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Abstract

Lyme disease due to infection with Lyme borreliosis poses an uncertain dynamic threat to
the Dutch and their public health system. This risk was used to develop and illustrate two
variants of a National Risk Assessment approaches for slumbering/latent risks. This paper
explains and illustrates the System Dynamics-based variant using the societal risk posed by
Lyme disease. Thousands of plausible evolutions of lyme disease are generated using a System
Dynamics model in order to assess the societal risk posed by Lyme disease. The risk is scored
in the Dutch National Risk Assessment framework adapted to deeply uncertain dynamically
complex risks, and mapped in a new type of risk diagram developed for uncertain complex risks
in order to compare the risk posed by Lyme disease to other plausible risks. Finally, scenario
discovery techniques are used to identify a small set of representative scenarios that could be
used in a capability analysis.

Keywords: Slumbering scenarios, System Dynamics, ESDMA, NRA, Lyme Disease

1 Introduction

1.1 Integrated Risk Capability Analysis and Scenarios

Today, many governments use national risk assessment (NRA) methods as well as capability-
based planning or capability analysis methods (CA). Many recently developed NRA approaches
–like the Dutch NRA approach– all-hazard (for natural hazards as well as for malicious threats),
multi-dimensional, and scenario-based (Pruyt and Kwakkel year). They were first and foremost
developed for incident-type risks characterized by low levels of uncertainty and dynamic com-
plexity – not for risks characterized by high levels of uncertainty and/or dynamic complexity.
Scenarios developed and used in these approaches are consequently only truly appropriate for
risks characterized by low levels of complexity and uncertainty. However, risks with low levels
of complexity and/or uncertainty may well be the least catastrophic risks modern societies may
face today and in the future. And treating dynamically complex and/or deeply uncertain risks
as simple incident-risks –for example, using three short-term weather scenarios to capture and
represent an uncertain complex phenomenon such as climate change– leads to self-deception, un-
derestimation, and narrow fire-fighting policies that address symptoms of underlying phenomena
instead of the underlying phenomena or all effects. So, in spite of the fact that most approaches
attempt to be all-hazard, few really are because they only properly allow for developing scenarios
of simple risks of –at most– medium uncertainty.

That is precisely why two complementary scenario building approaches were added to the
Dutch NRA: one qualitative procedural approach extending the incident risk approach to risks of
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medium uncertainty and little dynamic complexity, and one approach based on System Dynamics
(SD) for dealing with risks characterized by medium to deep uncertainty and some to extreme
degrees of dynamic complexity. Both approaches were developed using the risk posed to Dutch
society by Lyme Disease –a risk that at first seemed to be characterized by little to some dynamic
complexity and medium uncertainty– as test/pilot case. This paper first and foremost illustrates
the SD-based NRA approach, using this case of Lyme Disease. But it is more than just an
illustration: it is also a first attempt to explore and understand the uncertain risk posed by lyme
disease.

Although Lyme Disease was chosen as pilot case for the Dutch NRA because initially it looked
as though it would be a good example of a risk with little to some dynamic complexity and medium
uncertainty, hence, appropriate for illustrating both the qualitative and the quantitative variant
of the NRA approach for slumbering/latent risks, later it became gradually clear that the risk of
Lyme Disease is actually characterized by deep uncertainty, making the computational SD-based
approach used in this paper even more relevant. This will also be shown here.

1.2 Organization

Section 2 starts with a discussion of risk scenarios, the method(ologie)s used, and steps in the Dutch
model-based NRA. The application of the SD-based NRA variant to Lyme disease is illustrated
in section 3. Concluding remarks and current and future research related to this topic are dealt
with in section 4.

