
A Bright Future for System Dynamics:

From Art to Computational Science and Beyond

Erik Pruyt∗ (TUDelft) and Jan H. Kwakkel (TUDelft)

July 20, 2012

Abstract

This paper presents a bright future for quantitative System Dynamics Modeling. This
future relates to all major issues and grand challenges which all happen to be dynamically
complex and deeply uncertain. Combining System Dynamics Modeling and Exploratory Mod-
eling and Analysis allows one to generate, explore and deeply analyze tens of thousands of
plausible scenarios related to such deeply uncertain dynamically complex issues, and to design
and test adaptive policies over all plausible scenarios. By doing so, the art of System Dy-
namics becomes the computational science of System Dynamics. This innovative approach is
explained in this paper starting from the core of System Dynamics modeling, and is illustrated
with real world applications (pandemic shocks, resource scarcity, and energy transitions). How-
ever, more is needed than the brightest analysts and the best analyses for decision makers to
decide and take action when facing uncertain complex issues: that is what experiential Sys-
tem Dynamics gaming is needed for. Only when heart and mind are aligned will knowledge
and understanding become effective. The use of experiential System Dynamics gaming for
conquering the heart of decision makers is illustrated with real world examples too.
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1 Introduction – Reinventing System Dynamics Modeling

1.1 SD Modeling: Recognizing the Core and Cherishing the Diversity

The System Dynamics (SD) method and field are firmly established and have a strong common
core. That common core of the SD method –according to us– includes: (i) a broad, largely
endogenous, systems perspective, (ii) focus on a particular problem characteristic, ie dynamic
complexity, (iii) a unifying modeling language to develop models including causal and feedback
effects, accumulations, and delays, (iv) a set of qualitative and quantitative techniques and tools
to derive the system behavior over time, (v) a qualitative interpretation of quantitative simulation
results, and (vi) the goal to better understand dynamically complex issues and design robust
policies for dealing with them.

Beyond the common core, the field of SD is endowed with many different practices (Lane 2001a;
Lane 2001b), diverse sets of basic underlying assumptions (Pruyt 2006), a plethora of uses, and
the use of a variety of techniques and tools. We believe we ought to cherish the common core as
well as the diversity: our field needs a way to keep and improve on what is good, but at the same
time continuously experiment and innovate. In our perspective on the future of SD, the SD field
should be one field unifying a diverse set of mature strands and uses, as well as an experimental
sandbox filled with promising strands and uses – the future strands and uses of System Dynamics.
We believe that such diversity could only be a handicap if we fail to communicate it well, else
it will make the field stronger and richer. Not all System Dynamicists would agree: some seem
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to have the desire to reserve the SD label for the traditional core and currently accepted uses.
Fortunately, many System Dynamicists are open to new System Dynamics practices, SD-based
multi-methods, and see SD for what it really is and ought to be, and that goes well beyond narrow
definitions of, or perspectives on, SD.

One danger of too broad a view on SD may be to end up using SD for any type of issue,
another danger may be to become overly ambitious, for example to want to develop SD into the
overarching methodology for the social sciences. We believe we need more modesty on the one
hand, but much more ambition on the other in order to become one of the relevant methods in
social science for dealing with issues of great importance as David Lane suggested in his great
presidential address. However, in order to realize this ambition we may have to revisit some of the
basic characteristics of traditional SD, invest heavily in SD-based multi-methods (ie appropriate
combinations of SD with other methods), invent and test new SD uses, and develop new techniques
and tools that are crucial for realizing this ambition.

The enormous wisdom and foresight of the founders of the field (Forrester, Meadows, etc)
made the SD field uniquely progressive and enlightened for a very long time. The head start was
a major blessing, but may have been, at a later stage, a handicap1 too. Some of the wise choices
made then, given the state of computing at the time, may today require appreciation for what
they were meant for at the time, not for what they have grown into. We think that some essential
SD characteristics of old introduced for practical reasons, may, given the current and near future
state of science and computing, be less essential for the current and future practice of SD, whereas
other characteristics and ideas may require much more emphasis and development into what they
were really intended for. In other words, the SD field of old has evolved somewhat, and could and
should continue to evolve a whole lot more.

In order for SD to be truly useful for policymakers for dynamically complex issues that are also
characterized –beyond dynamic complexity– by at least one other important characteristic (eg.
being fundamentally spatial, multi-actor, networked, multi-dimensional, data-rich, uncertain, et
cetera), further investment in SD-based multi-methods, approaches, and tools that allow scientists
and practitioners to deal with those characteristics are urgently needed.

Two fruitful innovation strategies are to ‘borrow’ great ideas from other fields and to band-
wagon the winner. Hence, we believe the System Dynamics community should –without betraying
the real SD core– adopt a more external orientation (other fields and approaches) in order for it
to grow and become better and stronger. A stronger external orientation may help the field to:
(i) learn from successes and failures of other domains to further develop the SD field, (ii) avoid
using and marketing SD for uses none of its strands are truly appropriate for, and hence, avoid
type III errors, (iii) enrich SD with other approaches, techniques and tools, in order to make SD
even more useful for real-world policymakers facing dynamically complex issues, and (iv) sharpen
our understanding of the essence of SD, and hence, reflect on, redefine and strengthen its identity.

1.2 Frustrating Gaps and Promising Solutions

The perspective on the future of SD propagated and the particular SD approach described in this
paper, originate from (i) traditional SD modeling and policy analysis, (ii) the type of issues we are
interested in, ie grand challenges and major issues, which are almost all uncertain and complex,
(iii) our sometimes frustrated attempts to apply traditional SD to such complex uncertain issues,
and (iv) pioneering work on Exploratory Modeling and Analysis by the RAND Corporation.

Most grand challenges and important issues we address(ed) or believe ought to be addressed
by an SD-like approach are not just dynamically complex but also almost always deeply uncertain.
Deeply uncertain issues are issues (i) for which it is uncertain which of many plausible underlying
mechanisms will generate the real-world dynamics, (ii) for which it is uncertain which probabilities
may be attached to plausible real-world outcomes, and (iii) for which different experts may disagree
about the acceptability of the outcomes (Lempert et al. 2003). This does not mean that everything

1The dialectics of progress aka the law of the handicap of a head start aka the law of the slowing head start,
coined by (Romein 1937), is the theory that an initial head start hinder long-term innovation.
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related to deeply uncertain issues is unknown. To the contrary, it means that plausible outcomes
could be generated (if combinations of underlying mechanisms are modeled and simulated) or
imagined, but that the occurrence of plausible real-world outcomes cannot be captured in terms
of one or few scenarios with corresponding probabilities, nor with probability distributions, and
mostly neither with a single model.

From our methodological perspective, it follows that if addressing dynamic complexity under
deep uncertainty is different from addressing dynamic complexity, then methods for dealing with
dynamic complexity under deep uncertainty ought to be used, and if not available, developed.
Our applied work for real world policymakers also made us critically aware of the fact that for
modeling and simulation to be of any relevance to real world policymakers, key characteristics of
an issue need to be taken into account in an intuitively appealing way. And since 9/11, reinforced
by the 2008 financial crisis and the 2009 flu pandemic, uncertainty is key to policymakers in our,
and many other, application domains. Moreover, modeling is often only relevant and acceptable
to policymakers, if they generally understand the modeling approach and model(s) developed,
and if the advice provided with the model(s) makes sense and is robust, and if modeling has clear
advantages over approaches that are not based on modeling.

Before 2009, we tried to do so using traditional SD techniques and tools, including sensi-
tivity testing and risk analysis2 with available commercial software packages, which worked to
some extent, but proved to be complicated, extremely time consuming, and insufficient for deeply
uncertain issues. Using traditional SD techniques and tools does not seem to allow for easy exper-
imentation and exploration beyond parameters and a handful of policies, using different models
–for example representing different perspectives on the issue– simultaneously, doing much more
than visual inspection with the simulation runs (ie perform advanced time-series clustering), and
designing adaptive policies and comparing the effectiveness of alternative policies over the entire
multidimensional uncertainty space. Note however, that all this is possible using both commercial
SD programs and advanced mathematical programs, although cumbersome, but trying to do so is
very time-consuming – which is essential for all pressing issues.

