Learning by Doing

A Path to Creating Original Modeling Projects

Prof. John Richardson and Rehan Ali

Overview

- The best way to learn system dynamics thinking and modeling is by "doing" it through hands-on learning:
 - <u>Project 1</u> Modelling the Kaibab Plateau
 - <u>Project 2</u> Replicating classic or instructional models
 - <u>Project 3</u> Developing an original modeling project

Methodology

- Emphasis on practicing model building towards producing an original modeling project
- Students are guided through the following progression
 - <u>Kaibab Plateau model</u> Understand the scenario and develop the model
 - <u>Replication model</u> Understand and develop classic or instructional system dynamics models
 - <u>Original model</u> Develop a model based on a self-selected problem
- Project progression (for the replication and original modeling projects)
 - 1. Conceive a project
 - 2. Submit a written proposal
 - 3. Present the proposal orally
 - 4. Present a progress report orally
 - 5. Present a final oral and written report
- Learn by
 - <u>Doing</u> Student volunteers use the software in class
 - <u>Practicing</u> Students are provided with tutorial videos via Camtasia
 - <u>Experimentation</u> Students self-learn through trial and error

Using Vensim

- Vensim PLE is the software tool used for modeling
- Vensim manuals are used to selflearn
 - Instructor comments are provided as supplements
- Vensim models and model documentation are used for replication
- Focus
 - Mastering Vensim is <u>not</u> the focus of the class; Vensim is a tool to learn and practice system dynamics modeling
 - Developing skills in crafting and presenting projects is the focus

Texts

This is a practice course, not a reading one, but readings supplement and provide context for the modeling practice

<u>Vensim</u> – Vensim manuals

建WILEY

• Goal

 Develop a common technical language for the class using a model that is simple and "concrete"

Timeframe

- Three weeks (6-9 hours in class) from first lesson to final project submission
- Purpose
 - <u>Not</u> to build the model correctly, but to understand why the model is constructed the way it is

Source:

http://www.fs.fed.us/wildflowers/regions/southwestern/Kaiba bPlateau/images/kaibab_plateau_map_lg.gif

- Methodology
 - Sector-by-sector model construction, with each sector building on the previous
 - Deer
 - Population
 - Lions
 - Population with predation added
 - Food
 - Growth with consumption and regeneration added
 - Model is constructed in class
 - Completed model sectors are provided as a 'check' for students

Reference Mode

. 8/27

Deer Sector

(9/27)

Lion Sector

11/27

12/27

- Advantages of Using Kaibab Plateau Model
 - Policy problem
 - Presents a policy intervention
 - Multiple stakeholder views
 - "Concrete" variables in a real-world context
 - Deer, lions, and vegetation
 - Clear reference mode
 - Data readily available
 - Shift in loop dominance
 - Cannot be re-created until model is completed
 - Closed (endogenous) system
 - "Classic" structures
 - Simple ecosystem
 - Population dynamics
 - Growth and regeneration
 - Overshoot phenomena
 - Example of sustainability
 - Allows for various policy intervention scenarios

- Demonstration (10 minutes)
 - Classroom teaching
 - Self-learning
 - Video recording

Replication Modeling Exercise

- "The training wheels are off"
- Goal
 - Replicate a classic or instructional system dynamics model while learning about new functions in Vensim
- Students choose a model based on their original project (samples)*
 - Business/Management
 - Capacity and Market Growth
 - Financial Modeling and Risk
 - Project Dynamics
 - Workforce, Inventory, and Oscillation
 - Other
 - Growth of a Field
 - Population
 - Population Dynamics
 - Urban 1
 - World 2

* These are selected by the instructor(s) based on student interest

Replication Modeling Exercise

- Methodology
 - Model context / background is given in class
 - Model is replicated outside of class
 - Additions, extensions, or adaptations are made to the model to fit student interests
 - Replicate the reference mode
 - Structure
 - Sectors
 - Content
 - Functions
 - Equations
 - Extend the model or create a policy intervention
 - Expands the domain for model diversity and policy and sensitivity analysis

Replication Modeling Exercise

- Demonstration (10 minutes)
 - Classroom teaching (replication document)
 - Self-learning via Vensim exercises

Original Modeling Exercise

 Are students capable of creating and presenting a policyrelevant system dynamics model?

