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Abstract 

 

One of the main goals of system dynamics models is to improve decision making in dynamic 

systems. This paper addresses the question of how we can measure what people understand 

about dynamic systems and what benefit people get from exposure to system dynamics mod-

els. For this purpose, we use existing literature about assessing understanding and learning in 

system dynamics to reflect on outstanding research questions in this area. Learning about dy-

namic systems requires restructuring of existing knowledge into new knowledge as well as re-

use of such new knowledge over time and in different contexts. Existing approaches in system 

dynamics use elements of dynamic systems to represent knowledge. They thus provide a 

benchmark for expert knowledge and give indications about the gap between novices and ex-

perts. However, they do not provide a theory for further investigating how this gap can be 

closed. In a second part, we therefore analyze the learning sciences literature for elements that 

can be useful for the development of a theory about the acquisition, retention, and transfer of 

knowledge about dynamic systems. We describe first elements of such theory and illustrate 

how they can help in the design and assessment of dynamic decision-making interventions. 
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Introduction 

Dynamic systems are difficult to understand and manage successfully. This is the case not only 

in very complex dynamic systems. People also have difficulties making decisions in fairly simple 

dynamic systems (Brehmer, 1992; Funke, 1991; Jensen, 2005; Moxnes, 1998 & 2004; Rouwette, 

Größler, & Vennix, 2004; Sterman, 1989a; Sterman, 1989b). Over the years, a variety of strate-

gies have been proposed in system dynamics that aim at improving decision making by support-

ing learning processes. This paper focuses on one such strategy, the use of gaming-oriented 

simulations such as simulators and planning games (Maier & Größler, 2000), and within this 

category specifically on the single-player simulators (as opposed to the multi-player planning 

games). Simulators link a ready-made simulation model to a human-computer interface and 

they have various functionalities such as access to additional source materials, explicit presen-

tation of the structure of the underlying simulation model and the progress of time within the 

simulation etc. (Maier & Größler, 2000).  

Simulators are used for teaching purposes and for investigating human decision-making in 

complex dynamic systems (Größler, 2004). They aim at improving dynamic decision making by 

providing specific information in the user interface and by guiding learners through specific 

tasks in the process of working with the simulator (Alessi, 1988; Lane, 1995; Maier & Größler, 

2000; Sterman, 1994). This raises the question of how the effectiveness of simulators can be 

assessed. Assessments or evaluations address two main issues:  

• Performance, i.e. the results from decision making. Performance can be measured as the 

degree to which learners manage to optimize, maximize or minimize a specific measure or 

how well they reach a specified target (Hsiao & Richardson, 1999).  

• Understanding, i.e. the rules that lead to decisions. There are a variety of measures for un-

derstanding that range from mean scores in questionnaires to performance in transfer tasks 

and convergence of mental models between novices and experts (Hsiao & Richardson, 

1999).  

The majority of evaluations focuses on the first issue and analyzes performance in a dynamic 

task (for a detailed review see Rouwette, et al., 2004). Performance is a more direct indicator 

for the quality of dynamic decision making since it is based on learners’ explicit decisions and 

interactions with the simulator. Understanding, on the other hand, is an indicator of the mental 

models underlying dynamic decision making. It is a measurement of the cognitive, social and 

motivational learning resources used by the learner during dynamic decision making. Since 

mental models are not always explicit to the learners themselves, eliciting and measuring un-

derstanding is challenging. Another factor that makes assessments of understanding less 

prominent is the fact that the relationship between understanding and performance is not 

straightforward and thus neither performance can be predicted by understanding nor can un-

derstanding be inferred from performance (e.g., Ajzen, 2002; Berry & Broadbent, 1984; litera-

ture reviewed in Doyle, 1997 and Hsiao & Richardson, 1999).  

This paper thus contributes to the emerging literature in system dynamics about assessing un-

derstanding of dynamic systems (Cavaleri & Sterman, 1997; Doyle, Radzicki, & Trees, 2008; 

Groesser & Schaffernicht, 2012; Kopainsky, Pirnay-Dummer, & Alessi, 2012; Rouwette, Vennix, 

& Mullekom, 2002; Schaffernicht & Groesser, 2011). It reviews the documented and measured 

learning effects in system dynamics based simulators to evaluate what learners get from expo-

sure to simulators and how this can be measured. Based on this review, we draw conclusions 

regarding open research questions in this field and use existing literature from learning sciences 

and education to suggest potential constructs for answering such questions. 



3 

Documented and measured learning effects from exposure to 

simulators 

Our study of documented and measured learning effects from exposure to simulators builds on 

existing reviews that analyze determinants of performance (Rouwette, et al., 2002) and under-

standing (Hsiao & Richardson, 1999) or list methodological issues concerning the use of simula-

tors in teaching and experimentation (Größler, 2004). In our review, we only include studies 

that explicitly use understanding as a measurement of learning. Studies evaluating performance 

are only considered if they use performance to make inferences about specific changes in un-

derstanding. Our review is based on a literature search covering the time period since the last 

major reviews (i.e., 2000 to 2012) in the proceedings of the System Dynamics Conferences, the 

System Dynamics Review, as well as Simulation & Gaming. Earlier studies are only included if 

they provide an explicit basis for subsequent works.  

In our review, we focus on simulator characteristics and exclude other potential determinants 

of understanding such as model or player characteristics.
1
 First, we focus on the effects of par-

ticular instructional strategies in understanding and learning. Then we review the empirical 

methods used to study such effects and conclude with insights about what we know so far 

about understanding and learning about dynamic systems.  

The reviewed literature on simulators describes a variety of instructional strategies that can be 

applied when designing simulators. We broadly categorize these strategies into: 

• Strategies that are applied when designing the user interface of a simulator, that is, strate-

gies that work on the functionality of simulators. Such strategies include giving feedback fol-

lowing user actions (outcome feedback), explanations of observed behavior (cognitive 

feedback) and giving hints before user actions (feedforward) (e.g., Alessi, 2000). 

• Strategies applied for the design, timing, and sequencing of learning tasks during the inter-

action of a learner with a simulator. In its simplest form, the interaction of a learner with a 

simulator consists of reading textual instructions and subsequent decision making trials 

with the simulator. To this sequence, a variety of learning tasks can be added such as train-

ing trials before actual decision making or work with analogies.  

Table 1 summarizes the findings of the reviewed studies along these two categories. It de-

scribes how modifications in the user interface or changes in the timing and sequence of learn-

ing tasks affects understanding. For the purpose of our review, we define understanding as the 

knowledge used by learners to make conclusions and predictions, and we define learning as the 

change in this knowledge. 