But if SD in isolation may not be appropriate for doing so, SD-based multi-methods may be.
Lempert et al. (2003) showed us one way forward by ‘borrowing’ a SD model –a slightly adapted
version of theWonderland model as published in (Sanderson 1995), explored in (Milik et al. 1996)–
and using it to illustrate their Exploratory Modeling and Analysis (EMA) methodology. EMA is
a computational methodology for systematically exploring deeply uncertain issues and testing the
robustness of policies under deep uncertainty. A group of scientists at RAND Corporation devel-
oped the initial ideas of EMA and the first computer software to perform it. Since EMA requires
easily manageable computational models, for example SD models, and SD requires a methodology
for dealing more appropriately with deeply uncertain issue, they perfectly match: EMA and SD
modeling are indeed fully complementary. Hence, we further developed the EMA methodology for
dynamically complex issues, combined it with SD, called the resulting multi-method ESDMA, de-
veloped our own EMA software, developed new or adapted existing data visualization and analysis
algorithms, and applied this multi-method to many complex and deeply uncertain issues in order

2 In this paper, we use the following phrases short definitions for different types of analyses: Sensitivity
analysis refers to the analysis of the effect of a small change to or the slightly different value (plus or minus 20%)
of parameters and lookups from a base case on the mode of behavior (behavioral sensitivity) or choice of policy
(policy sensitivity). Uncertainty analysis refers to the exploration of the influence of the entire uncertainty range;
so if the uncertainty range of a parameter ranges from 0% to 100%, then 0% and 100% need to be tested (as well as
all values in between). Extreme value testing refers to checking whether the model structure is acceptable given
extreme (even totally unrealistic) values. Risk analysis refers here to the use of sampling over probabilistic inputs
in order to generate probabilistic outputs which are interpreted as such. Robustness testing or robust decision
methods refer to methods that seek decisions that perform satisfactorily for the widest range of assumptions
(Bankes 2012). Robustness refers here to the general acceptability of outcomes over the entire uncertainty space.
Robust policies are therefore policies that perform acceptably across the entire uncertainty space.
So we may set the size of the Dutch population of about 16670000 (in 2011) to 0 citizens for an extreme value test;
it may have an uncertainty range between 14 million and 24 million 50 years from now; and we may want to test
the sensitivity of some model outputs to a 10% difference in size of the population or an increase with 10% from
16670000 to 18337000.
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to further develop it, and to generate awareness and enthusiasm in several application domains3.
But even if this multi-method –or any other multi-method for that matter– leads to more pro-

found analyses and better policy advice, then that does not mean that the advice is per definition
acted on – quite the contrary. Some policymakers may understand but not trust model-based anal-
yses related to complex uncertain issues. Other policymakers may trust their own experience and
intuition better than ‘difficult’ model-based advice. Just involving policymakers in the first phases
of the research, for example through GMB (Vennix 1996), may not be enough in case of uncertain
complex issues: that is why we started to complement ESDMA with Exploratory Group Model
Specification and Simulation (EGMSS) workshops, and Experiential SD-based Gaming (ESDG)
workshops too.

1.3 Aims and Organization of this paper

In this paper, we will discuss, refer to, and illustrate one multi-method innovation in the field
of SD, more specifically the combination of SD modeling and EMA for issues that are not only
dynamically complex but also deeply uncertain. The aim of this paper is not to discuss and
illustrate the future of the whole field of SD, just our SD future, as we happen to see it now. It
should be clear that this is just one possible route, one plausible strand of future SD, but we think
a very promising one, which may be one day one of the pillars of the future field of SD. The main
question addressed in this paper is thus: How to develop and use SD models for deeply uncertain
dynamically complex issues such that uncertainty and complexity are truly dealt with and design
appropriate policies that policymakers will implement?

Some definitions and explanations are first of all provided in section 2. Then SD, EMA, and
ESDMA are briefly introduced in section 3. Section 4 is dedicated to a detailed discussion of
ESDMA. Examples of needs beyond ESDMA are discussed in section 5. Section 6 illustrates
two different uses of ESDMA. Section 7 will position ESDMA into the broader SD context. And
concluding remarks are formulated in section 8.

2 Dynamic Complexity & Uncertainty, and SD & Uncer-
tainty

2.1 Levels of Dynamic Complexity and Deep Uncertainty

2.1.1 Dynamic Complexity

Dynamic complexity relates to the dynamic behavior of systems over time. It arises in sys-
tems because they are dynamic, tightly coupled, governed by feedback, nonlinear, history depen-
dent, self-organizing, adaptive, counterintuitive, policy resistant and characterized by trade-offs
(Sterman 2000). Although the concept is clear to all System Dynamicists and does not need fur-
ther explanation here, it is very hard to properly define levels or degrees of dynamic complexity.
Since properly defining levels or degrees of dynamic complexity is not the goal of this paper, we
simply distinguish between situations and models that show no or little dynamic complexity and
situations and models that show some to extreme dynamic complexity, the latter being interesting
cases for SD.

3In health (Pruyt and Hamarat 2010b; Hamarat et al. 2012a; Pruyt and Coumou 2012; Hamarat et al. 2012a),
energy (Pruyt et al. 2011; Pruyt 2011a; Kwakkel and Yucel 2011; Eker and van Daalen 2012;
Hamarat, Kwakkel, and Pruyt 2012; Hamarat et al. 2012b), water (Kwakkel and Slinger 2012;
Kwakkel and Timmermans 2012), resource scarcity (Kwakkel and Pruyt 2011; Auping 2011; Auping et al. 2012;
Kwakkel et al. 2012), safety and security (Pruyt and Kwakkel 2011; Kovari and Pruyt 2012;
Pruyt and Kwakkel view), societal issues (Logtens 2011; Pruyt, Logtens, and Gijsbers 2011; Logtens et al. 2012),
and economic-financial issues (Pruyt and Hamarat 2010a).
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LOCATION LEVEL NATURE

recognized shallow medium deep recognized ambiguity epistemo- ontology
uncertainty uncert. uncert. uncert. ignorance logy

fundamental surprises �
system boundary � �
conceptual model � �
computer/formal model � �
- model structure � � � �
- parameters in model � � � � �
- input param. to model � � � � �

input data � � � � �
model implementation � � � � �
processed output data � � � � �

Table 1: Uncertainty matrix for classifying & communicating uncertainties in model-based policy
analysis. Source: (Kwakkel and Pruyt 2012)

Level of Description Approaches for dealing with the levels
Uncertainty

Level 1: Recognizing that one is not absolutely certain, Performing sensitivity analyses on model
recognized and that uncertainty is a marginal issue. parameters by changing default values with
uncertainty some small fraction.
Level 2: Being able to enumerate multiple alternatives Being able to enumerate multiple possible
shallow and provide probabilities (subjective or objective) futures or alternative model structures, and
uncertainty specify their probability of occurrence
Level 3: Being able to enumerate multiple possibilities and Being able to enumerate multiple possible
medium rank possibilities in terms of perceived likelihood. futures or alternative model structures, and
uncertainty However, how much more likely or unlikely one alter- being able to judge them in terms of perceived

native is compared to another cannot be specified likelihood, not in terms of probabilities
Level 4: Being able to enumerate multiple possibilities Being able to enumerate multiple possible
deep wo being able to rank order the possibilities futures or specify multiple alternative
uncertainty in terms of how likely or plausible they are model structures, without being able to

specify their likelihood
Level 5: Being unable to enumerate multiple possibilities, Keeping open the possibility of being wrong
recognized because one does not or cannot know the generative or being surprised because existing mental
ignorance mechanisms at play nor the possibilities that will and formal models are known to be inadequate

be generated

Table 2: Five levels of uncertainty. Source (Kwakkel and Pruyt 2012)

2.1.2 Uncertainty

Uncertainty is defined here as any departure from the unachievable ideal of complete determinism
(Walker et al. 2003). Uncertainty is not simply a lack of knowledge, since an increase in knowledge
might lead to an increase of knowledge about things we do not know and thus increase uncertainty
(van Asselt 2000).