2 Methodology: Risks, Method(ology), Steps in the NRA
Model-Based Scenario Building Approach

2.1 Risks: From Simple & Certain to Complex & Uncertain

Many scenario development methods exist. Mostly used are qualitative process-based scenario
generation approaches relying heavily on inputs from experts. The incident-risk approach tai-
lor made initially for the Dutch NRA belongs to this class of methods (Bergmans et al. 2009;
Pruyt and Wijnmalen 2010; Pruyt and Kwakkel year). These procedural/expert-based scenario
methods work fine for many risks – especially for risks that are relatively well known and (are ex-
pected to) have relatively simple time-evolutionary behaviors. Model-based scenario development
methods also exist, but seem to be used less frequently for NRA. They may nevertheless be more
useful than traditional procedural/expert-based methods for scenario development for uncertain
risks with complex dynamics. Hence, the choice of scenario method to be used should depend on
the risk.

Issues –and therefore risks– could be classified in many different ways. Kwakkel and Pruyt (2011)1

classify systems and issues, and thus risks, according to following levels of uncertainty:

• Level 1 or marginal uncertainty : the issue or risk is considered to be as good as certain –
uncertainty is at most marginally influential on the outcomes and conclusions, and therefore
of minor importance.

• Level 2 or shallow uncertainty : it is possible to simulate or enumerate all alternative
scenarios and provide their (subjective or objective) probabilities.

• Level 3 or medium uncertainty : it is possible to simulate or enumerate all alternatives
and rank order the alternatives in terms of their perceived likelihood.

• Level 4 or deep uncertainty : it is possible to enumerate multiple plausible alternatives
or build multiple plausible models and simulate them, but it is impossible to order the
alternatives or outcomes according to their likelihood or plausibility.

1See also Kwakkel and Pruyt (year).
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• Level 5 or recognized ignorance : it is impossible to simulate or enumerate alternatives in
such a way that surprising outcomes are largely excluded, in other words, one cannot know
or anticipate the future due to fundamental ignorance.

None to little dynamic complexity Some to extreme dynamic complexity

L1: Marginal 1 scenario for well-known risk wo DC 1 scenario for well-known DC risk
Uncertainty Known case or static model with SA Known case or dynamic model with SA
L2: Shallow multiple scenarios or models wo DC with multiple scenarios or models for a DC risk
Uncertainty subjective or objective probabilities with subjective or objective probabilities

Prob. case(s) or static model(s) Prob. case(s) or dynamic model(s)
L3: Medium alternative scenarios wo DC alternative scenarios with ordinal like-
Uncertainty with ordinal likelihoods lihoods for DC risk

Latin Hypercube on static model Latin Hypercube on dynamic model
L4: Deep multiple alternative scenarios multiple alternative scenarios
Uncertainty wo likelihoods for risk wo DC wo LHs for a very DC risk

EMA on static models, or morph. box EMA on dynamic models (ESDMA)
L5: Recognized unable to enumerate alternatives wo unable to enumerate alternatives wo
Ignorance possibly being surprised by risk wo DC possibly being surprised by DC risk

EMA and/or creative process Extreme EMA on dynamic models

Table 1: Levels of uncertainty and dynamic complexity, and suggested scenario generation ap-
proaches – Legend: DC:= dynamically complex ; LHs:= likelihoods

Combining these levels of uncertainty with two levels of dynamic complexity (none to little and
some to extreme) gives the eight combinations in Table 1. Lyme disease was initially perceived
–and therefore selected– as a risk of medium uncertainty and little to some dynamic complexity.
Risks of medium uncertainty require at least alternative scenarios with associated likelihoods or
the use of (either static or dynamic) models used in a probabilistic sense. However, most impor-
tant societal risks are at least deeply uncertain – likelihoods cannot truly be assigned nor can
outcomes be interpreted probabilistically. Deeply uncertain risks require method(ologie)s to enu-
merate/generate all plausible scenarios (before selecting a set of scenarios that are representative
or of particular interest). Either the method(ologie)s used for deeply uncertain risks pushed to
their limits or processes focussed on stimulating creativity could be used to some extent for dealing
with recognized ignorance by identifying grey swans, by generating the broadest possible set of
risk scenarios (ie from least surprising to wildest possible), or by developing an artificial set of
scenarios spanning the widest plausible outcome space.