From Table 1 and the literature summarized therein, the following things can be concluded: 

• Most of the modifications in the user interface (e.g., structural transparency and visualiza-

tion of elements of dynamic complexity) seem to be ineffective in improving learners’ un-

derstanding of the dynamic system they are interacting with through the simulator. This is 

particularly the case for visualizations of the elements of dynamic complexity and the provi-

sion of entire decision rules. 

                                                      

1
  The impact of model characteristics such as length of delays and strength of feedback is one of the main moti-

vations for the use of simulators as they are designed to help learners overcome the difficulties with dynamic 

decision making caused by these characteristics. Player characteristics need to be controlled for and examined 

during experimentation. 
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• The provision of decision cues seems to be more effective than the provision of entire deci-

sion rules although the evidence is fairly mixed. 

• Cognitive feedback in the form of the provision of a structural explanation of the observed 

behavior proves to be effective as long as learners get the opportunity to practice dynamic 

decision making and thus also the use of these decision aids. In general, it seems to be more 

important whether cognitive feedback is provided or not than in which form this is the case 

(e.g., causal loop diagrams versus stock and flow diagrams). 

• The addition of learning tasks proves to be effective for several designs (e.g., training trials 

with reduced but increasing complexity; work with cognitive conflict and analogies). All of 

these designs work with a fairly simple user interface that only provides outcome feedback. 

The impact on understanding, however, is at least as significant as that originating from ad-

ditions to the user interface such as revealing the model structure. Adding elements to the 

user interface does not improve understanding. This is an interesting result in that it indi-

cates that the cognitive load of the user interface can be kept fairly low as long as there are 

adequate learning tasks involved in the interaction with the simulator.  

• Evidence about the effectiveness of simulators in terms of understanding is fairly scarce and 

scattered across contexts. A few studies systematically build on previous experiments with 

the same simulator and analyze the benefit of additional elements either in the user inter-

face or in the timing and sequencing of learning tasks. Most studies, however, are based on 

different simulators and only evaluate their specific effectiveness. This makes their results 

very difficult to compare with results from other assessments of simulators.  

• All studies that find improvements in understanding state that despite the achieved im-

provements, the distance between novice and expert understanding or the distance to 

some kind of benchmark remains fairly high.  
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Table 1: Documented and measured learning effects from the use of simulators 

 Design of the user interface (simulator functionality) 

 

Timing and sequencing of learn-

ing tasks 

Outcome feedback only Cognitive feedback: structural 

transparency 

Feedforward Visualization of elements of 

dynamic complexity 

Textual instructions – DDM 

trial(s) 

Paich & Sterman, 1993 � not effec-

tive in improving performance 

Größler, Maier, & Milling, 2000, 

treatment group 2 � no significant 

increase in understanding; per-

formance significantly lower than 

in the other treatment groups 

 Jensen, 2002: � no signifi-

cant increase in under-

standing and performance 

Sawicka & Rydzak, 2007: 

different representations of 

delays � no significant in-

crease in understanding and 

performance 

Moxnes & Jensen, 2009 � 

written information about 

delay does not improve 

performance 

Textual instructions – training 

trial(s) with full DDM complexity 

– DDM trial(s) 

 Langley & Morecroft, 2004 � fast-

est (and significant) increase in 

performance with provision of a 

causal map in the training trials 

and removal of the map in DDM 

trials (sustained performance after 

removal of causal map indicates 

increase in understanding) 

Maxwell, 1995 � cognitive feed-

back less effective in improving 

understanding than information on 

decision cues (feedforward) 

Capelo & Dias, 2009 � strategy 

map review positively influences 

mental model similarity 

Gary & Wood, 2007 � beneficial 

impact of causal loop diagrams on 

mental model accuracy 

Bois, 2002 � showing 

which cues to use in the 

training trials increased 

performance in the DDM 

trials and understanding 

Langley & Morecroft, 

2004 � higher perform-

ance in initial training 

trials with the provision 

of decision cues but no 

increase in subsequent 

training and DDM trials 

Maxwell, 1995: � deci-

sion cues more effective 

in improving understand-

ing than cognitive feed-

back 

Howie, Sy, Ford, & Vicente, 

2000: behavior graphs & 

information arrangement, 

metaphors, animation to 

implicitly convey the causal 

structure � significant in-

crease in understanding; 

performance significantly 

better in the second trial 
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 Design of the user interface (simulator functionality) 

 

Timing and sequencing of learn-

ing tasks 

Outcome feedback only Cognitive feedback: structural 

transparency 

Feedforward Visualization of elements of 

dynamic complexity 

Textual instructions, lecture 

about model structure – DDM 

trial(s) 

Größler, et al., 2000, treatment 

group 3 � significant increase in 

understanding 

Größler, et al., 2000, treatment 

group 1 � significant increase in 

understanding 

  

Textual instructions – training 

trials with reduced but gradually 

increasing DDM complexity – 

DDM trial(s) 

Kopainsky & Sawicka, 2011 � sig-

nificant increase in understanding 

and performance 

Kopainsky, Alessi, Pedercini, & 

Davidsen, 2009 � significant in-

crease in understanding and per-

formance 

Kopainsky, Alessi, & Pirnay-

Dummer, 2011 � no additional 

increase in understanding and per-

formance with respect to 

Kopainsky, et al., 2009 

  

Textual instructions – training 

trial with full DDM complexity – 

training trials with reduced but 

gradually increasing DDM com-

plexity – DDM trial(s) 

Yasarcan, 2009 � increase in per-

formance AND understanding (per-

formance not just due to practice) 

   

Textual instructions – cognitive 

conflict and analogies – DDM 

trial 

Moxnes & Saysel, 2009; Moxnes & 

Jensen, 2009 � significant increase 

in understanding (adequate mental 

model required for solving the DDM 

task) 

   

Textual instructions – DDM trials 

with full DDM complexity and 

with live explanations from the 

experimenter when necessary – 

DDM trials with structurally simi-

lar transfer task 

Jensen, 2005 � increase in under-

standing but not beyond what prac-

tice can ultimately achieve 
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Methods to document and measure learning effects 

Table 2 provides an overview of data collection methods that have so far been applied to measure 

learning effects from the use of simulators. Some of the studies listed in the table did not test the 

effectiveness of different interface characteristics or timing and sequence of learning tasks and 

were thus not part of Table 1. Instead, they measured a change in understanding before and after 

exposure to a simulator (e.g. Doyle, et al., 2008) or quantified different causal loop diagrams 

which can be seen as a representation of a mental model of a dynamic system (e.g. Schaffernicht 

& Groesser, 2011). It is also interesting to highlight that interviews have not been used to assess 

understanding in studies using simulators.  

Independent of the data collection method, the research design for assessing understanding in all 

the studies included in this review is that of laboratory experiments (for a review of laboratory 

experiments in the system dynamics field see Arango Aramburo, Castañeda Acevedo, & Olaya 

Morales, 2012). Surveys or case studies that are applied for assessing the effectiveness of other 

system dynamics interventions such as group model building (cf., Rouwette, et al., 2002) are ab-

sent from the reviewed evaluation of simulators.  