Table 1 shows a slightly adapted version of an uncertainty matrix to support policy analysts in
identifying uncertainties and communicating these uncertainties to decision makers as proposed by
(Walker et al. 2003) and updated by (Kwakkel et al. 2010b), called the W&H framework, which
synthesized various taxonomies, frameworks and typologies related to uncertainties from different
decision support fields. Three of these taxonomies were used in (Pruyt 2007) to assess how SD deals
with different uncertainties. Given the summarizing character of the updated W&H framework, it
makes sense to continue here following the later framework. Issues and systems are characterized
in it by one of five levels of uncertainty as proposed by Kwakkel and Pruyt (2012) and listed in
Table 2.

Table 1 also acknowledges that there are many locations for uncertainties in model-based
decision support: uncertainties may relate to initial values, parameters inside the model, input
parameters to the model (possibly time-series inputs), functions, generative model structures,
feedback loops, model boundaries, modeling methods and paradigms, different perspectives and
preferences related to different world-views, and multiple policies and the mediating effects of
policies. Being serious about dealing with uncertainties therefore means exploring and taking into
account the influence of uncertainties related to initial values, parameters inside the model, input
parameters to the model (possibly time-series inputs), functions, (generative) model structures,
feedback loops, model boundaries, different models, modeling methods and paradigms, different
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None to little dynamic complexity Some to extreme dynamic complexity

Recognized uncertainty Well-known case or static model Known case or dynamic model
possibly with sensitivity analyses possibly with sensitivity analyses

Shallow Uncertainty Static model with risk analysis Dynamic model with risk analysis
and probabilistic interpretation with probabilistic interpretation

Medium Uncertainty Most likely cases or models, wo dynamic model with mode of behavior
probabilistic interpretation interpretation
static models or morph. box with Dynamic models with deep uncer-

Deep Uncertainty deep uncertainty & robustness tainty & robustness analyses
analyses (in other words EMA) (eg ESDMA)

(((Extreme ESDMA to whiten some of
Recognized Ignorance (((EMA and/or creative process the black swans, or generate very

to whiten some of the black swans))) implausible scenarios)))

Table 3: Combining different levels of uncertainty and different degrees of dynamic complexity,
and suggested approaches

perspectives and preferences related different world-views, and mediating effects of policies.

2.1.3 Dynamic Complexity and Uncertainty

Combining the five levels of uncertainty with two levels of dynamic complexity (none to little and
some to extreme) gives the ten combinations in Table 3. The combinations in the top two row cells
only require base case model runs with some sensitivity analysis or risk analyses or appropriate
case descriptions. Issues of medium uncertainty require at least alternative scenarios with asso-
ciated perceived likelihoods or the use of (either static or dynamic) models for generating modes
of behaviors or scenarios with associated perceived likelihoods. However, most important issues
are at least deeply uncertain – likelihoods cannot truly be assigned nor can outcomes be inter-
preted probabilistically. Deeply uncertain issues require method(ologie)s to enumerate/generate
all –or at least a whole lot of– plausible scenarios (before selecting a set of scenarios that are rep-
resentative or of particular interest), such as EMA or morphological box-like approaches. Either
the method(ologie)s used for deeply uncertain issues pushed to their limits or processes focussed
on stimulating creativity could be used to some extent for dealing with recognized ignorance by
identifying grey swans, trying to turn black swans into grey swans, by generating the broadest
possible set of scenarios (ie from least surprising to wildest possible), or by developing a set of
scenarios spanning the outcome space, all the while keeping open the possibility of being wrong
or surprised.

The right-hand side column requires methods for dealing with some to extreme dynamic com-
plexity, eg SD. The two bottom rows require methods for dealing with deep uncertainty and
recognized ignorance, eg EMA. This paper is thus really only about the two bottom-most cells in
the right hand side column of Table 3.

2.2 SD and Uncertainty

System Dynamicists deal with uncertainties in several ways, as was analyzed in (Pruyt 2007) using
the typologies of uncertainty of (van Asselt 2000). The engrained mainstream way for dealing
with uncertainties in SD can be found in the stance that uncertainties are omnipresent and that
qualitative ‘mode of behaviour’ interpretations are therefore the highest attainable. Referring to
human unpredictability, Meadows and Robinson (1985, p78) formulate it –when reviewing the use
of econometrics– as the ‘believe that human unpredictability is too dominant a factor in social
systems to allow anything more than qualitative behavioral forecasts, even for aggregate systems
where much unpredictability can be averaged out.’

That position was –and is still rather– unique in science, and was –and often still is– mis-
understood by outsiders of the field. Except for some univariate and multivariate sensitivity
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analyses –which are very often, without proper evaluation, too poor an exploration of at most
shallow uncertainty– it looks to outsiders as though uncertainties are not really explored or ex-
plicitly taken into account in SD, which may be a reason for the SD approach to be perceived as
too deterministic and therefore inappropriate for dealing with issues characterized by ever more
important and abundant uncertainties.

Apart from the specific stance on uncertainty and the use of some techniques and tools for
dealing with uncertainty and risk, we sincerely think that given today’s computing power there
is not enough attention paid to the issue of uncertainty in today’s SD practice. One of the
reasons might be that uncertainty adds another dimension, on top of the dimension of dynamic
complexity addressed first and foremost by SD – and even without considering deep uncertainty,
is SD considered a difficult art. The differences in level, nature and location of uncertainty makes
the dealing with uncertainty even more difficult. Another reason might be that there is only a
limited set of tools for dealing with uncertainty and risk available in most of the SD software
packages (e.g. sensitivity or risk analysis), but not more advanced tools to perform comprehensive
sensitivity analyses, to deal with deep uncertainty or to assist the design of robust adaptive policies.
The thorough exploration of deep uncertainty is therefore in SD in isolation a daunting, almost
impossible, task. Finally, computing power was until recently insufficient to support extensive
exploration of uncertainties while at the same time keeping analyses and conclusions transparent.
Today however, even desktop computing power is sufficient, and the methods, techniques and tools
are available.

3 From SD to ESDMA

3.1 System Dynamics

As the participants of this conference know very well, System Dynamics (SD) is a modeling and
simulation method for learning about and dealing with dynamically complex issues (Sterman 2000).
Traditionally, SD is used for modeling and simulating dynamically complex issues and analyzing
their resulting non-linear behaviors over time in order to develop and test the effectiveness of
structural policies.

Mainstream System Dynamicists have assumed for decades that uncertainties are omnipresent,
and hence, that trajectories generated with SD simulation models should not be interpreted quan-
titatively as point or trajectory predictions, but that they should be interpreted qualitatively as
general ‘modes of behavior’. And although univariate and multivariate sensitivity analyses are
often performed, they are mainly aimed at validation starting from a base case – not at exploring
over the entire uncertainty space. It seems therefore that in traditional SD the omnipresence of
uncertainties is accepted but that they are not really explored or explicitly taken into account.

However, SD models may also be built specifically for the purpose of exploring the potential in-
fluence of uncertainties on dynamically complex issues. Such exploratory System Dynamics models
are preferably fast-to-build and easily-manageable models, and consequently, rather simple and
highly aggregated, and slightly less closed/endogenous than traditional SD models (Pruyt 2010b).
Using such models is an interesting approach for exploring uncertainties, and testing the effective-
ness of policies in the face of these uncertainties. However, in isolation it may still be insufficiently
broad and systematic to firmly base policymaking under deep uncertainty on.

3.2 Exploratory Modeling and Analysis

Exploratory Modeling and Analysis (EMA) is a computational approach to systematically explore
the influence of uncertainties on deeply uncertain issues and test policy robustness under deep un-
certainty (Bankes 1993; Agusdinata 2008; Lempert et al. 2003)4. It consists of using exploratory

4See also (Lempert and Schlesinger 2000; Lempert et al. 2006; Van der Pas et al. 2007;
Van der Pas et al. 2008; Agusdinata et al. 2009; Bryant and Lempert 2009; Kwakkel et al. 2010a;
Kwakkel et al. 2010c; Kwakkel and Slinger 2011; Bankes, Walker, and Kwakkel 2012;
Kwakkel and Haasnoot 2012).
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models to generate tens of thousands of scenarios –an ‘ensemble of plausible futures’– in order to
explore and analyze this ensemble of plausible futures, and test the robustness of policy options
across the ensemble – in other words, to test whether the outcomes are acceptable for all scenarios
generated by sweeping the entire multi-dimensional uncertainty space.