All cells in the right hand side column of Table 1 would benefit from the use of dynamic
models, e.g. System Dynamics simulation models, because human beings are unable to derive the
dynamics of complex systems without resorting to computer models. Computational models are
also very useful for generating scenarios of medium to deep uncertainty. Hence, risks characterized
by more than medium uncertainty (the bottom two rows) may all benefit from the use of some
form of model-based approach, e.g. Exploratory Modeling and Analysis (EMA).

But the major advantage of developing and/or using simulation models for NRAs relates to
its use for both NRA and CA: Not only does scenario generation for risks characterized by some
to extreme dynamic complexity benefit from developing and/or using dynamic simulation models,
e.g. exploratory SD models (see subsection 2.2), it also facilitates the ensuing capability analysis
in the sense that policies with regard to capabilities could be tested using these models.

2.2 Methodology: Exploratory System Dynamics Modeling & Analysis

System Dynamics. Traditionally, System Dynamics (SD) is used for modeling and simulating
dynamically complex issues and analyzing their resulting non-linear behaviors over time in order to
develop and test the effectiveness of structural policies (Forrester 1961; Ford 1999; Sterman 2001).
Traditional SD modeling and simulation could be used in isolation to generate transient scenarios
–as indicated in Table 1– for risks characterized by some to extreme dynamic complexity and by
shallow uncertainty. A combination of traditional SD and sampling (e.g Latin Hypercube) could
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be used to generate transient scenarios –as indicated in Table 1– for risks characterized by some
to extreme dynamic complexity and by medium uncertainty.

Exploratory System Dynamics. SD models may also be built specifically for the purpose of
exploring the potential influence of uncertainties on dynamically complex issues. Such Exploratory
SD (ESD) models are preferably fast-to-build and easily-manageable, and consequently, rather sim-
ple and highly aggregated. ESD is an interesting approach for exploring uncertainties, generating
all sorts of behaviors, and testing the effectiveness of policies in the face of these uncertainties.
Many ESD models are also partly open models (ie, partly endogenous, partly exogenous) with
elements from Trend Impact Analysis and Cross Impact Analysis2. But irrespective of the type of
ESD model, using ESD in isolation may lead to insufficiently broad and systematic exploration of
(all plausible modes of) behavior(s), and firmly base policymaking under deep uncertainty on. So
if plausible scenarios need to be generated and exhaustiveness is not required, then ESD could be
used for generating scenarios for risk characterized by some to extreme dynamic complexity under
medium uncertainty, deep uncertainty, and recognized ignorance. However, the combination of
ESD with Exploratory Modeling and Analysis (see following paragraph) may be useful and suffi-
cient for broadly and systematically generating scenarios, and analyzing plausible dynamics under
deep uncertainty, and for testing the effectiveness and robustness of policies without neglecting
deep uncertainty and dynamic complexity.

Exploratory Modeling and Analysis Exploratory Modeling and Analysis (EMA) is a method-
ology for exploring deep uncertainty and testing policy robustness. It consists of using exploratory
models (not necessarily ESD models) for generating tens of thousands of scenarios (called an ‘en-
semble of futures’ or an ‘ensemble of scenarios’), analyzing the ensemble of scenarios, and testing
the robustness of policy options across the ensemble of scenarios. As shown in table 1, EMA is use-
ful for dealing with deep uncertainty (Lempert et al. 2003; Agusdinata 2008) and in an extremely
exploratory mode also to some extent for dealing with recognized ignorance –for all degrees of
dynamic complexity. EMA consists of the following steps: (i) developing ‘exploratory’ –fast and
relatively simple– models of the issue of interest; (ii) generating an ensemble (tens of thousands)
of scenarios by sweeping uncertainty ranges and varying uncertain structures, boundaries, mech-
anisms, models, and modeling methods; (iii) time-series clustering and analysis of the ensemble
of scenarios; (iv) and/or specifying a variety of policy options (preferably adaptive ones), and
simulating, calculating, and comparing the performance of various options across the ensemble.

