to understanding the basic dynamics of the model. By understanding this simpler model, the 
interested reader will be well on their way to understanding the full model. 
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The stocks and flows of Figure 5 are interconnected via the feedback loops shown in the Science Project 
Sector of Figure 4. The key feedback loops are: 

• B1: Quality-Driven Rework (red): This balancing loop represents the relationship in the Science 
Project between the number of people doing rework, and the number of discovered quality issues in 
the science project. It shows the feedback in attempting to reduce quality issues through reallocating 
people to do rework.  

• B2: Schedule and Feature-Driven Development (medium blue): This balancing loop represents the 
relationship in the Science Project of the number of developers, the code and features they develop, 
schedule pressure, QA rigor, and the prototype quality target. It represents balancing feedback in 
attempting to meet schedule by lowering QA standards, reallocating people to do development rather 
than rework (i.e., sacrificing quality to make better progress), produce more features, and reduce 
schedule pressure. 

• R1: Escalating User Demand (orange): This reinforcing loop represents the relationship in the 
Science Project between the number of features that have been developed, the user demand for more 
features, schedule pressure from users, and the amount of developed code. It shows the feedback 
effect of how more features having been developed actually increases the user demand for even more 
features, driving up schedule pressure to develop more code.  

• B3: Moderating User Satisfaction (aqua): This balancing loop represents the relationship in the 
Science Project that tends to reduce (somewhat) the schedule pressure, as users get access to features 
developed by the Science Project and to some extent are satisfied with those features. This loop, 
therefore, partially counteracts the R1 loop described above. Combined with the R1 loop, the 
cumulative result may still be that schedule pressure increases based on user reactions, but the B3 
loop represents those influences that dampen the schedule pressure below what it would have been 
otherwise. 

• B4: Short-term Productivity Gains from Pressure (brown): This balancing loop represents the 
relationship in the Science Project between the amount of developed code, the number of new 
features developed, user satisfaction with those features, and schedule pressure from users for more 
features. It shows the feedback in attempting to boost productivity by pressuring developers to 
produce more code, thus relieving the schedule pressure at least in the short term. 

• R2: Worker Burnout from Pressure (navy blue): This reinforcing loop represents the relationship in 
the Science Project between the amount of developed code, the number of features developed, user 
satisfaction with those features, schedule pressure from users for more features, and worker burnout 
from the schedule pressure. It shows the feedback effect of ongoing schedule pressure producing 
burnout among developers, thus adversely impacting their productivity in developing code and 
increasing schedule pressure. 

3.2 Production Development Sector 
The key stocks and flows in the Production Development (PD) sector are depicted in Figure 6. The stocks 
are 

• PD Development Work Remaining: This stock contains the development work to be done. Once this 
work is completed (at whatever level of quality the current processes afford) the work is sent on for 
quality assurance evaluation. 

• PD QA Work Remaining:  As development work is completed, quality assurance processes take over. 
This stock contains the backlog of QA work to be done. 

• PD Work Released: Work that is approved is released into the PD Work Released stock. How the 
work is used once it is released is not modeled, nor is allowance made for the possible discovery of 
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quality issues in released work products. For this model we assume that the quality assurance 
processes are sufficient to ensure acceptable use of the work products in the field. 

• PD Discovered Quality Issues: Work that is found to have significant quality issues goes to the PD 
Discovered Quality Issues stock. Quality issues may also be discovered due to problems in the SP 
prototype, which has a separate flow into the stock of discovered quality issues. The rework rippling 
flow is yet another inflow to discovered quality issues that represents the potential for ripple effects of 
additional rework due to quality issues found in previously developed artifacts. 

The stocks and flows of Figure 6 are interconnected via the feedback loops shown in the Science Project 
Sector of Figure 4. This leverages insights from the project management model of (Taylor, Ford, & 
Johnson, 2005). The key feedback loops are as follows: 

• B5: Assured Quality and Release (gray): This balancing loop represents the relationship in Production 
Development between the amount of QA work remaining, the rate at which QA work is being 
accomplished, and the rate at which work is being approved. It shows the feedback of pending QA 
work that influences the rate of approving completed work.  