EMA could be used for (i) generating a very large ensemble of all sorts of plausible futures
(artificial time-series data), (ii) advanced exploration and analysis of the influence of a plethora
of uncertainties (ie the artificial time-series data and their origins), (iii) directed searches into
(particularly problematic) areas of the uncertainty and scenario spaces, (iv) model and expert
testing and triangulation, and ‘deep validation’ (Bankes 2012) (ie. testing and updating models
as they are used), (v) adaptive policy design informed by the whole ensemble, and (vi) deep
policy robustness testing (testing policy effectiveness over the entire multi-dimensional uncertainty
space).

EMA consists more precisely of (i) developing ‘exploratory’ –fast and relatively simple– models
of the issue of interest, (ii) generating an ensemble of futures (thousands to millions of scenarios) by
sweeping uncertainty ranges and varying uncertain structures and boundaries, (iii) analyzing and
clustering the dynamic behaviors, to discover particular types of behaviors, et cetera, (iv) and/or
specifying a variety of policy options (preferably adaptive ones), and simulating, calculating, and
comparing the performance of the various options across the ensemble of futures.

In step (iii), advanced data analysis techniques could be used to investigate the effect of
underlying mechanisms/(inter)actions/conditions, to search for areas in the multi-dimensional un-
certainty space with high concentrations of highly undesirable behaviors, to cluster the ensemble
into different modes of behavior, to determine the conditions that lead to these different modes of
behavior, to find bifurcation points and critical variables, et cetera. The results of these analyses
may be useful in their own respect or may provide key information for step (iv). These analyses
may be extremely insightful to analysts and for policymaking, filling the analytical gap in tradi-
tional SD. However, policymakers may not be all that interested in these analyses –at most in the
key findings– or may simply not understand the analytic tools and their outcomes.

However, step (iv) actually makes life of policymakers much easier, since it allows defining
different (adaptive) policies and immediately testing their (relative and absolute) effectiveness
given all these uncertainties, in other words, their robustness. The effectiveness of policies could
indeed be evaluated over the entire multi-dimensional uncertainty space without the need to
understand millions of outcomes and assessing their likelihoods or probabilities. In other words,
the robustness of policies could be evaluated and compared without reducing uncertainties related
to the system of interest and without getting overwhelmed by combinatorial complexity. Advanced
analyses may also be necessary for designing robust adaptive policies.

3.3 Exploratory System Dynamics Modeling and Analysis

Since EMA is appropriate for systematically exploring deep uncertainty and testing the robustness
of policies, and exploratory SD models are particularly appropriate for generating plausible dy-
namics over time, it follows that their combination –which we call Exploratory System Dynamics
Modeling and Analysis (ESDMA)– is particularly appropriate for systematically generating, ex-
ploring and analyzing tens of thousands of plausible dynamic behaviors over time, and for testing
the robustness of policies over all these scenarios. As opposed to EMA, ESDMA goes beyond the
calculation of end states or static values, but focuses on artificial time-series data, which makes
ESDMA much more challenging than EMA. ESDMA is dealt with at length in the following
section.
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4 ESDMA in Depth

4.1 Using Models as Experimental Lab Equipment

Bankes (2009) suggests viewing models used for EMA as laboratory equipment, rather than as
veridical artifacts representing their target system. He concludes that the design of tools (ie
models) should fit the task at hand which is determined not only by the system being studied,
but also by the question being asked.

In light of the EMA uses listed above, SD models used for EMA and ESDMA could be viewed
as possible experimental set-ups for generating large and broad ensembles of futures, and/or
performing directed searches, and/or testing ensemble of models and/or experts, and/or iteratively
designing adaptive policies, and/or testing policy robustness over large uncertainty spaces.

4.2 ESDMA – Different Uses

Hence, ESDMA could be used for: (i) ensemble generation, (ii) ensemble exploration, (iii) direct
searches, (iv) scenario discovery and selection, (v) advanced analysis, (vi) adaptive policy design,
(vii) policy robustness testing, and (viii) deep validation (model verification and validation) and
triangulation between experts/models.

Many of these uses have not been explored and developed to their full potential. Although the
first EMA related paper goes back to 1993, progress was rather slow given the limited number of sci-
entists working on it. ESDMA is of even more recent date: as far as we know, Lempert et al. (2003)
provided the first illustration of ESDMA on a single SD model, the modified wonderland model,
immediately illustrating a set of ESDMA uses (ensemble generation, ensemble exploration, policy
robustness testing). Picking up from there, our first attempts included ensemble generation and
policy testing on an oversimplified bank crisis model (Pruyt and Hamarat 2010a), and a H1N1
flu model (Pruyt and Hamarat 2010b). The flu model developed into a test case for our software
tool5. Our first multi-model ESDMA was performed on simplistic radicalization models, presented
in (Pruyt and Kwakkel 2011). The first Exploratory Group Model Specification and Simulation
workshop (see subsection 5.1) was organized for our work related to societal aging, reported on in
(Pruyt, Logtens, and Gijsbers 2011; Logtens 2011; Logtens et al. 2012). Special ESDMA model
structures were developed for and described in (Pruyt et al. 2011; de Groen 2011; Auping 2011).
The first EMA on an Agent-Based Model was performed using an ABM of the transition of the
Dutch electricity system by Kwakkel and Yucel (2011). Scenario discovery and selection was ap-
plied almost simultaneously in (Kwakkel et al. 2012; Pruyt and Coumou 2012; Pruyt et al. 2012).
Using ESDMA with robust optimization for designing adaptive policies was first implemented
in (Hamarat, Kwakkel, and Pruyt 2012; Hamarat et al. 2012b; Hamarat et al. 2012a). All of the
above was applied simultaneously across many risks in (Pruyt and Kwakkel view; Pruyt et al. 2012).
Kwakkel and Timmermans (2012) performed, in the ESDMA context, the first direct search with
Active Non-linear Testing (Miller 1998). And a first attempt at using Formal Model Analysis in
ESDMA is reported on in (Keijser et al. 2012).

4.3 ESDMA – The Process

ESDMA in general consists of following five main steps starting what is certain and uncertain:

1. conceptualization of the issue and its associated uncertainties,

2. developing ‘exploratory’ –fast and relatively simple– SD models of the issue of interest,

3. generating an ensemble of futures (thousands to millions of scenarios) by sweeping uncer-
tainty ranges and varying uncertain structures and boundaries,

4. analyzing the dynamic behaviors, bifurcations, et cetera, and exploring the ensembles in
search of undesirable behaviors and outcomes,

5See http://simulation.tbm.tudelft.nl/ema-workbench/contents.html.
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5. and/or designing policies (preferably adaptive ones), and simulating, calculating, and com-
paring the performance of the various options across the ensemble of scenarios.

Steps (3) and (4) require a systematic and structured exploratory research approach and proper
documentation. Especially the succession of analyses and deeper-and-deeper explorations if war-
ranted in step (3) require proper documentation in some sort of lab report (see for example
(Logtens et al. 2012)). The order in which to apply different techniques is rather logical, from
general/broad to specific/detailed, and conditional upon the findings in previous steps. Only if
results are obtained with a more general exploration technique that shows the need for further
exploration, is the application of a more specific technique justified. In (Logtens et al. 2012), a
preliminary visualization stage with successive but conditional deepening with envelope plots, lines
plots, interactive plots, 3D KDE plots, and cluster plots, is followed only for those key performance
indicators with problematic outcomes by a further analysis stage focused on (i) identifying unde-
sirable outcomes based on the preliminary (visual) inspection and clustering, or specific directed
searches (ii) classifying the data set into different levels of (un)desirability, (iii) identification of
uncertainties that contribute most to generating this classification by means of the Feature Se-
lection and Random Forest algorithms, and (iv) identification of sets of uncertainty values that
generate areas in the multidimensional uncertainty space with high concentrations of (un)desirable
behaviors by means of PRIM. See 6 for a concrete example.