Table 2: Data collection methods for measuring learning effects from the use of simulators 

Data collection 

method 

Studies measuring learning effects Aspect of understanding/learning 

measured by the method 

Sawicka & Rydzak, 2007; Jensen, 2002 (The use of think aloud protocols in 

these studies is mentioned but 

results are not reported on) 

Think aloud 

protocols & 

content analy-

sis Jensen, 2005 Concept of equilibrium 

Instances of static thinking 

Instances of dynamic control 

Instances of indirect reasoning 

Understanding of mutual causation 

Understanding of the equilibrium 

situation 

Use of information 

Explanation of information 

Kopainsky, et al., 2009; Kopainsky & Sawicka, 2011; 

Kopainsky, et al., 2011: story questions; coding for 

understanding of task structure and decision heuris-

tics 

Content knowledge/mental mod-

els: what learners know 

Knowledge change/acquisition: 

change in what learners know 

Learning leverages: instructional 

factors affecting learning 

Kopainsky, et al., 2012: story questions; coding for 

understanding of task structure and decision heuris-

tics; automated analysis for structural and semantic 

similarity to expert text 

Structural and semantic similarity 

to expert text (mental model simi-

larity) 

Verbal proto-

cols & content 

analysis 

Doyle, et al., 2008: open question; coding for transla-

tion into a causal scenario diagram and subsequent 

quantitative analysis of the diagram; empirical appli-

cation only to test the effectiveness of a simulator-

based intervention, not differences in the design of 

such interventions 

Content knowledge/mental mod-

els: what learners know 

Knowledge change/acquisition: 

change in what learners know 

Retention: stability of what learn-

ers know 

Knowledge confidence: learners’ 

self-perception of knowledge cor-

rectness  

Pre-/post-task 

MC question-

Größler, et al., 2000, learners needed to complete 

rudimentary CLDs 

Content knowledge/mental mod-

els: what learners know 
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Ritchie-Dunham, 2002: learners needed to indicate 

the strength of connections between variables 

Howie, et al., 2000: questions about variables and 

relationships 

Kopainsky, et al., 2011: questions about declarative 

knowledge 

naire about 

model struc-

ture 

Gary & Wood, 2007: knowledge test about causal 

relationships 

Größler, et al., 2000: questionnaire about conse-

quences of certain actions in a certain situation 

(prognoses about future states) 

Kopainsky, et al., 2011: questions about procedural 

knowledge 

Pre-/post-task 

MC question-

naire about 

behavior 

Gary & Wood, 2007: questionnaire about conse-

quences of certain actions in a certain situation 

(prognoses about future states) 

Knowledge change/acquisition: 

change in what learners know 

 

Groesser & Schaffernicht, 2012: conceptual structure 

of the content of a mental model of a dynamic sys-

tem; and corresponding method to measure this 

structure (Schaffernicht & Groesser, 2011; 

Schaffernicht, 2006); not tested in the context of 

simulator-based interventions yet 

Capelo & Dias, 2009: revision of strategy maps 

Causal loop 

diagrams 

Mulder, Lazonder, & de Jong, 2011: model structure 

score that represents the number of correct vari-

ables and relations 

Similarity to expert model (mental 

model similarity) 

Yasarcan, 2009: regression analysis to rule out prac-

tice as main determinant of improvements in per-

formance 

Moxnes & Saysel, 2009: successful performance only 

possible with adequate mental model 

Bakken, 1993; Jensen, 2005: use of transfer tasks 

Use perform-

ance as proxy 

for under-

standing 

Langley & Morecroft, 2004: sustained performance 

after removing cognitive feedback indicates in-

creased understanding 

(Performance as indirect measure 

of understanding and learning) 

 

Broadly, the methods listed in Table 2 can be classified into two categories according to their defi-

nition of the measured aspects of understanding and learning. In the first category, there are stud-

ies that are based on the assumption that understanding can be expressed and thus studied in 

terms of the knowledge used by learners in common forms such as language or writing. This cate-

gory includes think aloud protocols, verbal protocols and content analysis. These studies focus on 

learners’ verbal and written descriptions of a complex dynamic system and code for elements of 

dynamic complexity contained in these descriptions such as delays, feedback loops or nonlinear 

relationships. The second category, on the other hand, includes studies where the focus is on 

learners’ knowledge that can be explicitly represented in terms of existing system dynamics tools 

such as causal loop diagrams or stocks and flows. Here, learners are required to use specialized 

terminology and methodology. The assumption is that learners’ knowledge of dynamic systems 

can be represented in terms of system dynamic elements.  

Think aloud protocols are evaluated differently in the literature. The use of think aloud protocols 

originates from the need to generate empirical learning theories for improving performance. This 

requires the collection and analysis of detailed data on the mental processes that occur during 

dynamic decision making (Doyle, 1997). Hsiao & Richardson, (1999), in their review, find evidence 
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that under some circumstances, think aloud protocols may help learners perform better in dy-

namic decision making tasks and thus need to be seen as part of an instructional strategy. Think 

aloud protocols seem to be a very promising technique for collecting and analyzing data on the 

mental processes occurring during dynamic decision making. This is emphasized by all studies that 

apply think aloud protocols and explicitly explore the kind of information that learners look at dur-

ing their interactions with the simulator (Fu & Gonzalez, 2006; Jensen, 2002; Jensen, 2005).   

 

Conclusions part one: Where do we stand in system dynamics? 

Table 3 summarizes the research on the effectiveness of simulators on understanding. The review 

in Table 1 has shown that evidence on the effectiveness of interface characteristics or learning 

tasks in simulators is scarce and from different contexts. There are also only few studies that use 

the same simulator in controlled experimental settings and systematically vary only very few char-

acteristics of the simulator so that the contribution of each element of the user interface and/or 

simulator-related learning tasks can be assessed. Nevertheless, there seem to be a few findings 

that have proven to be stable across different contexts.  

The table shows that modifications in the design of the user interface to provide cognitive feed-

back can have a beneficial impact on understanding. Adding learning tasks to the user interaction 

with the simulator yields yet more benefits in terms of understanding (and performance).  

Table 3: Effectiveness of strategies for improving understanding from exposure to simulators 

Does not work well Outcome feedback alone 

Visualization of elements of dynamic 

complexity 

Cognitive feedback – decision rules 

Seems to work reasonably 

well 

Cognitive feedback – decision cues 

Cognitive feedback – structural trans-

parency 

Seems to work well Information strategy using cognitive 

conflict and analogies 

Training phase with reduced but 

gradually increasing complexity 

 

The brief review of methods used for assessing understanding (Table 2) showed that most studies 

either measure understanding indirectly through performance or they measure understanding in 

terms of distance to expert understanding (number of correct answers in questionnaires, correct 

mentions in verbal protocols, quality of causal loop diagrams with respect to correct diagram). 