• R3: Quality-Driven Development (green): This reinforcing loop represents the relationship in 
Production Development between the amount of QA work remaining, the rate at which QA work is 
being accomplished, the discovery of quality issues, the rate at which rework is being done on those 
issues. It shows the feedback effect in which the discovery of quality issues as a result of the QA 
process causes rework, thus increasing the QA backlog in a reinforcing way. This is one dimension of 
the ripple effect of undiscovered quality issues. 
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issues
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discovering PD
quality issues

PD approving
work

PD Work
Released

PD
Development

Work
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Figure 6: Stocks and Flows in the Production Development Sector 

• R4: Schedule Pressure Magnified Ripple Effect (purple): This reinforcing loop represents the 
relationship in Production Development between the amount of known work that is remaining to be 
done, the perceived time needed to finish that work, the schedule pressure, quality issues, and the 
discovery of quality issues. It shows the feedback effect in which discovered quality issues increases 
schedule pressure, and magnifies the ripple effect described in the R4 loop. We assume that the 
additional rework generated as a result of the ripple effect is 0.8 times the rework due to discovered 
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PD and SP quality issues. This multiplier is the ripple effect strength referred to in (Taylor, Ford, & 
Johnson, 2005). 

Note that the rework (or “Firefighting”) dynamic is evident in the Science Project sector in the B2: 
Schedule and Feature-Driven Development feedback loop, and in the Production Development sector in 
the R4: Quality-Driven Development and R5: Schedule Pressure Magnified Ripple Effect feedback loops.  

4 Preliminary Simulation Results 
The full model (which is described in the appendices, and was discussed in overview in the previous 
section) is implemented to provide a simulation of the entire science project evolution. Appendix D shows 
the interface that was created to interact with the model. This section presents a few preliminary 
simulation behaviors that reflect the team’s experience with science projects in the field at a qualitative 
level. The default initial value of the primary input variables are as follows: 

• Applying pressure to workers: This variable indicates how much managers apply pressure to 
workers according to how behind schedule the project is. The default initial value is set to High. 

• Development scope (SP): This variable regulates how many features are being implemented as 
part of the science project effort.  The default initial value is set to High, which translates to 40 
features.  The complete development effort for the production development is 200 features. 

• SP scheduled completion date: This variable indicates the date currently scheduled for completion 
of the science project effort.  The default initial value is set to 90 weeks from the start of the 
simulation. 

• decision to reuse prototype: This variable indicates whether the production development effort 
will use the artifacts produced as a result of the science project development effort.  The default 
initial value is set to false (the value 0 represents false). 

A word of caution is necessary. The model has not yet been validated or calibrated to align with the 
experience of acquisition program decision-makers outside the modeling team. As such this simulation 
model is only a preliminary explanation of the dynamics of “The Evolution of a Science Project.”  The 
causal hypothesis described previously remains a hypothesis. The simulation model described here 
provides one avenue for testing mitigations to the problematic behavior, but work remains in terms of 
refining and validating the quantified relationships among model variables before testing mitigations 
would have significance in the real world. The model must exhibit the right behavior, and for the right 
reasons, before firm conclusions can be drawn from the simulation. Nevertheless, the simulation model 
presented in this paper provides tentative support for the causal hypothesis presented earlier. We therefore 
present the findings below as preliminary. 

Preliminary Finding 1: The accumulation of undiscovered rework from the science project creates a 
tipping point during production development.  

A tipping point is a threshold condition that, when crossed, shifts the dominance of the feedback loops 
controlling a process (Sterman, 2000). In our case, the shift is from the dominance of the balancing loop 
B5: Assured Quality and Release to the reinforcing loop R4: Schedule Pressure Magnified Ripple Effect. 
When B5 dominates, progress on the project is made, however steadily, towards completion. When R4 
dominates, progress nearly halts as the ripple effect causes the generation of more and more rework.  
Preliminary Finding 2: Applying high pressure, or even moderate pressure for extended periods, can push 
the program past the tipping point. 
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The tipping point dynamic is clearly seen in the simulation graph presented in Figure 7.8 The degree to which 
schedule pressure is applied to workers is measured on a six-point scale: None, Low, Medium-Low, Medium, 
Medium-High, or High. During times of high schedule pressure, applying the full pressure to the workers 
might mean that the workers’ jobs would be in jeopardy if they did not put forth their full effort, whereas 
medium pressure might mean that their performance evaluations would be significantly impacted. The graph 
shows that applying pressure at Medium level and above pushes the discovery (and generation) of quality 
issues over the tipping point towards more and more rework (this is where loop R4 dominates). Applying 
pressure at a Medium-Low level and below results in completion of the project (this is where loop B5 
dominates).9  
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Figure 7: Simulation Results for Production Development Discovered Quality Issues  

The above behavior is even worse than what we expected as described in the causal hypothesis and as 
shown in Figure 1. Not only does the ripple effect delay the completion of the project, but in the worst 
case it extends it out indefinitely toward more and more rework. Of course, if the project were to restart 
itself on solid ground it could again begin to make solid progress toward definite completion. However, 
the simulation suggests that if the project were left to run its course, no conclusion would be reached, 
indicating that the project was past the tipping point. Notice also the increasing amplitude of the (damped) 