The same is true for the iterative process of designing adaptive policies that are robust over
the entire uncertainty space. See for example (Hamarat et al. 2012a). The process of designing
one particular adaptive policy would –starting from an existing ensemble– consist for example of
(i) identifying unacceptable outcomes, (ii) using PRIM to identify areas in the multi-dimensional
uncertainty space with high concentrations of such cases, (iii) identifying uncertainties (param-
eters, time-series, functions, mechanisms, loops) and the instances that to a large extent cause
those undesirable dynamics, (iv) identifying possible policies to influence those uncertainties to
keep them from causing the undesirable dynamics from happening, and finally, (v) optimizing the
trigger values of the adaptive policy. After simulating the ensemble with the policy, the process
starts all over from (i) until all outcomes are acceptable or improvements become too marginal
or costly. Pairwise comparison of different competing (adaptive) policies with regret-based ro-
bustness analysis as in (Lempert et al. 2003) then allows policymakers to select the most robust
policy. See 6 for a concrete example.

4.4 ESDMA – Tools

We currently build our ESD simulation models in Vensim DSS, use a shell written in Python to
generate experimental designs, and use Python to force Vensim DSS to execute tens of thousands
of experiments (i.e. combinations of uncertainties and models) to generate tens of thousands
of transient scenarios (simulation runs). Python stores the data when generated. We then use
a library of algorithms coded in Python, C, and C++ to analyze the ensemble of scenarios, and
(interactively) visualize the most interesting findings. Reasons for this particular choice of tooling,
are (i) the ease with which different types of uncertainties can be handled and ensembles can be
generated, (iii) the ease with which existing algorithms (in python libraries) can be adapted and
used, (ii) the ease with which new algorithms can be developed, tested, used, and compared to
existing algorithms, (iv) the ease with which large data sets can be handled and explored, and (v)
the possibility of sampling and using algorithms across multiple models, even multiple modeling
methods, and policies. This choice of tooling also has drawbacks: currently the software is not
particularly user-friendly for people unfamiliar to python. Hence, we will need to invest in a user-
friendly interface to allow modelers without Python scripting skills to perform ESDMA with our
software. Note however that ESDMA is also possible without our software by using commercial
SD software together with advanced mathematical programs.

Uncertainties we are currently able to deal with include: uncertainties related to initial values
and parameters (floats, integers and categorical), functions, lookups, generative structures, model
formulations, model boundaries, different models, different modeling methods and paradigms,
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different preferences and perspectives related to different world-views, and policies6.

4.5 ESDMA – Techniques

We currently use many different techniques, some of which were already used in SD. We use for
example many different plotting techniques such as Lines plotting (behavior over time graphs and
phase diagrams), Envelope plotting, Kernel Density Estimate (KDE) plotting, 3D Kernel Density
Estimate (KDE) plotting, and pairs plotting or multiplotting of existing correlations between
output indicators in order to select a useful set of output indicators and verify whether particular
relationships that are known to exist work out fine in complex models.

To get an idea of the most important uncertainties for a non-binary classification function, we
use both the Random Forest (Breiman 2001) and Feature Selection algorithms (R. Kohavi 1997).

Uncertainty space boxes (with the fraction of positive matches and the mass of the box relative
to the total scenario space) that perform below/above a particular threshold are generated with
a new version of the Patient Rule Induction Method (PRIM) (Friedman and Fisher 1999) –one
that can deal with categorical and continuous uncertainties– with a binary classification function
and PRIM box plotting. PRIM is particularly valuable for discovering catastrophic subspaces of
uncertainty space, and hence, for developing specific adaptive actions for adaptive policies (see for
example (Hamarat, Kwakkel, and Pruyt 2012)).

In order to cluster time series data based on attributes and select the similarity level at which
to classify/plot clusters, we use a time-series clusterer algorithm –a more advanced version of the
one proposed in (Yucel and Barlas 2011)– with dendrogram and cluster plots. Using this clusterer
and visualizing exemplars for each of the selected clusters is a very powerful scenario discovery
and selection approach.

Robust optimization and ANT are currently performed using Genetic Algorithms. And specific
scripts are used for many other uses, such as data set splitting and data set handling.

Techniques that will be worked on and added in the near future include: Automatic function
perturbation techniques based on (Eker, Slinger, and Yucel 2011), Loop knock-out analysis (to de-
tect critical feedback loops and much much more – see (Keijser et al. 2012)), Eigen-value elasticity
analysis (to detect dominance and dominance shifts in feedback loop systems), Key Mechanism
Structure-Behavior testing (to detect critical mechanisms), and a multi-method MCDA suite in-
cluding Multidimensional partial ordering methods.

5 Beyond SD as Computational Science

But even if ESDMA leads to more profound analyses and better policy advice, then that does
not mean that the advice is per definition acted upon – quite the contrary. Some policymakers
may understand but not appropriate and buy into the solutions because they were not involved
in the specification of the models and the simulation of the results. Other policymakers may
trust their own experience and intuition –their certainties– better than model-based advice under
deep uncertainty. Just involving policymakers in the first phases of the research, for example
through GMB (Vennix 1996), may not be enough in case of uncertain complex issues: that is why
we started to complement ESDMA with Exploratory Group Model Specification and Simulation
workshops, and Experiential SD-based Gaming workshops.

5.1 Exploratory Group Model Specification & Simulation Workshop

The first Exploratory Group Model Specification and Simulation (EGMSS) workshop was or-
ganized as part of the societal aging research (Logtens 2011; Pruyt, Logtens, and Gijsbers 2011;
Logtens et al. 2012) in order to elicit and include 10 key uncertainties from different experts in
a prefab model (developed before the workshop based on expert interviews and the literature).

6See http://simulation.tbm.tudelft.nl/ema-workbench/contents.html.
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The experts were asked to provide inputs for 9 time-series (lookups over time) and 1 relationship
(lookup).

First the model and the (re)main(ing) uncertainties were presented (see Figure 1(a)), the
experts were asked to develop plausible evolutions and relations for the remaining uncertainties (see
Figure 1(b)). These expert opinions were immediately added to the model and python shell, and
the ensemble of scenarios was calculated during the break, after which the preliminary ‘ensemble
of scenarios’ was presented and discussed (see Figure 1(c)) and possible policies were suggested
for problematic futures. The workshop ended with a methodological discussion on improvements
related to this type of modeling and the workshop (see Figure 1(d)).

(Pruyt 2009) (Pruyt 2008)

(a) Introduction to pre-
modeled structures and re-
maining uncertainties

(b) Harvesting and adding
expert opinions to the SD
model and python code

(c) Front: adding differ-
ent expert opinions – Back:
methodological discussion

(d) Post-analytic discus-
sion based on ESDMA en-
sembles (pop. w/o func-
tion uncertainty (lkps))

Figure 1: Pictures of the EGMSS workshop

5.2 Experiential SD Gaming

However, more is needed than the brightest analysts and the best (ESDMA) analyses and in-
volvement of policymakers for them to decide and take action when facing uncertain complex
issues: that is what Experiential SD Gaming may be needed for. Experiential SD Games are
designed specially to allow participants to experience, in our case, the importance of uncertainty
on possible futures and of taking uncertainty seriously into account in decisionmaking. The use of
experiential SD gaming for conquering the heart of decision makers is illustrated in (Pruyt 2011a;
Pruyt 2011b)

Experiential games require at least the development of: (i) a plan for reaching a particular
workshop goal, (ii) a small and manageable SD model related to a system participants are familiar
with, (iii) a relatively simple interface – sufficient for reaching the goal – including a dashboard with
sliders for the most important decision variables and interactive plots displaying information that
would be available to them in the real world too, and (iv) plausible but very dissimilar scenarios
(eg generated with ESDMA and selected with scenario discovery). The whole development phase
–modeling excluded– takes about two days. And the modeling should not take much more time,
since even simple models are good enough for participants to really experience deep uncertainty
by being immersed in context they are familiar with. The set of scenarios used may well be more
important than the model for the experiential session itself. However, the model may have been
used as scenarios generator for ESDMA scenario discovery in which case, the model needs to be
good enough for ESDMA.