EMA is still under development: researchers of several institutes are currently improving,
extending and contributing to EMA theory, EMA methodology, and EMA tools, and are working
on a plethora of EMA applications, often in combination with adaptive policymaking. See for
example (Bankes 1993; Lempert and Schlesinger 2000; Lempert et al. 2003; Lempert et al. 2006;
Bryant and Lempert 2009) for RAND related EMA work. And see (Walker and Marchau 2003;
Van der Pas et al. 2007; Van der Pas et al. 2008; Agusdinata 2008; Agusdinata et al. 2009) and
(Kwakkel et al. 2010a; Kwakkel et al. 2010b; Kwakkel and Pruyt 2011) for Delft University of
Technology related EMA work.

Exploratory System Dynamics Modeling and Analysis Since EMA requires handy models
for generating (thousands of) plausible scenarios, and ESD requires methods for exploring deep
uncertainty, they are actually natural complementary allies (Pruyt 2007), and could be combined
as Exploratory System Dynamics modeling and Analysis (ESDMA).

ESDMA could be used for: (i) ensemble generation, (ii) ensemble exploration, (iii) direct
searches, (iv) scenario discovery and selection, (v) advanced analysis, (vi) adaptive policy design,

2Cross Impact Analysis could be used as a systemic scenario development approach for dynamically complex
issues in which transient, nonrecurrent events play an important role. It is an extension of the Delphi forecasting
technique and could be seen as an the equivalent of the previous approach but then for event-based dynamics. It
combines trends, events, their probabilities and Monte Carlo simulation. Cross-impact analysis concentrates on the
way in which external or internal events or trends may interact to produce new effects or magnified effects. Trend
Impact Analysis is similar to Cross Impact Analysis but focusses on trends.
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(vii) policy robustness testing, and (viii) deep validation (model verification and validation) and
triangulation between experts/models (Pruyt and Kwakkel 2012). Many of these uses have nev-
ertheless not been explored and developed to their full potential yet, since ESDMA is relatively
new3. For the classification displayed in Table 1, ESDMA is most appropriate for generating all
(sorts of) plausible scenarios for risks characterized by some to extreme dynamic complexity under
deep uncertainty and recognized ignorance (two bottommost cells on the right hand side of table 1).

2.3 Steps of the Model-Based NRA Scenario Building Approach

The quantitative variant of the scenario development approach of the Dutch NRA makes use of
SD modeling to simulate and analyze the underlying phenomenon, and distill plausible scenarios
of interest. The SD models developed for the NRA could also be used post-NRA, for example in a
capability analysis. Since deep uncertainty needs to be taken into account, ESDMA is used here:

1. identifying a potential risk, its character (degree of uncertainty, risk, time horizon), and
plausible evolutions,

2. identifying possible variables and key performance indicators, plausible causal relations be-
tween them, and major uncertainties (parametric as well as structural uncertainties),

3. specifying the plausible relations between the variables and key performance indicators, and
specifying values or uncertainty ranges for parameters,

4. simulating the SD model(s) –note the plural form: step 2 may result in more than one model–
while varying the uncertainties in order to generate an ensemble of plausible behaviors, i.e.
transient scenarios, and displaying the ensemble of scenarios for different dimensions,

5. analyzing and exploring the ensemble of scenarios, and plotting the total impact scores of
the ensemble in a risk envelopes diagram,

6. distilling different representative scenarios of interest based on total impact scores, their
origin in the multi-dimensional uncertainty space, and their time-evolutionary behavior.

This quantitative variant requires sufficient modeling expertise, i.e. at least one SD expert,
preferably a SD expert specialized in making ‘quick and dirty’ models on the spot, during work-
shops with domain experts.