Goal

- Develop an original model building upon knowledge gained from the Kaibab and replication projects
- Create a quality project that can be used as a point of departure as a
 - Thesis/dissertation
 - Credential
- Students select a problem based on their interests
 - Problems are chosen in any field or subject

Original Modeling Exercise

- Student topic areas (samples)
 - Education
 - What explains the gap in academic performance between students from middle-income and low-income school districts in the USA?
 - Energy
 - What is delaying shifting to renewable energy in Singapore?
 - Finance
 - How did speculation create volatility in the housing market in Denmark?
 - Governance
 - What are the key factors affecting road accident fatalities in Delhi?
 - Population
 - What are the causes of declining fertility in Singapore?
 - Urban Dynamics
 - What are the economic factors that have caused net migration over the last three decades in Sri Lanka?

Original Modeling Exercise

- Demonstration (10 minutes)
 - Coaching
 - Self-learning and model development

Guest Speakers

<u>Cities</u> – Prof. K. E. Seetharam

Education – Deputy Principal Goh

Engineering - Prof. P. C. Lui

Health - Prof. Jim Thompson

<u>Foundations of System Dynamics</u> – Prof. George Richardson

Vensim – Prof. Bob Eberlein

Coaching and Feedback

- Evaluations
 - Project
 - After each project is complete
 - Students
 - Proposal via oral and written reports
 - Interim via oral report
 - Final via oral and written reports

Coaching and Feedback

- Presentations
 - Emphasis is placed on quality presentations and presenting system dynamics information to those outside the field
- Support
 - <u>Group Work</u> Working in groups is encouraged for mutual support and discussion of the material
 - <u>Coaching</u> Regular coaching is provided on replication and original projects
 - Support
 - <u>Office hours</u> Three sessions per week
 - <u>Modeling</u> Encourage regular practice in Vensim

Benefits of this Approach

- Direct Immersion
 - Students start modeling on the first day of class and are modeling until the end of the semester
- Building Process
 - Students progress from copying a model, to replicating and expanding a model, to creating one
- Modular Structure
 - Each element can be separated from the other and re-organized per the needs of the teachers and students, and time constraints

Alternate Approaches

- Drawbacks
 - Time and Workload Commitment
 - Requires significant time from students and teachers
 - Coaching is key, but requires time for feedback and discussion
 - Immersion
 - Students are expected to work outside of class and keep up with the technical and theoretical aspects
- Alternatives
 - Introduction
 - Use a common game as an introduction, e.g. the Fish banks or beer game
 - Replication
 - Follow the Kaibab Plateau modeling exercise with two replication models of increasing complexity
 - Select a larger variety of models of increasing complexity for students to replicate
 - Original Project
 - Remove the original project
 - Focusing on technical learning rather than an original project

An Evolving Process

- Changes that we are implementing
 - Documentation
 - Develop, complete, and standardize teaching material
 - Replication
 - Select a larger variety of models for students to replicate
- Student comments for future implementation
 - Pacing
 - Spread projects more evenly to distribute workload
 - Vensim
 - Earlier education on more Vensim functions

Conclusion

- Proven
 - Long track record of quality student modeling projects
- Flexibility
 - Methodology has a common starting point but highly flexible in the progression through the intermediate (replication) and advanced (original) projects
- Feedback
 - Students appreciate consistent, detailed feedback
 - Gives confidence in replicating and modeling
- Systems Thinking
 - By modeling from the beginning of the class, students become more deeply grounded systems thinkers than if trained in systems thinking alone