8 This and subsequent graphs were generated using the Vensim modeling and simulation tool (VenSim is a 
registered trademark of Ventana Systems Inc.). These are all behavior-over-time graphs and, as such, the X-axis for 
these graphs is specified in weeks (400 weeks is the duration of the simulation). Each simulation run is specified as 
individual graphs distinguished both in color and with a number label (1 through 6 in Figure 7), as specified in the 
legend below the graph. Each simulation run varies a key parameter. The graph in Figure 7 varies the extent of 
Applying Pressure to Workers from no pressure applied up to high pressure applied, and shows the value of PD 
Discovered Quality issues along the Y-axis for all times during the simulation. The label on the Y-axis indicates the 
units for the variable being graphed, which in this case is the number of tasks involved with fixing the quality issues 
that were discovered. 
9 The simulation runs for PD Discovered Quality Issues at the lower pressure levels (runs 4, 5, and 6) shown in the 
figure do not actually show the levels going to zero in the second half of the simulation. The project does terminate, 
but some minimal level of rework is allowed to remain even at project conclusion, i.e., not all loose ends are 
completely tied up. 
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oscillations apparent when higher levels of pressure are applied. These oscillations in the model 
simulation occur precisely because of the higher levels of undiscovered rework transferred to the 
production development, as seen below in Figure 8. 

The reason that all runs have no discovered quality issues up until between week 80 and week 120 is that 
this is the point at which the science project ends and the quality issues from the prototype are transferred 
to the production development. The graphs in Appendix F of the full report show the behavior of the 
science project prototype development prior to the point of this transfer for the case in which all pressure 
is applied (Novak, Moore, & Alberts, 2012). Key to the buildup of the initial PD Discovered Quality 
Issues is the science project’s response to the schedule pressure by reducing the rigor of QA processes, 
and the resulting poor quality work that the schedule and feature-driven development entails. 
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Figure 8: Simulation Results for Science Project Rework to be Discovered  

Preliminary Finding 3: The tipping point contributes to the “90% Syndrome.”  

As described in Figure 2 of the causal hypothesis, the model simulation does reflect the 90% Syndrome. 
Surprisingly, as shown in Figure 9, the only place this phenomenon is seen is where the project has gone 
past the tipping point, i.e., where above moderate pressure is applied to workers to meet schedule 
demands in simulation runs 4, 5, and 6.10 It is significant that the simulation’s behavior in seeing forward 
progress plateauing well before project completion is very consistent with the predictions of the 90% 
Syndrome. The fact that the simulation plateaus near the 80% level may be due to the fact that the model 
takes into account all rework remaining in its calculations. 

10 The simulation runs for Percentage Complete at the lower pressure levels (runs 4, 5, and 6) shown in the figure do 
not actually show 100% completion in the second half of the simulation. The project does terminate, but some 
minimal level of rework is allowed to remain even at project conclusion—i.e., not all loose ends are completely tied 
up.  
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One unexpected observation of the above dynamic is that it appears the simulation requires going over the 
tipping point before the project displays the 90% syndrome behavior. Progress on the projects that do 
complete (i.e., simulation runs 4 through 6 in Figure 9) appears to increase in the final weeks. It isn’t clear 
whether actual acquisition programs that exhibit the 90% syndrome are necessarily “over the tipping 
point” for that project. It may be unlikely, but if true it would be informative about what needs to be done 
in those circumstances (e.g., letting the project run its course without rebaselining—including schedule 
relief—might not be the wisest option, as it would never complete). 
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Figure 9: Simulation Results for Percentage Complete 

Preliminary Finding 4: Applying only a low level of pressure to workers for a limited time, even in the 
face of heavy schedule demands, shortens project duration through increased productivity. 

The above simulation graphs might seem to suggest that the less pressure applied to workers, the better. 
However, a VenSim optimization shows that a steady, low level of pressure is optimal for reducing project 
duration. While this has not been tested explicitly as part of the model, it may be that by allowing periods 
of heightened pressure on workers, followed by periods of relaxation, the program could limit the 
potential for worker burnout, and perform better regarding schedule. This may be a point of future 
investigation. 

Preliminary Finding 5: From a technical standpoint, an earlier transition from the science project to 
production development creates fewer problems than a later transition does. 