3Although the first EMA related paper goes back to 1993, progress was rather slow given the few scien-
tists working on it. ESDMA is of even more recent date: as far as we know, Lempert et al. (2003) provided
the first illustration of ESDMA on a single SD model, the modified wonderland model, immediately illustrat-
ing a set of ESDMA uses (ensemble generation, ensemble exploration, policy robustness testing). Picking up
from there, the first attempts or our research team included ensemble generation and policy testing on an over-
simplified bank crisis model (Pruyt and Hamarat 2010a), and a H1N1 flu model (Pruyt and Hamarat 2010b).
The flu model developed into a test case for our software tool4. Our first multi-model ESDMA was per-
formed on simplistic radicalization models, presented in (Pruyt and Kwakkel 2011). The first Exploratory
Group Model Specification and Simulation workshop was organized for our work related to societal aging, re-
ported on in (Pruyt, Logtens, and Gijsbers 2011; Logtens 2011; Logtens et al. 2012). Special ESDMA model
structures were developed for and described in (Pruyt et al. 2011; de Groen 2011; de Groen and Pruyt 2012;
Auping 2011; Auping et al. 2012). Our first EMA on an Agent-Based Model was performed using an ABM
of the transition of the Dutch electricity system by Kwakkel and Yucel (2011). Scenario discovery and selec-
tion was applied almost simultaneously in (Kwakkel et al. 2012; Pruyt et al. 2012). Using ESDMA with ro-
bust optimization for designing adaptive policies was first implemented in (Hamarat, Kwakkel, and Pruyt 2012a;
Hamarat, Kwakkel, and Pruyt 2012b; Hamarat, Pruyt, and Kwakkel 2012). All of the above was applied simul-
taneously across many risks in (Pruyt and Kwakkel year; Pruyt et al. 2012). Kwakkel and Timmermans (2012)
performed, in the ESDMA context, the first direct search with Active Non-linear Testing (Miller 1998). And a first
attempt at using Formal Model Analysis in ESDMA is reported on in (Keijser et al. 2012).
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3 A Model-based Risk Assessment of Lyme Disease

3.1 STEP 1: Risk Identification – The Risk of Lyme Borreliosis

Lyme disease is caused by bites from ticks infected with the Borrelia bacteria. These bites are
incurred in (natural) areas with high or low vegetation, but also in city parks. Increasingly, ticks
are infected with this bacteria. Hence, more and more people are bitten by more and more infected
ticks, not only in the Netherlands but also in Western Europe and elsewhere in the world. There
are no foolproof methods for diagnosis unless a characteristic red stain (erythema migrans) is
observed. The number of infections based on the adoption of this red stain in the past 15 years
in the Netherlands increased from 6500 in 1994 to 22000 in 2009. Also, the treatment is still
not effective enough. Initially, the disease often remains unobserved, and is only diagnosed in an
advanced stage. The health consequences can be (very) severe, resulting not only in individual
suffering, but also in pressures on the health system and the economy. More information on
Lyme disease in general and specifically for the Netherlands is available in (Coumou et al. 2011)
– note that the information available in that paper was not available in 2010, when the SD model
presented in section 3 was developed, but that it is used for developing the models referred to in
section ??.

Lyme disease is a public health risk of which the public at large is largely unaware, which is
insufficiently under control, and which is still deeply uncertain (stages and state transitions of Lyme
disease, . . . ). The prevalence of ticks with Lyme borreliosis, the rate of tick bites, and the number
of cases of Lyme disease (in the different stages of the disease) could increase mildly to strongly,
and preventive and curative measures could range from adequate and timely to inadequate and
late. Scenarios related to Lyme borreliosis should also take the development of medical knowledge,
and public awareness into account. Referring to Table 1, dynamic models would thus be useful.

Classifying risks in terms of the level of uncertainty and binary classes of dynamic complexity
they are characterized by as in Table 1, Lyme is an example of a deeply uncertain risk (phase
transitions are not well known, diagnosing is uncertain because of false positives and false nega-
tives) with little to some dynamic complexity (mainly stock-flow structures, very few true feedback
loops, forced seasonality, and a few non-linear relationships). The presence of some dynamic com-
plexity may justify the development and use of dynamic simulation models, and the presence of
deep uncertainty may justify the use of these models within the EMA methodology. But those
who argue that there is little dynamic complexity and only medium to deep uncertainty may as
well opt for non-model-based development of scenarios with or without corresponding likelihoods
– the type of scenario that could be developed with the qualitative variant. Hence, the choice of
this topic for developing both the qualitative and quantitative variant for slumbering risks.