Thus, we seem to have adequate methods for determining what expert knowledge of a dynamic 

system looks like and for measuring how far learners’ (novices’) knowledge is from this.  

All of the reviewed studies that document an improvement in understanding conclude by saying 

that despite these improvements, understanding is still significantly and considerably below ex-

pert understanding. The same is true for studies investigating performance. There is thus still am-

ple room for further improvements. One reason for this is certainly the fact that interactions with 

simulators are fairly brief teaching interventions and thus cannot be expected to be as effective as 

other, more long-term interventions such as teaching interventions (e.g., Kunc, 2012; Saldarriaga, 

2011; Sterman, 2010; Wheat, 2007) or group model building (for a review of their effectiveness 

see Rouwette, et al., 2002).  
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Nevertheless, if we accept the hypothesis that understanding can be further improved also from 

exposure to simulators, then we need methods that go beyond documenting gaps between novice 

and expert understanding and that, instead, help analyzing how learners acquire new knowledge 

during their interactions with simulators and how their existing knowledge hinders or contributes 

to the acquisition of new knowledge. Especially the studies using think aloud protocols try to iden-

tify the kind of information that learners use (or fail to use) when they interact with simulators. 

This has, however, not happened sufficiently often yet to be able to reach conclusions about how 

learners acquire knowledge about dynamic systems. 

In the remainder of the paper we reflect on how we can become more effective in documenting 

and measuring learning effects from system dynamics interventions such as simulators. We focus 

on how to measure how understanding of dynamic systems changes and what inhibits or fosters 

such change. For this purpose, we study theories and experiences from the learning sciences and 

reflect on how these can be used in the context of system dynamics interventions.  

 

Insights from learning science research 

The connection between system dynamics and the learning sciences is not new (e.g., Bakken, 

1993; Larsson, 2009; Mulder, Lazonder, & de Jong, 2009; Saldarriaga, 2011). In this paper, we build 

on this connection and start collecting insights for the construction of a consistent, comprehen-

sive, and operational evaluation framework for research in learning about dynamic systems. We 

focus on the study of three phenomena that we believe are essential for learning with system dy-

namics tools in general and simulators in specific: knowledge acquisition, knowledge transfer and 

knowledge retention. Learning sciences and education research provide some fundamental in-

sights to study these phenomena. We describe each insight in the subsequent sections. The in-

sights are about conceptual change, units of knowledge and knowledge transfer.  

Insight one: Conceptualize learning about dynamic systems as a process 

of conceptual change  

Insight brief: Our first insight is that learning about dynamic systems should be studied as a con-

ceptual change process and not as the simple addition of new knowledge. In other words, we 

should look not only at how learners acquire new knowledge of dynamic systems during teaching, 

but also at how their existing knowledge changes and contributes to or hinders learning. Our justi-

fication for this insight is that unless we understand how learning works in light of learners’ exist-

ing knowledge of dynamic systems, we will not be able to design appropriate teaching interven-

tions. 

Before any formal training, we acquire a significant repertoire of knowledge of causality and be-

havior that we bring into further learning. In other words, when learning about dynamic systems, 

we do not come as blank slates. We bring many previously developed ideas that we construct on 

the basis of our daily life experiences. We do so by attributing causality and resulting behavior 

based on observations of actions and responses (Kelley, 1973). This intuitive knowledge gives the 

learner a set of general principles to explain causality and behavior. 

Learning research has investigated this intuitive knowledge in a variety of domains. Some of the 

concepts and phenomena that learning sciences study overlap with the dynamic systems we are 

interested in (e.g., in mechanics (Brown & Hammer, 2008; Champagne, Klopfer, & Anderson, 

1980), and thermodynamics (Lewis, 1996)). Some others are static from a system dynamics per-

spective (e.g., learners’ understanding of the shape of the earth (Vosniadou & Brewer, 1992) and 
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animal classification (Yen, Yao, & Chiu, 2004)), but all of them imply a special kind of learning: a 

restructuring of the learners’ existing knowledge, rather than the simple addition of new knowl-

edge. This restructuring of knowledge is commonly referred to as conceptual change. 

According to Duit and Treagust (2003: 673), conceptual change is necessary “…in such domains 

where the pre-instructional conceptual structures of the learners have to be fundamentally re-

structured in order to allow understanding of the intended knowledge…”. The system dynamics 

literature provides ample evidence that dynamic systems fall into such domains (e.g., Cronin, 

Gonzalez, & Sterman, 2009; Diehl & Sterman, 1995; Forrester, 1992; Moxnes, 2004; Sterman & 

Booth Sweeney, 2007). Studying learning as a conceptual change process thus implies different 

research commitments to measure learning: 

• For instance, evaluation frameworks cannot only focus on testing whether or not learners have 

acquired the expert-like knowledge we use as benchmarks. Conceptual change implies change, 

and change takes time. Thus, evaluating conceptual change requires flexible frameworks that 

can capture intermediate states between learners’ existing knowledge and the expert-like 

knowledge. 

• It is important to identify and describe the ideas that learners have as the learning science lit-

erature documents consistently that learners hold ideas that contradict normative scientific 

principles even after training (Confrey, 1990; Tytler, 2002). 

• It is equally important to investigate how these ideas change and become closer to scientific-

like ideas (Brown & Clement, 1989; Clark, 2006; Clement, 1993; diSessa, 2007a; Duit, Roth, 

Komorek, & Wilbers, 2001; Masson & Vázquez-Abad, 2006; Parnafes, 2007). 

The subsequent two insights help us describe in more practical terms how to measure all aspects 

of conceptual change in dynamic systems as well as knowledge transfer and retention.  

Insight two: Use proper units of knowledge to study conceptual change 

Insight brief: Our second insight is that to study conceptual change, we need to investigate what 

specific knowledge changes during learning with system dynamics tools. That is, we need to find 

the appropriate units to measure knowledge and learning about dynamic systems. Our justification 

for this insight is that unless we find appropriate units to measure knowledge and learning, we 

might be over- or underestimating learners’ knowledge of dynamic systems, and we will not be 

able to investigate how particular teaching interventions work in light of learners’ existing knowl-

edge –i.e., what knowledge contributes and what knowledge hinders learning about dynamic sys-

tems. 

Three particular types of knowledge seem to participate in learners’ understanding of dynamic 

systems. Evaluation frameworks of learning about dynamic systems with system dynamics inter-

ventions such as simulators should thus capture and track the development of these types of 

knowledge from a novice towards an expert-like state: read-outs, causal knowledge, and context-

specific declarative knowledge. 