6 Three Illustrations

6.1 Scenario discovery for mineral and metal scarcity

The first case explores uncertainties related to the availability of minerals/metals that are crucial
for the sustainable development of all developed and developing societies. Potential mineral/metal
scarcity poses a serious challenge for civil protection in at least three ways (Pruyt 2010a). First,
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any crucial minerals and even some base metals –such as copper (Alonso, Gregory, et al. 2007;
Valero and Valero 2010) and lead (Ayres 2007)– may in a few decades become more difficult and
expensive to mine and process, possibly posing threats to satisfy increasing overall demands for
those metals in order to sustain a higher standard of living of an increasing world population.
Second, The disparity between the expected exponential growth of metal demand and the expected
limited growth of metal supply (especially of crucial low-volume metals such as rare earth metals
that are required in ever bigger quantities for many innovative technologies and electronics) may
result in temporary and/or chronic scarcity. Third, strategic or speculative behavior of countries
that have a quasi-monopoly on the extraction of (rare earth) metals may seriously hinder the
transition of modern societies towards more sustainable ones.

The asynchronous dynamics of supply and demand, aggravated by reinforcing behaviors and
knock-on effects, is a breeding ground for acute and/or chronic crises (Pruyt 2010b): how and
when these dynamics and crises may materialize remains highly uncertain. EMA is used in
this case to create insight into plausible dynamics that can occur and which combinations of
assumptions produce which kind of dynamic. This is also known as scenario discovery, which
is a model driven approach to scenario development that builds on the intuitive logic school
(Bryant and Lempert 2009).

6.1.1 Models

Minerals and metal scarcity is characterized by long time horizons, diverging believes and ideas
about system functioning, and complex interactions between supply, demand, substitution, and
recycling, necessitating a more exploratory approach. Figure 2 displays the main feedback loops
of a generic simulation model developed to create insight into the types of dynamics that can
occur. The two recycling loops displayed in red are reinforcing loops. The linked extraction sector
feedback loops are controlling loops. This suggests that if recycling takes off, it is intrinsically
limited by the extraction sector loops. These extraction sector loops in turn are limited by the
steeply increasing costs of extraction. The stock-flow diagram of this small generic simulation
model is displayed in Figure 3. More details on the model can be found in (Pruyt 2010a).

This small and simplistic System Dynamics model was developed in about one day in close
collaboration with a mineral/metal expert, based on his mental model of the underlying structure
of the mineral/metal system. For the expert, the objective of the joint modeling endeavor was
twofold: (i) to help the expert explore plausible dynamics of mineral/metal abundance/scarcity,
and (ii) to identify, describe and visualize interesting scarcity scenarios for his client. Both ob-
jectives were at first achieved by means of System Dynamics modeling and manual exploration
of the influence of key assumptions, changing one assumption at a time (see (Pruyt 2010a)). At
a later stage, the model was used for the simultaneous exploration of many uncertainties and
assumptions. This ESDMA use of the model is reported below.

6.1.2 Uncertainties

The future evolution of the extraction and recycling is intrinsically uncertain. The presented
model allows us to explore alternative evolutions across the various uncertainties. Table 4 gives
a high level overview of the key uncertainties that are taken into consideration. Note that we
explore across both parametric variations and what typically would be considered more structural
variations. We generated 1000 computational experiments using Latin Hypercube sampling.

6.1.3 Analysis of Results

The aim of this case is to provide insight into the types of dynamics that can occur. Thus, the
results from the series of computational experiments have to be clustered based on the type of
dynamics. This requires a form of time series clustering. The goal of clustering is to organize an
unlabeled data set into homogenous groups where the similarity within the group is minimized
and the dissimilarity between groups is maximized (Theodoridis 2003; Liao 2005). Typically,
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Figure 2: Main views and feedback loops of the SD simulation model

clustering approaches are applied to static data (Liao 2005). In general, time series clustering
approaches try to modify existing clustering approaches for static data so that they can cope
with time series data. Either the algorithm is modified to deal with the raw time series data,
or the time series are processed in such a way that static clustering methods can be used di-
rectly (Keogh and Kasetty 2003). A relatively recent review of the state of the art in time-series
clustering can be found in (Liao 2005). In this paper, we adopt an agglomerative hierarchi-
cal clustering approach. That is, we start by positioning each time series in its own cluster,
and then hierarchically merge each cluster into larger and larger clusters (Liao 2005). Similarity
of dynamics is determined based on an extension of the behavior pattern features discussed in
(Yucel and Barlas 2011), see (Yucel 2012) for details.

Figure 4 shows two graphs. The graph on the left shows the dynamics for the thousand runs
for the relative market price. The figure on the right shows the results after applying time series
clustering. Each cluster is represented here by just a single exemplar. From the right hand picture,
we can deduce that the model can exhibit oscillation with a fast or slow growing amplitude, slow
but steady growth, or more or less stable oscillations. The steady growth and minor oscillation
dynamics do not constitute acute crises, the oscillation with growing amplitude, be it fast or slow,
however does. For in this case material scarcity results in very high prices, which can in turn affect
other parts of the economy. Moreover, it is plausible that these high prices result in substitution
behavior, that in turn reduces the demand for a particular material. So, also from the perspective
of the industry itself, very high prices and high price volatility is undesirable. As a next step, the
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Figure 3: Stock-flow diagram of the scarcity model (Pruyt 2010)

Name Description Ranges

Parametric A wide variety of parametric uncertainties are explored, Typically plus and minus
uncertainties including the lifetime of mines and recycling facilities, 50% of the default value

the initial values, and behavioral parameters such as
price elasticity and desired profit margins

Orders of There are various time delays, such as the building of First order, third order
time delays new recycling capacity and mines and tenth and 1000th order
Non-linear There are various non-linear relations, modelled with lookups. Start, end, slope
lookups Examples include learning effects, the impact of shortage on

price, and substitutions in case of shortages. These non-
linear relations are varied by changing start, end and slope

Table 4: High level uncertainties of the mineral/metal scarcity case

causes for the undesirable dynamics could be identified and a discussion and testing of alternative
policies to address the undesirable dynamics could be carried out.

6.2 Worst Case Discovery

In the first days, weeks and months after the first reports about the outbreak of a new flu variant
in Mexico and the USA, much remained unknown about the possible dynamics and consequences
of the at the time plausible/imminent epidemic/pandemic of the new flu variant, first known
as Swine or Mexican flu and known today as Influenza A(H1N1)v. Many nations were at first
particularly concerned about the potential loss of human life, and later -after it became clear that
the case fatality ratio was moderately low- about the potentially disruptive effects both on health
care systems and societies/economies at large in case large fractions of the (active) population
would be immobilized simultaneously by the flu. Therefore, the aim of this case is to investigate
what the worst cases could be for the total loss of life and for the worst social disruption. We are
thus interested in the deceased population and the highest peak of the fraction of the population
that is infected at a given point in time.
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Figure 4: Clustering applied to 1000 experiments in order to reveal the types of dynamics

Uncertainty Description Range

additional seasonal immune Seasonal immunity effect 0-0.5
population fraction per region
fatality ratio per region Fatality rate of the flu 0.0001-0.1
initial immune fraction of the Initial fraction of population 0-0.5
population per region that is immune for this flu
normal interregional contact rate Contact between regions 0-0.9
permanent immune population Fraction of population that 0-0.5
fraction per region remains permanently immune
recovery time per region Time to recover from illness 0.2-0.8
root contact rate per region Lowest possible contact rate p.r. 1-10
infection ratio per region Ratio for infectivity 0-0.1
normal contact rate per region Normal contact rate per region 10-200

Table 5: Uncertainties of the flu case

6.2.1 Models

The Exploratory SD model displayed in Figure 5 was developed shortly after the first signs of a
potential outbreak were reported in order to foster understanding about the plausible dynamics
of the flu outbreak (Pruyt and Hamarat 2010b). The exploratory model presented here is small,
simple, high-level, data-poor (no complex/special structures nor detailed data beyond crude gues-
timates), and history-poor. The model was used in an ex-ante exploratory way: developments
were not waited for and uncertainties were amplified and explored instead of reduced or ignored.
From a non-exploratory point of view, such simple/aggregated/high-level exploratory models are
of course always wrong -especially with hindsight. We believe nevertheless that the model and
method presented here has value in case of imminent outbreaks that are deeply uncertain.