As argued in (Pruyt 2010), SD modeling and Exploratory SD Modeling and Analysis are
appropriate for different types of deeply uncertain dynamically complex safety and security issues.
They could be used –but to various extents– for (i) acute crises, (ii) imminent crises, (iii) chronic
crises, and (iv) slumbering phenomena as potential breeding ground for acute and/or chronic
crises. The threat of Lyme Disease to the health system is –as we will see below– of the fourth
type: the spread of Lyme borreliosis could lead to a potential chronic burden with additional
seasonal stress on the health system. The latter being deeply uncertain. ESDMA may then be
used for:

• generating an ensemble of plausible scenarios (10000+ scenarios) and exploring it;

• testing the robustness/flexibility/resilience of the systems or system designs (second line of
defense) and designing monitoring and early detection systems for potential but unantici-
pated problems;

• helping to design mitigation/preventive policies to fight future crises by attacking the slum-
bering phenomena (which may be easier and less costly than dealing with the consequences
of crises) (first line of defense);



Pruyt & Coumou, 2012. Developing Scenarios for Uncertain Complex Risks. In: ICSDS ’12. 7

• helping to decide about building capabilities for crisis management and adaptation (third
line of defense).

In the current version of this paper, only the first use is illustrated here by means of the model
developed to generate scenarios for the Dutch NRA.

3.2 STEP 2: Conceptual Model

Figure 1: Causal loop diagram corresponding to the simplistic SFD in Figure 2

The important variables for an insidious Lyme scenario are the infected ticks fraction, the
human-tick contact rate, the number of tick bites and infections, the population with (undiagnosed)
Lyme disease, the diagnosis times, transition rates, etc. Key performance indicators to monitor
(and relate to NRA criteria) are the diagnosed population in treatment and the ongoing costs of
Lyme treatment (both in green). Key performance indicators one cannot monitor (but simulate
and relate to NRA criteria) are the undiagnosed population with Lyme disease, the running
costs of undiagnosed Lyme, and the total running costs due to Lyme (in purple). Figure 1 shows
these variables, performance indicators, the relationships between them, and the resulting feedback
loops5 qualitatively in a causal loop diagram. Figure 2 shows the corresponding stock-flow diagram
of the first iteration simulation model. The exogenous variables (in orange) in these diagrams are
uncertain. And of all stocks, only the diagnosed population being treated stock is known for real,
although the percentage of the real diagnosed population being treated truly being infected is

5These loops generate non-linear effects (exponential growth, oscillations,. . . ), even if all the relationships in
these loops are linear. In isolation positive or self-reinforcing loops generate exponential growth or decay, and
negative or balancing loops generate convergent behavior. In case of multiple, interconnected loops, and changing
loop dominance, computer programs are needed to calculate resulting system behavior.
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fundamentally uncertain too. The stocks in this first model are also too aggregate: the stock-
flow structure requires extension in subsequent iterations since different stages of lyme disease are
not considered yet. This model is nevertheless interesting as a first approximation developed in
group. SD models are preferably constructed interactively, from the mental models of the experts
or actors, and iteratively, starting small and extending. Hence, the entire NRA scenario group
or knowledgeable experts could and should be engaged actively in this first stage of the modeling
process.

Figure 2: Simplistic Stock-Flow diagram / First iteration simulation model related to Lyme

3.3 STEP 3: Simulation Model and ESDMA Settings

The model is subsequently gradually expanded and specified (either the modeler with input from
experts or the modeler together with the scenario group in a Group Model Specification session
similar to the session described in (Pruyt, Logtens, and Gijsbers 2011)). Experts and scenario
group members only need a minimum amount of information to understand SD modeling, more
precisely that (i) the rectangles represent ‘stock variables’ (∼ bathtubs, state variables), the double
arrows ‘inflow variables’ (∼ tap) and ‘outflow variables’ (∼ drain) and all other variables are
auxiliary variables or constants, and that (ii) stock variables are integrals (accumulations) of all
inflows minus all outflows over time. In the case of the development of the Lyme model displayed
in Figure 3, the detailed modeling and specification of the different phases of Lyme disease and the
difference between diagnosed and undiagnosed was not performed in group, nor was the extension
of this model with ESDMA uncertainty structures (in red) and scripts, nor was the modeling of
the NRA criteria (in orange).