Read-outs 

An important aspect of understanding of dynamic systems is systems thinking ability (e.g., Booth 

Sweeney & Sterman, 2000; Kainz & Ossimitz, 2002; Senge, 1990), that is, the ability to see in stocks 

and flows as well as in feedback loops. Seeing in stocks and flows implies for the learner to focus 

attention on what is relevant in the particular dynamic system (i.e., the underlying structural ele-

ments of the system) and to extract information about these underlying structures.  
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Learning sciences researchers have developed theoretical constructs to investigate this perceptual 

aspect of understanding and learning about complex phenomena. The read-outs construct 

(diSessa & Sherin, 1998) can provide an initial framework to investigate: 1) what elements of dy-

namic systems learners focus on; 2) what information learners abstract about these elements; and 

3) how 1 and 2 change during learning, particularly, though exposure to simulators. By providing 

answers to these questions, we will be better prepared to explain on an empirical basis what 

learning to see in stocks and flows and feedback loops implies for the learner. Here, we focus on 

questions 1 and 2. Question 3 is discussed in our insight 3 (Tracking Changes). 

The read-outs construct defines one of the specific types of knowledge that a process of concep-

tual change of complex scientific concepts must focus on. To reason about complex concepts, a 

learner must: 1) abstract relevant information (directly accessible or observable) from the system 

and, 2) connect the abstracted information to the required information (not directly accessed or 

observed) to make inferences about the system (diSessa & Sherin, 1998). The read-out strategies 

correspond to the set of tools used by a learner to accomplish the first process. Their name is due 

to the fact that, in general, the task realized through the perceptual process is to ‘read-out’ infor-

mation. The second process will be discussed in the ‘causal knowledge’ subsection. 

To illustrate how the read-out concept is relevant for system dynamics research, take Moxnes’ 

research on renewable resources (Moxnes, 2000). In this study, learners are asked to manage a 

population of reindeer in order to rebuild an overgrazed level of lichen. The majority of learners 

abstracts information about the amount of reindeer and assumes a direct effect ─a simple cause 

and effect relationship─ of a change in the number of reindeer on the level of lichen. The resulting 

inference then is incorrect. In contrast, other learners abstract information about the growth and 

reduction rates of lichen and about the number of reindeer; and assume a stock and flow relation-

ship between lichen, lichen growth and lichen reduction through reindeer. In this case, the result-

ing inference is correct. 

The implications of the read-out construct for an evaluation framework of learning about dynamic 

systems are that assessments should not only focus on the learners’ knowledge about the sys-

tem’s structure and behavior but also on the elements in a simulator (or other teaching material) 

that learners focus on and what information they abstract about these elements. Low levels of 

coordination between read-out information and knowledge of the system’s structure are the rea-

son why learners fail to provide correct inferences about complex scientific concepts (diSessa & 

Sherin, 1998). Also, the particular knowledge activated and used by learners in a specific situation 

depends strongly on the specific ‘read-outs’ made by them of the situation. It means that the func-

tion of the read-out strategies is to activate or point out a specific set of knowledge elements. 

Thus, we need to understand the relationship between the information we provide to the learner 

during teaching, the information abstracted by the learner, and the activated knowledge. 

Moreover, in the particular case of simulators, read-outs provide a fundamental construct to in-

vestigate how learning about dynamic systems is mediated by the specific characteristics of the 

simulator, especially by the elements of the user interface. Table 4 summarizes how read-outs can 

be measured. 

Table 4: How to measure read-outs 

What to measure 1. Aspects (elements, features, properties) of a simulator that become the learner’s focus 

of attention.  

2. What information the learner abstracts from these aspects. 

How to measure 

this 

Read-outs need to be measured by specific observations (made by researchers) of what a 

learner says about a system or problem while interacting with a simulator. Video re-

cordings are usually used to collect this sort of data. The data is later analyzed qualitatively 
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to develop grounded models (theories) of pairings between specific representations and 

particular read-outs made by learners (based on what the learner says and does in relation 

to the representation). Research becomes more scalable quantitatively, after specific 

grounded models have been proposed and can be further tested with bigger samples. 

 

Causal knowledge 

The system’s information read-out by the learner needs to be connected to the required informa-

tion using the learners’ causal knowledge. The conclusions made from abstracted information de-

pend on the causal relationships assumed by the learner.  

Under the construct of mental models, causal knowledge has been the unit of concern of much 

work in system dynamics (cf. Table 2). Perhaps the most common research trend is to define men-

tal models from a quantitative perspective, that is, in terms of the number of systems elements 

they involve and the number of relationships between these elements. Existing mental model 

frameworks are useful in that they define a benchmark of expert-like knowledge of dynamic sys-

tems. They are, however, limited in their effectiveness to describe knowledge change and the 

knowledge that learners bring before they are exposed to any system dynamics interventions. 

The learning science literature provides ample empirical evidence that even after training, learners 

hold conceptual beliefs about the world that are at odds with scientific concepts and phenomena 

(Champagne, et al., 1980; Clement, 1982; Driver & Easley, 1978; Johnstone, Macdonald, & Webb, 

1977; Trowbridge & McDermott, 1980; Viennot, 1979). By studying these beliefs, it is not only pos-

sible to describe learners’ knowledge in great detail, but also to identify the particular units of 

knowledge that are easier or more difficult to acquire or change, or that hinder or support further 

learning. Moreover, the focus on conceptual beliefs as units of analysis of learners’ knowledge has 

given learning research the possibility of tracking the development of this knowledge during prob-

lem solving (McDermott, 1997; Sherin, 2001, 2006), conceptual change(Parnafes, 2005, 2010; 

Roschelle, 1991), and knowledge transfer (Brown & Clement, 1989; Clement, 1993; Duit, et al., 

2001; cf. insight three). 

There are different levels of aggregation at which these units are studied (e.g., facets, p-prims, 

ontologies, etc.). However, most research in this area shares a common concern: to identify units 

of analysis that properly map learners’ ways of thinking (e.g., Clark, 2003; diSessa, Gillespie, & 

Esterly, 2004; Ueno, 1993; Vosniadou, 2002). For this purpose, novices’ knowledge is usually stud-

ied in experimental conditions that replicate the real conditions in which such knowledge is usually 

used by the learner. Moreover, the units of analysis of knowledge are usually defined empirically 

(bottom-up), rather than pre-defined based solely on expert knowledge benchmarks. 

The methods used to measure causal knowledge depend on the nature of the research program. 

Usually, qualitative research (using methods such as clinical interviews, video recordings of learn-

ers’ interactions with tools) is conducted to develop grounded theories/models of learners’ 

knowledge and/or learning about a particular domain or range of phenomena (e.g., Roschelle’s 

(1991) micro-analysis of learners’ understanding of the concepts of velocity and acceleration). 