Figure 10 shows the accumulation of PD Discovered Quality Issues when the scope of the SP effort is 
varied. We measure the scope of the SP effort based on the number of features developed, but show it 
qualitatively in the graph on a four-point scale: Low, Medium-Low, Medium, or High. A medium SP 
scope was the assumed level in all previous simulations represented above. To simplify the analysis we 
assume that all schedule pressure is applied to the workers as the science project develops the prototype, 
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so the simulation goes past the tipping point in the case of a medium-feature scope. As is apparent from 
the figure, going to a high-feature scope (in simulation run 2) causes a later start of the production 
development, again surpasses the tipping point, and results in higher amplitude oscillations. Reducing the 
scope to medium-low (in run 3) is still beyond the tipping point, but results in a significantly damped 
oscillation. Finally, reducing the scope of the development to a low level (simulation run 4) results in 
successful completion of the production development at approximately week 140, without the project 
passing the tipping point. The only difference between this run which successfully completed and the runs 
that passed the tipping point was the scope of the science project prototype. Clearly a science project 
prototype needs to demonstrate viability and utility, but this simulation shows that going beyond that can 
lead to disastrous consequences for the project as a whole.11 
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Figure 10: Simulation Results for Production Development Discovered Quality Issues 

Preliminary Finding 6: The project performs significantly better by shelving the prototype when it is 
complete, instead of reusing a poorly-constructed prototype  

Not unexpectedly, the simulation predicts a better outcome for shelving the prototype before moving to 
production development. It is difficult to envision a worse outcome than a project that goes over the 
tipping point, spiraling downward towards more and more rework. Fortunately, shelving the prototype 
and starting over in production development does not also go over the tipping point—it was the decision 
to reuse the poorly-constructed prototype that caused the failure. Figure 11 shows that not reusing the 
prototype in simulation run 2 leads to project completion around week 180, whereas reusing the prototype 
leads to ever increasing estimated completion dates. The primary reason is the reduction in the amount of 
rework the production development has to deal with as shown in Figure 12. 

11 Appendix H provides other simulation behaviors for various levels of prototype scoping. 
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Figure 11: Simulation Results for Production Development Scheduled Completion Date Reflecting the 
Decision to Reuse 

PD Discovered Quality Issues (Reuse SP Prototype?)
200

150

100

50

0
2 2 2

2 2

2 2 2 2 2 21 1 1

1

1

1

1 1 1 1
1

0 40 80 120 160 200 240 280 320 360 400
Time (Weeks)

Ta
sk

s

Reuse at Med SP Scope 1 1 1 1 1 1 1
Decision Not to Reuse 2 2 2 2 2 2 2

 
Figure 12: Simulation Results for Production Development Discovered Quality Issues Reflecting the Decision 
to Reuse 
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That said, it was not strictly the decision to reuse the prototype that created the disastrous results. Figure 
13 below shows that reusing better-constructed prototypes results in approximately the same project 
duration. In other words, the benefits of doing a science project can be achieved while still keeping to a 
reasonable schedule, as long as the quality of the prototype does not slip. Interestingly, the best project 
performance observed was where the science project prototype scope was low, in which case the 
production development reused the prototype to finish the project in under 150 weeks. 
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Figure 13: Simulation Results for Production Development Scheduled Completion Date for Various Worker 
Pressures 

A key conclusion from this investigation is that the adverse consequences of “The Evolution of a Science 
Project” dynamic will take hold if the project develops a “throwaway” prototype and nonetheless attempts 
to evolve it into a production-quality system. The project will likely also slip schedule significantly if it 
stops development, discards the “throwaway prototype,” and redesigns/re-implements the prototype from 
the beginning (perhaps incorporating the lessons learned from the prototype implementation)—but it will 
likely still complete development of the system. If those were the only two options, the question would be 
one of when to discard the prototype and shift over to conducting a formal acquisition program. A third 
possible option may be to deploy the last viable version of the prototype, stop development on the 
prototype, stop using it for further new development, and use the final prototype release as a way to “buy 
some time” with users—while the development team begins the formal reimplementation effort. 
However, this approach also has a drawback in terms of the prototype maintenance; when the prototype 
system does fail in a significant way in the field, someone will likely have to be assigned to understand 
what went wrong, and how to work around the problem, consuming more of the limited project resources.  

However, experience suggests that the path that is most likely to be most successful in a science project 
context is to develop an evolutionary prototype so that the project will neither “hit the wall” when 
development stalls, nor “go dark” when the prototype must be discarded and re-implemented. Because 
there is less build-up of undiscovered rework, and no time-consuming restart and re-implementation, 
development can continue through to completion at a reasonable pace. The problem, though, originates 
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with the fundamental conditions and incentives that tend to drive the creation of science projects. If the 
development effort is led by operational, functional, or business people, their lack of software expertise 
may make them unaware of this approach, and thus preclude them from using it. Even if the evolutionary 
prototyping approach were used, it would likely also cost more, and delay the system’s first deployment 
to the field. Neither the time to develop a quality system architecture and design, or produce 
comprehensive documentation, will be small.  