The model is fairly simple: It consists first and foremost of a detailed stock-flow structure for
infected persons, whether visible, invisible, or being treated for Lyme. Knowledge about infections
will lead to temporary restrictions of the territory (dunes, national parks, et cetera). Switches
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Figure 3: Simulation model related to Lyme with structures to translate the simulation results
into NRA scores (orange), and ESDMA structures (red). Note: not all relations are visualized in
this diagram
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in the model allow to switch between structures or between different exogenous time-series, e.g.
related to the fraction of infected ticks.

And the orange bottom-most structures translates the continuous key performance indicators
related to Lyme disease into discrete NRA criteria scores for each of 10 NRA criteria and the NRA
total score (see (Bergmans et al. 2009; Pruyt and Wijnmalen 2010; Pruyt and Kwakkel year)).
These NRA total scores are the (equally) weighted sum of the scores (displayed in Figure 4) on
the following ten criteria:

C1.1 Infringement of the Dutch territorial integrity

C1.2 Infringement of the integrity of the Dutch international position

C2.1 Number of fatalities

C2.2 Number of seriously injured and chronically ill

C2.3 Physical suffering (lack of fulfilment of basic needs)

C3.1 Economic costs and structure

C4.1 Long-term damage to the environment

C5.1 Disruption of everyday life (schools, work public transport, etc.)

C5.2 Violation of the democratic system (political, financial, etc.)

C5.3 Psychological impact (public outrage and anxiety/fear)

3.4 STEP 4: Computational Experiments and Visualization

The settings for the uncertainty analyses (Latin Hypercube, 1000 and 10000 runs) and the uncer-
tainty ranges displayed in Table 2 lead to the behaviors over 300 months and the corresponding
end-state histograms displayed in Figure 4 and corresponding NRA scores in Figure 5. Note that
the continuous lyme related behaviors are translated by these NRA criteria in discrete outputs
(maximum values or cumulative values over five years). The risk envelopes diagram in Figure 7
shows that almost half of these runs correspond to ‘very serious’ NRA scenarios (0.33 > D ≥ 0.11),
the other half being ‘serious’.

If the parameter values / intervals and structures even come close to the actual risks, then
the graphs above show that Lyme is a much greater risk than the visible part of it (ie the total
number of Lyme patients in treatment) would suggest. The monthly total running costs attributed
to Lyme would then be multiples of the amounts directly spent monthly on Lyme treatment.
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Figure 4: Lines for 1000 runs over 300 months (LH sampling over the uncertainties in Table 1)
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Figure 5: Discrete NRA scores of the runs displayed in Figure 4 on 5 relevant criteria (1 ≥ E ≥
0.33 > D ≥ 0.11 > C ≥ . . . with E ∼ catastrophic, D ∼ very serious, C ∼ serious, etc.)
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Parametric uncertainty lower bound upper bound