When a theory/model is in place, more scalable quantitative research can be conducted to further 

test the model (e.g., Hestenes’, Wells’ and Swackhamer’s (1992) Force Concept Inventory).  

Qualitative studies of causal knowledge focus on identifying the diverse cause-effect relationships 

assumed by the learner. However, the “size” of these relationships has also become an important 

issue. It is assumed, in conceptual change research, that novices’ knowledge becomes more com-

prehensive (complete) and coherent as learners move towards expertise (diSessa, et al., 2004; 

Vosniadou, Vamvakoussi, & Skopeliti, 2008). And therefore, determining how fragmented or co-
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herent novices’ knowledge is, is important if one wants to track how a particular teaching strategy 

affects such knowledge. In other words, knowledge coherence is an important variable for tracking 

learning processes. 

A way of looking at the issue of coherence is to investigate not only which cause-effect relation-

ships are used by the learner but also, which and to what extent these relationships are assembled 

together by the learner to form more comprehensive theories. For instance, a learner’s knowledge 

of a particular dynamic system could be constituted by multiple cause-effect relationships as-

sumed by the learner. However, it might happen that these cause-effect assumptions do not con-

stitute a theory of the system for the learner, but only a group of assumptions that he brings to-

gether in the spot -even perhaps in unsystematic/random ways (sometimes a particular theory of 

the system is assembled and sometimes another one is put together). For instance, Saldarriaga 

(2011) shows how seventh grade students assemble diverse units of causal knowledge to con-

struct an understanding of velocity as a stock –and how this changes during learning. Also, diSessa 

(2009) shows how learners construct an understanding of Newton’s thermal law as a composition 

of diverse units of causal knowledge. 

Another important aspect of measuring causal knowledge has to do with the degree of uncon-

sciousness of such knowledge. Causal knowledge may be rather unconscious to learners: learners 

know what predictions they make, but they may not be conscious about their underlying assump-

tions to make such predictions. Research methodologies such as traditional testing are thus not 

always sufficiently sophisticated to uncover what kind of causal knowledge a learner is using to 

make a given prediction. 

In system dynamics research, the learners’ initial knowledge is usually measured under teaching 

conditions –the same conditions meant to modify learners’ initial knowledge. Moreover, learners’ 

knowledge is described in terms of benchmark knowledge –the same knowledge learners are 

meant to acquire during teaching, e.g., through the use of simulators. In order to observe the ac-

tual effect of simulators on learners’ understanding of dynamic systems, it seems important that 

novice knowledge of dynamic system should be investigated using experimental conditions that 

simulate the real conditions in which learners usually use the knowledge in question. Learners 

should also be allowed to use all knowledge that they believe is relevant, that is, experimental 

conditions should not be constrained to activate the knowledge captured by expert benchmarks. 

Table 5 summarizes how causal knowledge can be measured.  

Table 5: How to measure causal knowledge 

What to measure Cause-effect relationships assumed/used by learners when asked to explain or predict a 

particular situation (system, problem, etc.). 

How to measure 

this 

• Methodologies such as clinical interviews and video recording to elicit and collect data 

of learners’ knowledge (Clement, 2000; diSessa, 2007b; Ginsburg, 1997).  

• Analysis of this data in fine-grained fashion (in short episodes of learning) to identify 

and track categories/units of knowledge (Parnafes et al., 2008) and to develop theo-

ries/models of such knowledge (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003; 

diSessa & Cobb, 2004). 

 

Context-specific declarative knowledge 

Context-specific declarative knowledge is when “we know that xxx about something” (Novak, 

2002). Forms of context-specific declarative knowledge are: equations, narratives that learners 

memorize from experiences (e.g., “CO2 accumulation has been increasing in the past years”, “hu-

man activities increase CO2”) or concept definitions (e.g., radiative forcing). 
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In system dynamics research we study learners’ knowledge of causality but do not necessarily con-

sider the context-specific declarative knowledge needed by the learner to accomplish the dynamic 

systems task given to them. For instance, Sterman and Booth Sweeney (2007) test learners’ un-

derstanding of CO2 accumulation and global mean temperature. They find that, most learners 

have an incorrect understanding of temperature because they assume an incorrect causal rela-

tionship between CO2 and global mean temperature (pattern matching). However, this lack of un-

derstanding might indeed be the result of a lack of context-specific declarative knowledge. Ster-

man and Sweeney’s learners perhaps did not know that “increases in the concentration of green-

house gases reduce the efficiency with which the Earth’s surface radiates energy to space” or that 

“radiative forcing is the measure of the influence a factor has in altering the balance incoming and 

outgoing energy in the Erath-atmosphere system” (Sterman & Booth Sweeney, 2007: 220). Al-

though the learners in Sterman and Sweeney’s study were provided with all this information (in-

cluding written descriptions of cause-effect relationships on the system), further testing didn’t 

evaluate whether learners indeed assimilated this information and whether they were actively 

using it to construct a prediction of the temperature behavior. This information constitutes pieces 

of context-specific declarative knowledge essential to understanding the causal relationship be-

tween CO2 accumulation and temperature. 

A typical example from learning sciences illustrates the relationship between context-specific de-

clarative knowledge and causal relations: Newton’s laws of motion. Research has shown that even 

though learners can declare Newton’s laws in equations (i.e., they have context-specific declara-

tive knowledge of these laws and principles), they lack a conceptual understanding of the causal 

relationships involved in such laws (Peters, 1982).  

Including context-specific declarative knowledge in an evaluation framework of dynamic systems 

knowledge has several benefits:  

• It allows having a more complete model of learners’ knowledge of dynamic systems. 

• It allows designing interventions that address learners’ particular difficulties with dynamic sys-

tems. Learners may have appropriate causal knowledge but they may lack context-specific de-

clarative knowledge of the particular system that would be necessary to apply this causal 

knowledge. 

Table 6: How to measure context-specific declarative knowledge 

What to measure Factual descriptions used by the learner about the system in question 

How to measure 

this 

Context-specific declarative knowledge can be measured in the same ways than causal 

knowledge. However, context-specific declarative knowledge may be more easily accessi-

ble to the researcher (from learners’ explanations) since context-specific declarative 

knowledge is explicit to the learner: the learner knows something and can declare it. 

 

Insight three: Use the units of knowledge to track changes over time 

and across contexts 

Our third and last insight follows from the previous insight: once we have well-defined units of 

knowledge of dynamic systems, these units can be tracked to investigate the effects of specific 

teaching strategies on learners’ knowledge change. Moreover, we can track the re-use of particular 

units of knowledge over time and across contexts to investigate knowledge retention and transfer. 

Here, retention is defined as the re-use of a particular unit of knowledge after it was initially 

learned and transfer is defined as the re-use of a particular unit of knowledge in a context differ-

ent from which it was initially learned.  
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This approach allows us to investigate which units of knowledge are more difficult or easier to 

learn and transfer, and how learners assemble more comprehensive theories out of isolated units 

of knowledge in the process of learning. 