5 Conclusion 
Software acquisition programs regularly experience recurring cost, schedule, and quality failures, and 
progress and outcomes often appear to be unpredictable and unmanageable. The subject of this paper is a 
specific adverse acquisition dynamic concerning the poorly controlled evolution of small prototype efforts 
into full-scale systems that is called “The Evolution of a Science Project.” This paper qualitatively 
describes key aspects of the dynamic, describes a system dynamics model that was built to analyze the 
dynamic, and presents six preliminary findings: 

• The accumulation of undiscovered rework from the science project creates a tipping point during 
production development (at the tipping point program behavior changes unexpectedly from 
completing in a finite time, to not completing at all). 

• Applying high pressure to developers, or even moderate pressure for extended periods, can push the 
program past the tipping point. 

• The tipping point contributes to the 90% Syndrome (this occurs when development stalls near 
completion, with little progress made despite spending more time and effort). 

• Applying only a low level of pressure to workers for a limited time, even in the face of heavy 
schedule demands, shortens project duration through increased productivity. 

• From a technical standpoint, an earlier transition from the science project to production development 
creates fewer problems than a later transition does. 

• The project performs significantly better by shelving the prototype when it is complete, instead of 
reusing a poorly constructed prototype. 

The full report on our effort describes general lessons learned about the system dynamics modeling 
process and tools (Novak, Moore, & Alberts, 2012). It also makes six observations about the activity of 
system dynamics modeling of software-reliant acquisition that are drawn from our experiences both with 
this effort, and with software-reliant acquisition programs in general: 

• Many software-reliant acquisition program behaviors are an interaction between the inherent 
structural dynamics (i.e., the “physics”) of the software development activities, and the incentives that 
are acting upon the key participants and stakeholders as they make decisions. 

• System dynamics modeling can provide a deep understanding of the often poorly understood 
dynamics of software-reliant acquisition. 

• It’s helpful to have a clear understanding of a given dynamic before selecting the most appropriate 
course of action for a given program (so that the action addresses the actual problem, rather than only 
a symptom). 

• Tipping points may play a key role in many complex and challenging software development and 
acquisition situations, and require further study. 

• Building models that are valid and reliable is a significant undertaking, requiring significant effort, as 
well as both detailed domain expertise and extensive modeling experience. 

• There is much more that can be learned about the problematic behaviors of software-reliant 
acquisition programs and their potential solutions by applying system dynamics modeling to other 
aspects of software-reliant acquisition. 
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Beyond extending the current model in several areas where we see it deficient (see Appendix J of (Novak, 
Moore, & Alberts, 2012)), future work would involve using the model to  
• Model potential mitigations and solutions - An important next step in this work is to mitigate the 

effects of misaligned acquisition program organizational incentives and adverse software-reliant 
acquisition structural dynamics by improving program staff decision-making. This requires not only 
modeling and analyzing adverse acquisition dynamics that have been encountered in actual programs, 
but identifying and then modeling candidate solutions that may be able to mitigate or resolve the 
counter-productive behaviors. Constructing potential solutions and then connecting them to the 
original model of the program behavior makes it possible to evaluate the ability of each candidate 
approach to mitigate the dynamic’s adverse behavior. This allows an initial assessment of the value of 
the approach to be made, which could then be initially piloted on a small program to see how well the 
predicted model behavior mapped to the real world.  

• Teach important model-based lessons learned using experiential learning - Education in a classroom 
setting does not always translate to the reality of complex challenges and changing priorities students 
face in an operational environment—and as a result, may not produce significant job performance 
improvement. System dynamics models provide an opportunity to provide experiential learning by 
allowing them to interact with the dynamics of the kind of problems they may face in an operational 
environment. The system dynamics model developed for “The Evolution of a Science Project” 
dynamic can provide the foundation for an interactive learning simulation. Using interactive 
simulations to learn about acquisition helps significantly in both analyzing and making decisions about 
these complex situations. By improving program decision-making, we can help programs overcome 
counter-productive behaviors that stem from misaligned incentives, and thus deploy higher-quality 
systems to the field in a more timely and cost-effective manner. 

In conclusion, we believe that modeling the incentives and dynamic behavior of acquisition programs is 
one of the most powerful and cost-effective ways available of understanding problems, evaluating 
candidate solutions, and producing better acquisition program outcomes. It is neither cost-effective nor 
practical to conduct large-scale experiments on acquisition programs of record, which makes modeling 
these systems the most viable method for studying them and analyzing the comparative advantages of 
different practices and methods. Even the most minor efficiencies gained in large acquisition programs 
from using modeling could produce benefits in functionality, quality, performance, improved time-to-
deployment, and direct cost savings that would recoup the research and analysis investment many times 
over. We hope to continue to have the opportunity in future work to prove this to be the case.  