The modeled world is divided in three regions: the Western World, the densely populated
Developing World, and the scarcely populated Developing World. Only the two first regions are
included in the model because it is assumed that the scarcely populated regions are causally
less important for dynamics of flu pandemics. Below, the figure shows the basic stock-and-flow
structure. For a more elaborate description of the model, see (Pruyt and Hamarat 2010b).

6.2.2 Uncertainties

Table 5 list the uncertainties of the flu case. These uncertainties are inspired by the various
unknowns and guestimates as reported by the European Center for Disease Control over the
period of early April 2009 up to late August 2009 (Pruyt and Hamarat 2010b). The ranges have
been chosen quite widely, given our interest in finding the worst possible cases.
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Figure 5: Stock-flow structure of the flu model
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Figure 6: Two most extreme flu cases

6.2.3 Results

Using a directed search approach we found the two distinct worst case scenarios displayed in
Figure 6. The first worst case is the maximum number of casualties. The second worst case is the
highest social disruption, which we operationalize to mean the highest fraction of the population
that is ill at some point in time. A suitable optimization algorithm for directed search in the
context of System Dynamics should be able to cope with the non-linearity of the model, a non-
linear objective function, discontinuities in the search space, a search space that is rife with local
optima, and noise (Miller 1998). In the context of ESDMA, two additional complications are
added, namely a potentially very large search space, and a discontinuous search space arising out
of the inclusion of variations in e.g. structural equations. On top of this, a suitable optimization
algorithm should be economical. That is, it should be able to find the optimum relatively quickly,
without requiring a very large number of computational runs. As argued by Miller (1998), Genetic
Algorithms (GA) are a perfect candidate that is able to meet the outlined requirements. Figure
6 shows the results for the two cases that have been found. They are almost identical, thus the
socially most disruptive case is almost identical to the case with the highest number of casualties.
In both cases, the flu spreads very quickly. Thus leaving very little time for policymakers to
react, let alone leaving time for the development of vaccines. The only type of actions available
to decision makers is social distancing related measures that reduce the speed with which the
pandemic spreads.

6.3 Adaptive Policy Design

Energy systems are also a crucial domain where a fundamental transition towards cleaner energy
production is necessary. The challenge is to find an effective policy that can steer the system
to a more desirable functioning, despite the presence of a wide variety of uncertainties. There
is an emerging planning paradigm for planning under deep uncertainty. This paradigm holds
that, in light of the deep uncertainties, one needs to plan dynamically and build in flexibil-
ity (Albrechts 2004; Kwakkel et al. 2010d; Walker, Marchau, et al. 2010). According to the new
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Figure 7: Basic stock-flow diagram for Technology 1, for the other technologies a similar structure
is used

planning paradigm, a plan should consist of a set of actions to be taken now and be combined
with a framework for guiding future actions. In this case, we show how such a plan can iteratively
be developed. We start with an open exploration to identify plausible futures, next we identify
undesirable futures and their causes. In light of this, we design actions tailored to addressing these
futures. We test and refine these actions iteratively using open exploration.

6.3.1 Models

In order to explore the transition problem and the uncertainties, a System Dynamics model de-
veloped for exploring the transition dynamics of energy systems (Pruyt et al. 2011) is used in this
study. The SD model incorporates, on a high aggregated level, the main structures of the energy
system. The model represents the competition between four energy technologies, where Tech-
nology 1 is the old dominant technology that is non-renewable and mainly fossil fuel based, and
the other three technologies are renewable and sustainable technologies. Since fast and relatively
simple models are employed in EMA, the more sustainable technologies 2, 3 and 4 are considered
to be generic for the sake of simplicity. The four technologies compete with each other in order
to increase their share of energy generation driven by mechanism such as total energy demand,
cost of commissioning capacity of a technology or effect of learning curves on costs. Figure 7
shows part of the stock and flow diagram. A more detailed explanation of the model can be found
in (Pruyt et al. 2011) and for this case see (Hamarat, Kwakkel, and Pruyt 2012)Hamarat et al
(accepted).



Pruyt and Kwakkel, 2012. A Bright Future for System Dynamics 20

Name Description Range

Initial Capacity Starting value of capacity of a technology 1 – 16000 MW for different technologies
Lifetime Expected lifetime of a technology 15 – 50 years for different technologies
Initial Decommis- Initial values of the total decommissioned 10 – 10 million MW for different
sioned Capacity capacities of the technologies technologies
Planning and Con- Average period for planning and constructing 1 – 5 years for different technologies
struction Period new capacity for a technology
Progress Ratio Ratio for determining cost reduction due 70% – 95% for for different technologies

to learning curve
Initial Cost Initial cost of installing new capacity of a e500000 – e10 million per MW

technology
Economic Growth Change in the ratio of economic growth factor randomly fluctuating btwn -0.01 – 0.035
Preference Structures Preferences that influence new commissioning against unknown, expected progress,

capacity of a technology CO2 emissions, Cost per MWe
Delay order of lifetime Time delays for decom. of installed capacity Different orders of time delay

Table 6: Uncertainties of the electricity transition case

6.3.2 Uncertainties

The uncertainties to be explored in this study are shown in Table 6. Uncertainties considered
include both parametric uncertainties (i.e. initial values), model structure uncertainties. Initial
values for capacities, cumulatively decommissioned capacities, and marginal costs of new capacity
for each technology are explored. Additionally, parameters such as lifetimes of technologies and
average planning and construction periods are analyzed. Structural uncertainties explored include
learning effects and structures that enable to switch between different lookup functions. In our
analysis, there are also switch structures that are either 1 or 0 for enabling technologies 3 and
4 and for enabling different preference structures. When the switch for a particular structure
is 1, it means that the corresponding structure is active and vice versa. We generated 10.000
computational experiments using Latin Hypercube Sampling.

6.3.3 Results

In order to identify the causes for undesirable dynamics, it is necessary to find simultaneous
combinations of values for input variables that result in similar characteristic values for the
outcome variables. For this, we use in this paper the Patient Rule Induction Method (PRIM)
(Friedman and Fisher 1999; Lempert et al. 2006; Groves and Lempert 2007). PRIM can be used
if one seeks a set of subspaces of the input variable space within which the values of output vari-
ables are considerably different from the average value over the entire input domain. In the context
of this paper, the input space is the uncertainty space. Thus, we use PRIM to find subspaces in
the global uncertainty space that result in highly desirable or undesirable outcomes.

The analysis of the results without the introduction of any policy action revealed that the main
driver for a failing transition, understood as a fraction of new technologies lower than 0.6, was a
long life time of the existing dominant technology. Therefore, a basic policy would be to increase
the decommissioning of the old dominant technology, thus effectively shortening its lifetime in all
cases.

The efficacy of this basic policy is again assessed over the 10000 computational experiments.
An analysis of these results shows that there are two main vulnerabilities, namely a poorly per-
forming technology 2 and a mismatch between the economic dynamics and the investment in new
technology. To address these two vulnerabilities, two corresponding adaptive actions that are only
triggered if needed and associated trigger values are specified: (1) a subsidy for the costs of new
technologies if they are coming close to the cost of the dominant technology, and (2) stopping the
commissioning of technology 2 and replacing it with additional commissioning for Technology 3
and 4 if technologies 3 and 4 show more potential than technology 2.