 

Examples for the insights from learning science research 

In this section we describe two examples that illustrate the empirical implications of the insights 

from learning science research. The first example comes from the learning sciences literature 

while the second example corresponds to work from the system dynamics community. 

Example 1: Measuring read-outs and causal knowledge 

The first example, from Parnafes (2007), illustrates the research methods used to measure read-

outs and causal knowledge and to track their development throughout a teaching intervention. In 

this study, a simulator with a series of computational representations is used to support concep-

tual change of a dynamic phenomenon: natural harmonic oscillations. Parnafes investigates how 

novices’ understanding of the concepts of frequency and velocity in harmonic oscillations develop 

towards scientific knowledge.  

Measuring read-outs 

What to measure 

Parnafes analyses which representation, of the ones available to the learner in the simulation 

(Figure 1), the learner focuses on, and how the learner interprets such representations. The repre-

sentations are: an animation of an oscillating object, a bar depicting the periods of the oscillating 

object, and a time graph of the object’s velocity. 

Figure 1: Snapshot of harmonic oscillation simulation (source: Parnafes 2007: 422)  

 

How to measure read-outs 

Learners are asked to work in pairs. Both, the conversations between the learners and their inter-

actions with the representations in the computer are recorded. The videos are later analyzed to 

look at what the leaners say and do in relation with the representations. Here, the researcher ex-

amines the relation between the use of particular representations in the computer and the change 

in learners’ knowledge. According to Parnafes, her role as a researcher “…was that of a participa-



17 

tory observer. Interventions were made occasionally to clarify meanings or to cue learners to con-

sider overlooked issues”(Parnafes 2007: 421). 

Measuring causal knowledge 

What to measure 

What knowledge learners rely on to make inferences about the oscillatory behavior of objects. 

How to measure causal knowledge 

Parnafes allows learners to explore physical oscillations with real objects that learners encounter 

in their daily lives, such as springs and pendulums. Learners interact with these objects in pairs and 

are asked to talk aloud about their thoughts. They are asked to find and discuss similarities and 

differences between the different objects. And when they begin discussing concepts such as “fast” 

or “slow”, the researcher asks them to explain this better to focus the discussion around these 

concepts and to elicit learners’ assumptions about frequency and velocity. This stage of the study 

is done before the learners have any interaction with the computational representations designed 

by the researcher (Figure 1). Once the learners interact with the computational representations, 

the study focuses on how the knowledge previously used by learners changes. To explore learners’ 

knowledge during their interaction with the representations, they are given tasks for controlling 

the oscillating object in the simulation (e.g., making the object slow down) and asked to explain 

the reasons for their actions.  

Results from measuring read-outs and causal knowledge 

By investigating read-outs and causal knowledge, Parnafes could not only identify the kind of 

causal knowledge used by learners to reason about velocity and frequency in harmonic oscillatory 

phenomena, but also how particular features of the computer representations contributed to 

changing this causal knowledge.  

Parnafes found that learners do not differentiate between the concepts of velocity and frequency 

in harmonic oscillatory phenomena. Instead, learners’ understanding of these two concepts is or-

ganized around the single lay idea of “fastness”, understood as “more X in a unit of time.” That is, 

learners refer to an oscillating object as being fast whether it covers “more distance per unit of 

time” (velocity) or whether it realizes “more vibrations per unit of time” (frequency). Parnafes 

identified the assumption of “more X in a unit of time” as being consistent with units of naïve 

causal knowledge described in earlier research as phenomenological primitives (p-prims; diSessa, 

1993). P-prims are basic bits of knowledge that learners assimilate through common experience 

with the physical world. They are simple, they are not complete model descriptions; they are 

minimum representations of a given situation. These knowledge bits appear useful to the learner 

but they become challenging for advancing learning because they are strongly engrained and re-

sistant to change. 

Consistently with the previous findings, the focus of Parnafes’ teaching study was to investigate 

how the computer representations contribute to restructuring learners’ naïve idea of fastness to-

wards a differentiated and more scientific idea of velocity and frequency. Parnafes found that be-

fore the intervention, when interacting with real oscillating objects, learners’ abstraction of infor-

mation about velocity and frequency was opportunistic, that is, they attended to the most avail-

able information in front of them (e.g., change in distance in the case of pendulums, and beats of 

vibrations in the case of springy roads). Parnafes then hypothesized that a change in learners’ 

strategies to focus attention was necessary to change their naïve idea of fastness. Using the con-

struct of read-outs, Parnafes could describe entire episodes of learning where particular learners’ 
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read-outs of the computational representations relate to specific changes in their evolution of the 

idea of fastness. This points to what works and for what it works. For instance, by looking at both 

representations 2 (frequency bars) and 3 (velocity time graph) in the simulator (Figure 1), a pair of 

learners (Sue and Robin), began realizing that moving “slower” had two different effects on the 

object’s behavior: the sine wave in the time graph gets squished and the bars get much further 

apart. Later on, by controlling the setting for displacement (smaller or higher), Sue and Robin fur-

ther differentiated between velocity and frequency by realizing that the distance between the 

bars could stay the same (frequency), even if the peaks of the time graph changed (velocity). Thus, 

Sue and Robin decoupled the concepts of frequency and velocity by changing their strategies used 

to abstract available information. From the initial opportunistic strategies, these two particular 

representations helped Sue and Robin develop more “clear and stable perceptual foci that allowed 

them to detect the patterns in the simulation…”(Parnafes, 2007: 436). 

Example 2: Measuring and tracking causal knowledge during conceptual 

change and transfer 

The second example from Saldarriaga (Saldarriaga, 2011) illustrates the research methods used to 

measure and track causal knowledge of a dynamic system throughout a teaching intervention us-

ing analogies. In this study, an interactive simulation of a water tank analogy is used to support 

conceptual change of basic dynamics of motion. Saldarriaga investigates how novices’ understand-

ing of Newton’s first and second laws develop towards scientific knowledge conceptualized in 

stock and flow terms. Since an analogy is used as a teaching strategy, this work requires studying 

not only conceptual change processes, but also investigating how learners’ transfer restructured 

knowledge from the water tank to the motion system. In other words, two simultaneous learning 

phenomena are at play: conceptual change and knowledge transfer. In what follows we describe 

how Saldarriaga measures causal knowledge, its change and its transfer. 

Measuring causal knowledge 

What to measure 

• What knowledge learners rely on to make inferences about basic motion phenomena (e.g., a 

toy car moving along a flat surface). 

• How this knowledge changes during the tank analogy teaching intervention.  

• What knowledge learners transfer from the tank to the motion system 

• How learners’ existing knowledge hinders or supports this transfer. 