6 Acknowledgements 
Many people have worked to sponsor and improve this paper and the work it describes, and it would not 
have been possible without their support, help, and expertise. First and foremost, we would like to thank 
our sponsor, the office of the United States Assistant Secretary of Defense (Research and Engineering) for 
the funding and opportunity to perform this work. We would also like to thank the SEI’s Acquisition 
Support Program Director Mary Catherine Ward for her support and encouragement. Finally, the authors 
owe a debt of gratitude to the people within the SEI who provided technical review and comment on the 
report on which this paper is based, including John Foreman, Christopher Alberts, Julie Cohen, and Jay 
Marchetti, as well as our editor, Gerald Miller.  

Copyright 2013 Carnegie Mellon University 

This material is based upon work funded and supported by the Department of Defense under Contract No. 
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering 
Institute, a federally funded research and development center. 

20 
Modeling the Evolution of a Science Project in Software-Reliant System Acquisition Programs 

https://sharepoint.sei.cmu.edu/forms/dm/_layouts/FormServer.aspx?XsnLocation=https%3a%2f%2fsharepoint.sei.cmu.edu%2fFormServerTemplates%2fDocument+Marking.xsn&SaveLocation=https%3a%2f%2fsharepoint.sei.cmu.edu%2fforms%2fdm%2fForms&Source=https%3a%2f%2fsharepoint.sei.cmu.edu%2fforms%2fdm%2fForms%2fForms%2fAllItems.aspx%3fSortField%3d%255f6c5cabe0%255f2fa3%255f4e48%255fbee9%255f2a108ada1f5c%26SortDir%3dDesc%26View%3d%257b4926D45F%252d6573%252d4962%252dB183%252dA6D4E8CBD978%257d&DefaultItemOpen=1
https://sharepoint.sei.cmu.edu/forms/dm/_layouts/FormServer.aspx?XsnLocation=https%3a%2f%2fsharepoint.sei.cmu.edu%2fFormServerTemplates%2fDocument+Marking.xsn&SaveLocation=https%3a%2f%2fsharepoint.sei.cmu.edu%2fforms%2fdm%2fForms&Source=https%3a%2f%2fsharepoint.sei.cmu.edu%2fforms%2fdm%2fForms%2fForms%2fAllItems.aspx%3fSortField%3d%255f6c5cabe0%255f2fa3%255f4e48%255fbee9%255f2a108ada1f5c%26SortDir%3dDesc%26View%3d%257b4926D45F%252d6573%252d4962%252dB183%252dA6D4E8CBD978%257d&DefaultItemOpen=1


NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING 
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON 
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS 
TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR 
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF 
THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF 
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT 
INFRINGEMENT. 

This material has been approved for public release and unlimited distribution. 

DM-0000132 

References 
Abdel-Hamid, T., & Madnick, S. (1991). Software Project Dynamics: An Integrated Approach. 

Prentice Hall. 
Abelson, L. A., Adams, R. J., & Eslinger, S. (2004, January). Acquisition Modeling: The Kkey 

to Managing Acquisition Complexity. Proceedings of the Third Annual Conference on 
Software-Intensive Systems Acquisition.  

Birkholzer, T., Madachy, R. J., Pfahl, D., Beitinger, H., Schuster, M., & Olkov, A. (2010). 
SimSWE - A Library of Reusable Components for Software Process Simulation. ICSP, 
(pp. 321-332). 

Brougham, W. (1999). System Dynamics and Process Improvement: Can the U.S. Navy 
Acquisition Community Learn from Industry Behavior? Center for Information Systems 
Research. Cambridge: Alfred P. Sloan School of Managment. 

Buettner, D. J. (2008). Designing an Optimal Softwware Intensive system Acquisition: A Game 
Theoretic Approach. University of Southern California. 

Choi, K., & Bae, D.-H. (2006). Analysis of Software-Intensive System Acquisition Using Hybrid 
Software Process Simulation. In Sooftware Process Change, Lecture Notes in Computer 
Science (Vol. 3966, pp. 254-261). Springer-Verlag. 

Cooper, K. G. (1980, December). Naval Ship Production: A Claim Settled and a Framework 
Built. Interfaces, 10(6), 20-36. 

Ford, D. N., & Sterman, J. D. (1998). Dynamic Modeling of Product Development Processes. 
System Dynamics Review, 14(1), 31-68. 

Haberlein, T. (2004, September). Common Structures in System Dynamics Models of Software 
Acquisition Projects. Softare Process Improvement and Practice, 67-80. 