Figure 8 shows the performance envelope for doing nothing, the basic policy, and the basic
policy with the additional dynamic actions. The envelopes are based on the 10000 experiments and
are generated by identifying the maximum and minimum value at each time step. Figure 8 also
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Figure 8: Performance envelopes for the two policies and doing nothing and Gaussian Kernel
Density estimates for the terminal values

shows a Gaussian Kernel density estimate of the terminal values, assuming that each computational
experiment is equiprobable. In case of no policy, the majority of runs results in a terminal value
of around 0.5. The introduction of the basic policy is able to move this up to around 0.6. The
additional adaptive actions result in a further increase up to 0.7 for most of the cases. This
shows that the resulting final policy is effective in increasing the extent of the transition towards
more sustainable functioning. However, the figure also shows that there is a long tail with cases
where the transition is less successful. A further analysis of this tail revealed that these cases
are characterized by a substantial increase in the degree of sustainability of the old dominant
technology – which is fine too.

7 An Updated Picture of the Field

Following Forrester’s call for a ‘broader and deeper debate about [the] underlying philosophy [of
System Dynamics], the contrast with alternative philosophies, the nature of knowledge, the role
of subjective and observational information, and the criteria for judging validity’ (Forrester 1980,
p15) and Lane’s example, Pruyt (2006) looked closely at the nature of System Dynamics, the
basic assumptions underlying System Dynamics, and classifications of different System Dynamics
strands, among else in a paradigmatic table developed starting from the paradigmatic framework
of Tashakkori and Teddlie (1998) from the social and behavioral sciences. Table 7 displays the
paradigmatic framework extended by Pruyt (2006), which is extended here with another paradig-
matic position for the System Dynamics strand described in the current paper.

This paradigmatic table could be seen as an evolving non-exhaustive device to structure
thinking, and position philosophical theories, method(ologie)s, techniques and tools. Although
paradigms and paradigmatic frameworks are nothing but artifacts of the human mind, they are im-
portant because they could be used to support and influence thinking, and because they (in)directly
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impact the real world:

‘Different modeling paradigms cause their practitioners to define different problems,
follow different procedures, and use different criteria to evaluate the results. Paradigms
deeply bias the way modelers see the world and thus influence the contents and shapes
of models.’ (Meadows and Robinson 1985, p20)

Different paradigmatic frameworks could be (and are) proposed for different purposes and in
specific contexts, and these frameworks could and should be extended and adapted when justified.

Pruyt (2006) added an intermediary paradigm to the paradigmatic table, the critical realist
paradigm, which could as well have been labelled the ‘mainstream System Dynamics paradigm’.
This set of (intermediary) basic assumptions corresponds well to mainstream System Dynam-
ics. Since the set of paradigmatic assumptions underlying ESDMA seems very similar but also
sufficiently different from the set underlying mainstream System Dynamics as well as the other
consistent sets, we added the ‘Exploratist paradigm’ to provide a paradigmatic home for ESDMA.

Exploratism is ontologically pluralistically realistic, but epistemologically constructivist. Op-
erationally, it is very quantitative (computational), but in terms of interpretation is it really very
qualitative. Causal relations are considered uncertain, some even unknowable, and so are models.
Models are at most plausible. Hence, the broadest set of plausible models needs to be used in
order to generate the widest set of plausible behaviors over time. The type of uncertainty focussed
on is deep uncertainty. And robustness of policies is tested over the entire uncertainty space.

8 Concluding Remarks – Reinventing and Redefining SD

We believe we need to expand SD practices, investigate and question the basic assumptions un-
derlying SD approaches, try out new foci and uses, and develop new multi-methods, tools, and
techniques. We should let a thousand blossoms bloom, and invest heavily in some really promising
areas. The alternative would be to defend the SD bastion of old. However, isolated improvement
may lead to further introversion, further development of what is already well developed, but also
to overall stagnation for dealing with ever more complex and uncertain issues, leading to losing
the battles that really matter, and –ultimately– to the end of SD as the most practical and rel-
evant means for dealing with dynamically complex issues. Hence, we may need extroversion and
introspection in order for the SD field to grow stronger and larger.

In terms of extrospection, we may need to closely watch and embrace the most useful and
promising developments in interesting fields like Data Mining, GIS, EMA, et cetera, and by doing
so turn the art of SD into the computational science of SD, or at least part of the SD field. Because
other SD uses and approaches have their rightful place too.

In terms of introspection, we think that some essential SD characteristics of old, may, given
the current and near future state of science and computing, become less essential for the practice
of SD, whereas other characteristics and ideas may require much more emphasis and development
into what they were intended for in the first place.

In that respect, we believe that SD models should not necessarily be purely endogenous. In
ESDMA it actually makes sense to ‘pollute’ SD models with ‘open’ elements (time series, shocks,
et cetera) to bring in exogenous uncertainty, as well as with elements to include uncertainty in the
internal functioning of models.

The original idea to resort to qualitative modes of behavior as a way of dealing with the
unavoidability of uncertainty may require rethinking too. Interpreting model outcomes in terms
of modes of behavior may serve many goals but may not be satisfactory in many cases to real-world
policymakers. And with today’s computing power and techniques, we finally have the means to
go beyond modes of behavior for dealing with ubiquitous uncertainties.

The same is true for the use of a reference case: base or reference cases do not exist under deep
uncertainty, there are at most base ensembles, and with today’s computing power and advanced
visualization and analysis techniques, there is no need for a single reference case nor for a very
limited number of scenarios.
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Deep uncertainty also puts another question on the table: whether developing and using one
plausible SD model is enough. If a model is just plausible, then maybe other plausible models need
to be made as well, before robustness could be tested properly. That brings us to the ontological-
epistemological stance of traditional SD and the mainstream attempts to try to integrate very
different perspectives into one and the same model (Pruyt 2006). From our point of view, it
would make more sense to model different perspectives separately, to design policies that are
acceptable for all perspectives, and to test policies over all perspectives/models.

Hence, we may need to question the basic ontological-epistemological assumption of traditional
SD, move beyond the concept of modes of behavior for dealing with uncertainty. And above all else
do we need excellent SD education beyond the introductory level, even beyond the most advanced
traditional courses in SD.

In this paper, we reviewed one promising strand of SD, namely ESDMA. ESDMA makes SD
more generally applicable, ie it extends the usefulness of SD from dynamically complex issues to
deeply uncertain dynamically complex issues.

ESDMA also operationalizes the concept of policy robustness by allowing testing robustness
of policies and comparing policies over the entire multi-dimensional uncertainty space. Small,
manageable and partly open SD models are most appropriate for ESDMA, making another case
for small SD-like models (Ghaffarzadegan et al. 2011).

ESDMA is as much about analysis as it is about modeling, which is why much of the current
effort is into developing analytic tools to analyze outcomes and models (via the model outcomes).
The current analytic tools already generate a wealth of analytical and policy relevant insights,
partially filling another gap in traditional SD, namely the lack of advanced analysis of model
outcomes (and models).

Since ESDMA allows exploring policy robustness over the entire uncertainty/scenario space
and design of adaptive policies addressing the entire scenario space, it actually makes the job of
policymakers much lighter. On the one hand, that is also true for the analyst: more analytic tools
are available to perform policy relevant analyses. On the other hand however does it actually
make the job of a modeler and analyst more difficult, since a larger tool set needs to be mastered,
multiple plausible models may need to be developed, analyses need to be performed systematically,
complex outputs need to be interpreted, and policies need to be designed iteratively and compared
with all other policies.

Another complicating factor is the fact that easy software for doing all of the above is not
commercially available yet. Our software, which requires python coding skills, makes it accessible
and useable to a select few only. But even if the software would become available to all, then
system dynamicists also need advanced education in data mining, time series clustering, formal
modeling techniques, and the like.

Moreover, ESDMA modelers need to have more than just modeling and basic analytic skills:
process skills, facilitator skills, modeling skills, programming skills, sampling skills, advanced ana-
lytic skills, communication skills are all needed – in other words, super(wo)men or well-functioning
teams covering the whole skill set may be required.

Finally, it is our experience that just ESDMA may not be enough. Policymakers need to
become part of the ESDMA and need to experience uncertainty first hand before being aligning
heart and mind. New types of workshops like EGMSS and ESG are thus needed to complement
the analytic results and policy advice. In all, there is still a lot of work to be done before the
computational science of SD will be the (state of the) art of SD.
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