 

How to measure causal knowledge 

Saldarriaga uses a conceptual test, followed by individual clinical interviews to measure learners’ 

existing causal knowledge before any tank analogy intervention. The test is based on a recognized, 

thoroughly tested questionnaire called Force Concept Inventory (FCI; Hestenes, et al., 1992). The 

FCI was designed to test whether learners exhibit any of a full range of naïve conceptions of mo-

tion previously identified in extensive research. The follow-up interview follows techniques from 

cognitive psychology (Clement, 2000; diSessa, 2007b; Ginsburg, 1997) and its purpose is to elicit 

deeper explanations of why the learner chooses a particular answer in the test. This research 

strategy has two properties: 
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• First, it allows studying learners’ existing knowledge in a rather ecological manner: using phe-

nomena which learners are more likely to encounter in their daily lives –and which will there-

fore activate the knowledge that learners commonly use to reason about these phenomena.  

• Second, the interview offers a closer look at causal knowledge.  

As discussed previously, causal knowledge may be rather unconscious since it is usually “obvious” 

to the knower. Therefore, measuring causal knowledge may require the researcher to ask learners 

to “please explain their choices better” several times. 

Figure 2: Snapshot of water tank analogy simulator (source: Saldarriaga 2011: 87).  

 

As in Parnafes’ study, Saldarriaga has learners working in pairs with a water tank analogy simulator 

(see Figure 2) to encourage learners to externalize (talk aloud about) their thoughts. Learners are 

given tasks to control the behavior of the tank system. In a second stage of the intervention, 

learners are exposed to a modified version of the tank system which shows how the analogy ap-

plies to the motion of a toy car that is pushed along a flat surface (Figure 3). In this case, learners 

are also given tasks to control the toy car’s motion. Individual clinical interviews are conducted 

also after the intervention. The entire intervention is recorded to further support the analysis of 

the interviews data. 
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Figure 3: Snapshot of motion simulator (source: Saldarriaga 2011: 99).  

 

 

Results from measuring and tracking causal knowledge 

By using a diverse set of methodologies, Saldarriaga could not only observe the causal knowledge 

used by learners to reason about basic motion dynamics, but also track the change of this knowl-

edge during the tank analogy intervention.  

The knowledge observed had the properties of the same units of naïve causal knowledge observed 

by Parnafes: phenomenological primitives (p-prims). In contrast to Parnafes however, Saldarriaga 

tracked not only one p-prim, but 6 different p-prims. By analyzing in detail the episodes of learning 

in the data, Saldarriaga could describe how each of these p-prims intervened (hindered or sup-

ported) in learners’ construction of an understanding of the car’s motion as a stock and flow sys-

tem.  

For instance, Saldarriaga observed that learners’ understanding of dynamic equilibrium in motion 

(i.e., a constant stock of velocity) is hindered by several p-prims. Two of which are force sustains 

motion and overcoming. Force sustains motion is the idea that a continuously applied force is re-

quired to maintain the stock of velocity constant; and vice versa: constant velocity is interpreted 

as the result of a continuously applied force (an idea similar to pattern matching). Overcoming is 

the idea that constant velocity is the result of an applied force continuously winning over (being 

greater than) a resistance (opposing) force. By tracking these two p-prims in the interview data, 

Saldarriaga could observe that:  

• First, given the context of the study, some p-prims are more commonly activated than others. 

Here, overcoming was more common (6 out of 11 learners) than force sustains motion (2 out 

of 11).  

• Second, the results suggest that how common a piece of causal knowledge is, does not neces-

sarily indicate how difficult it is to change. Here, all learners using overcoming exhibited a cor-
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rect understanding of dynamic equilibrium at the end of the intervention. In contrast, one of 

the learners using force sustains motion, exhibited this piece of knowledge even after teaching.  

As Parnafes, Saldarriaga’s study is full of descriptions from which models/theories should be for-

mulated and further tested. In particular, there is an important lesson from Saldarriaga’s study 

that invites to reflect on the current methods we use to measure novice knowledge of dynamic 

systems. Readers may ask the question why p-prims were chosen as the units of analysis. After 

observing p-prims in her data, Saldarriaga tried to identify whether two or more p-prims were sys-

tematically used together by one or more learners. This would have been an indication of learners 

possessing more comprehensive knowledge structures than the simple, individual p-prims. As 

none of the learners exhibited more comprehensive knowledge structures than the p-prims, Sal-

darriaga concluded that p-prims were the right units to measure and track novice knowledge.  

This highlights the importance of finding the right units to measure novices’ knowledge of dynamic 

systems. For instance, if Saldarriaga had attempted to track learners’ “full theory” of stocks and 

flows, she would have found that none of her learners had this theory before or even after the 

intervention. However, her learners did develop their understanding of stocks and flows, although 

in a more fragmented manner. By using p-prims as units of measure, Saldarriaga could track in-

cremental changes in learners’ knowledge of stocks and flows towards expertise. 

 

Conclusions part two: Where should we go in system dynamics? 

The examples discussed in the previous chapter highlight the contributions that learning sciences 

research can provide to system dynamics research. The examples give practical indications of the 

methods and procedures that can be used to measure those aspects of understanding and learn-

ing about dynamic systems that the most widely used methods and procedures in system dynam-

ics cannot measure. The methods applied in the learning sciences allow measuring how knowl-

edge about dynamic systems changes in the course of a teaching intervention and they allow iden-

tifying the knowledge structures that inhibit or contribute to such changes. Measuring these as-

pects of understanding and learning in further research will help improving the effectiveness of 

simulators and other teaching strategies as they can be made more targeted.   

Whether read-outs, causal knowledge and context-specific declarative knowledge are in fact the 

three main types of knowledge that participate in learners’ understanding of dynamic systems is 

ultimately an empirical question. Further research should test this and further refine the reper-

toire of elements that constitute learners’ knowledge of dynamic systems. For instance, further 

research should study the role of metacognitive knowledge in learning about dynamic systems. 

The examples discussed in the previous chapter also suggest a potential for system dynamics to 

contribute to learning sciences theory. Dynamic systems impose particular challenges for learning 

and teaching, as knowledge about dynamic systems not only encompasses knowledge about struc-

ture but also about behavior. Studying knowledge about structure as well as behavior may require 

different constructs and frameworks from the ones already developed. Although the systems stud-

ied in the two examples are dynamic, they are rather simple compared to other systems found in 

the real world. Studying more complex systems may require the development of frameworks that 

go beyond what current learning sciences research has achieved. 

Finally, a general conclusion for this paper is that to study teaching and learning about dynamic 

systems, we need to develop constructs that are both theoretically and empirically useful. By 

working collaboratively with a particular set of constructs, we can begin accumulating more effec-

tive and comprehensive evidence of how system dynamics tools contribute to learning. 
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