Kadish, R. (2006). Defense Acquisition Performance Assessment Report - Assessment Panel of 
the Defense Acquisition Performance Assesment Project. Defense Acquisition University. 

Li, J., Taylor, T., & Ford, D. N. (2011). Impacts of Project Controls on Tipping Point Dynamics 
in Construction Projects. Proceedings of the 29th Annual International Conference of the 
System Dynamics Society. Washington, D.C. 

Li, Y. (2011). The Impact of Design Rework on Construction Project Performance. Proceedings 
of the 29th Annual International Conference of the System Dynamics Society. 
Washington, D.C. 

Lyneis, J. M., & Ford, D. N. (2007). System Dynamics Applied to Project Management: A 
Survey, Asssessment, and Directions for Future Research. System Dynamics Review, 
23(2/3). 

Madachy, R. J. (2008). Software Process Dynamics. Wiley-IEEE Press. 
21 

Modeling the Evolution of a Science Project in Software-Reliant System Acquisition Programs 

https://sharepoint.sei.cmu.edu/forms/dm/_layouts/FormServer.aspx?XsnLocation=https%3a%2f%2fsharepoint.sei.cmu.edu%2fFormServerTemplates%2fDocument+Marking.xsn&SaveLocation=https%3a%2f%2fsharepoint.sei.cmu.edu%2fforms%2fdm%2fForms&Source=https%3a%2f%2fsharepoint.sei.cmu.edu%2fforms%2fdm%2fForms%2fForms%2fAllItems.aspx%3fSortField%3d%255f6c5cabe0%255f2fa3%255f4e48%255fbee9%255f2a108ada1f5c%26SortDir%3dDesc%26View%3d%257b4926D45F%252d6573%252d4962%252dB183%252dA6D4E8CBD978%257d&DefaultItemOpen=1
https://sharepoint.sei.cmu.edu/forms/dm/_layouts/FormServer.aspx?XsnLocation=https%3a%2f%2fsharepoint.sei.cmu.edu%2fFormServerTemplates%2fDocument+Marking.xsn&SaveLocation=https%3a%2f%2fsharepoint.sei.cmu.edu%2fforms%2fdm%2fForms&Source=https%3a%2f%2fsharepoint.sei.cmu.edu%2fforms%2fdm%2fForms%2fForms%2fAllItems.aspx%3fSortField%3d%255f6c5cabe0%255f2fa3%255f4e48%255fbee9%255f2a108ada1f5c%26SortDir%3dDesc%26View%3d%257b4926D45F%252d6573%252d4962%252dB183%252dA6D4E8CBD978%257d&DefaultItemOpen=1
https://sharepoint.sei.cmu.edu/forms/dm/_layouts/FormServer.aspx?XsnLocation=https%3a%2f%2fsharepoint.sei.cmu.edu%2fFormServerTemplates%2fDocument+Marking.xsn&SaveLocation=https%3a%2f%2fsharepoint.sei.cmu.edu%2fforms%2fdm%2fForms&Source=https%3a%2f%2fsharepoint.sei.cmu.edu%2fforms%2fdm%2fForms%2fForms%2fAllItems.aspx%3fSortField%3d%255f6c5cabe0%255f2fa3%255f4e48%255fbee9%255f2a108ada1f5c%26SortDir%3dDesc%26View%3d%257b4926D45F%252d6573%252d4962%252dB183%252dA6D4E8CBD978%257d&DefaultItemOpen=1
https://sharepoint.sei.cmu.edu/forms/dm/_layouts/FormServer.aspx?XsnLocation=https%3a%2f%2fsharepoint.sei.cmu.edu%2fFormServerTemplates%2fDocument+Marking.xsn&SaveLocation=https%3a%2f%2fsharepoint.sei.cmu.edu%2fforms%2fdm%2fForms&Source=https%3a%2f%2fsharepoint.sei.cmu.edu%2fforms%2fdm%2fForms%2fForms%2fAllItems.aspx%3fSortField%3d%255f6c5cabe0%255f2fa3%255f4e48%255fbee9%255f2a108ada1f5c%26SortDir%3dDesc%26View%3d%257b4926D45F%252d6573%252d4962%252dB183%252dA6D4E8CBD978%257d&DefaultItemOpen=1


Madachy, R., Boehm, B., & Lane, J. (2006, May). Spiral Lifecycle Increment Modeling for New 
Hybrid Processes. Proceedings of SPW/ProSim'2006, (pp. 167-177). Shanghai. 

Meadows, D. (2008). Thinking in Systems: A Primer. White River Junction, VT: Chelsea Green 
Publishing. 

Novak, W. E., Moore, A. P., & Alberts, C. (2012). The Evolution of a Science Project: A 
Preliminary System Dynamics Model of a Recurring Software-Reliant Acquisition 
Behavior. Carnegie Mellon University. Pittsburgh: Software Engineering Institute. 

Raffo, D. M., & Kellner, M. I. (2000). Empirical Analysis in Software Process Simulation 
Modeling. Journal of Systems and Software, 47(9). 

Repenning, N. P., Goncalves, P., & Black, L. J. (2001, July). Past the Tipping Point: The 
Persistence of Firefighting in Product Development. Californial Management Review. 

Scacchi, W., & Choi, J. S. (2001, December). Modeling and Simulating Software Acquisition 
Process Architectures. Journal of Systems and Software, 59(3), 343-354. 

Scacchi, W., & Mi, P. (1993). Modeling, Enacting, and Integrating Software Engineering 
Processes. Proceedings of the 3rd Irvine Software Symposium. Costa Mesa (California). 

Sterman, J. D. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex 
World. McGraw-Hill. 

Taylor, T., Ford, D. N., & Johnson, S. (2005). Why Good Projects Go Bad: Managing 
Development Projects Near Tipping Points. Proceedings of the 23rd International 
Conference of the System Dynamics Society. Boston. 

U.S. GAO. (2005). DoD Acquisition Outcomes: A Case for Change - Statement of Katherine V. 
Schiasi, Managing Director. United States Government Accountability Office. 

Wirthlin, J., Houston, D., & Madachy, R. (2011). Defense Acquisition System Simulation 
Studies. Proceedings of the International Conference on Software and System Process. 
Waikiki. 

Appendix A: System Dynamics Background 
The system dynamics method helps analysts model and analyze critical behavior as it evolves over time 
within complex socio-technical domains. A powerful tenet of this method is that the dynamic complexity 
of critical behavior can be captured by the underlying feedback structure of that behavior. The boundaries 
of a system dynamics model are drawn so that all the enterprise elements necessary to generate and 
understand problematic behavior are contained within them. The method has a long history and is 
described in the following primary sources: 

• Sterman’s comprehensive treatment of the system dynamics method  (Sterman, 2000) 
• Meadows’ description of thinking in systems rather than components in isolation as a means to 

analyze and solve problems  (Meadows, 2008) 

System dynamics and the related area of systems thinking encourage the inclusion of soft factors in the 
model, such as policy, procedural, administrative, or cultural factors. The exclusion of soft factors in other 
modeling techniques essentially treats their influence as negligible, which is often an inappropriate 
assumption. This holistic modeling perspective helps identify mitigations to problematic behaviors that 
are often overlooked by other approaches. 

Figure 14 summarizes the notation used by system dynamics modeling. The primary elements are 
variables of interest, stocks (which represent collection points of resources), and flows (which represent 
the transition of resources between stocks). Signed arrows represent causal relationships, where the sign 
indicates how the variable at the arrow’s source influences the variable at the arrow’s target. Basically, a 
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positive (+) influence indicates that the values of the variables move in the same direction, whereas a 
negative (-) influence indicates that they move in opposite directions. A connected group of variables, 
stocks, and flows can create a path that is referred to as a feedback loop. The type of feedback loop is 
determined by counting the number of negative influences along the path of the loop. An odd number of 
negative influences indicates a balancing loop; an even (or zero) number of negative influences indicates 
a reinforcing loop.  

System dynamics models identify two types of feedback loops: balancing and reinforcing. Significant 
feedback loops identified within a model are indicated by a loop symbol and a loop name in italics. 
Balancing loops—indicated with the label B followed by a number in the loop symbol—describe aspects 
of the system that oppose change, seeking to drive variables to some goal state. Balancing loops often 
represent actions that an organization takes to mitigate a problem. Reinforcing loops—indicated with a 
label R followed by a number in the loop symbol—describe system aspects that tend to drive variable 
values consistently upward or downward. Reinforcing loops often represent the escalation of problems 
but may include problem mitigation behaviors.  

 

 
Figure 14: System Dynamics Notation 
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Appendix B: System Dynamics Simulation Model: Science Project Sector 
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Appendix C: System Dynamics Simulation Model: Production Development Sector 
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Appendix D: Interface for Interacting with the Model 
Note that in this user interface, there are two user controls provided to change the amount of schedule pressure that is being applied to developers: 
applying pressure to workers, and worker pressure fraction. Although it’s not discernible in the screen capture, the control for applying pressure to workers 
is binary, either allowing the pressure, or not. The control for worker pressure fraction is a real number, and varies continuously between 0 and 1 to define 
the precise level of that pressure—but is only active if applying pressure to workers is also set to 1 (i.e., “true”). 
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