initial symptomatically infected pop wo EM 800 1000
initial early disseminated infected pop wo EM 13000 15000
initial chronically ill w lyme borreliose wo EM 0 1000
initial symptomatically infected pop with EM 800 1000
initial diagnosed symp inf pop being treated 5000 7000
initial diagnosed ear diss inf pop being treated 900 1100
initial diagnosed chronically ill being treated 0 1000
net rate of increase of infected ticks 0.003 0.007
net increase of contact rate btwn humans and ticks 0.003 0.007
avg incubation time 0.5 2
amplitude peak seasonality 1 2
ini possible PLS patients 0 1000
fraction of infections with EM 0.4 0.9
time 1st phase 0.5 1.5
time 2nd phase 5 17
time 3rd phase 6 18
fraction of inf pop with EM diagnosed in 1st phase 0.5 0.9
fraction of inf pop with EM diagnosed in 2nd phase 0.3 0.7
fraction of inf pop with EM diagnosed in 3rd phase 0.1 0.3
fraction of inf pop wo EM diagnosed in 1st phase 0.05 0.2
fraction of inf pop wo EM diagnosed in 2nd phase 0.3 0.5
fraction of inf pop wo EM diagnosed in 3rd phase 0.05 0.2
recovery time 1st phase 1 3
recovery time 2nd phase 1 3
recovery time 3rd phase 3 9
fraction PLS after successful antibiotics treatment 0.05 0.2
fraction outflow PLS 0.05 0.2
lyme related death rate 0.0000001 0.00001
treatment cost symptomatically infected 500 2000
treatment cost early disseminated 1000 3000
treatment cost chronically ill 1000 3000
cost early disseminated 500 2000
cost chronically ill 1000 3000
initial value infected tick fraction 0.01 0.05
fraction spontaneous recovery 1st phase 0.4 0.9
fraction spontaneous recovery 2st phase 0.04 0.09
fraction spontaneous recovery 3st phase 0.005 0.02
initial value infected tick fraction 0.01 0.05
final value infected tick fraction 0.2 0.6
SWITCH fraction of infected tick bites (Cathegorical) 0,1 default = 0
SWITCH lookups fraction of infected tick bites (Cath.) 1,2,3 default = 1

Table 2: Parameters treated as uncertain and the uncertainty ranges used

3.5 STEP 5: Analyzing & exploring the ensemble of scenarios, and
plotting total impact scores of the ensemble in a risk envelopes
diagram

A new type of risk visualization technique –a risk envelope diagram– is used here instead of a
traditional risk diagram (or risk landscape) as displayed in Figure 10. The blue risk envelope in
Figure 7 corresponds to 10000 model-based risk scenarios generated with the SD model. This
risk envelope should be read as follows: all simulation runs result in at least a C score (‘serious’),
almost 50% of the runs result in a D score (‘very serious’), and none of the 2000 runs generated
an E score (catastrophic).

When different risks are plotted in the same envelope diagram, then envelopes that are higher
and more to the right represent larger risks in terms of plausible impact and percentage of runs
with high impact scores.
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Figure 6: Traditional risk diagram with lyme according to the non-model-based variant

3.6 STEP 6: Distilling different representative scenarios of interest
based on total impact scores, their origin in the multi-dimensional
uncertainty space, and their time-evolutionary behavior

Applying scenario discovery and selection algorithms is particularly useful at this point (i) if a very
small number of interesting scenarios is needed as is the case in the traditional Dutch NRA, or (ii)
if a subset of scenarios representative for the larger set is desirable as is the case for model-based
CA under deep uncertainty (Pruyt et al. 2012). Depending on the goal and the issue, different
exemplary runs, exemplars in short, would be desirable: ideally, exemplars are representative
for many other scenarios in terms of multi-dimensional impacts, time-evolutionary behavior (i.e.
the dynamics), and the origins in the multi-dimensional uncertainty space. Although selecting
exemplars based on all three of these aspects is rather complicated, selecting exemplars based on
one of these aspects is straightforward and could be supported by:

• data set splitting to select representative exemplars in terms of multi-dimensional impacts.

• using a time-series clusterer algorithm –in our case a more advanced version of the one pro-
posed by Yucel and Barlas (2011) with a metric proposed by Yucel (2012)– with dendrogram
and cluster plots to cluster time series data based on attributes and select the similarity level
at which to classify/plot clusters. Using this clusterer and visualizing exemplars for selected
clusters is a powerful scenario discovery and selection approach if time-evolutionary behavior
(i.e. the dynamics) is important.

• using a new version of PRIM or Patient Rule Induction Method (Friedman and Fisher 1999)
–one that can deal with categorical and continuous uncertainties– with a binary classifica-
tion function and PRIM box plotting, to identify uncertainty space boxes with high con-
centrations of runs that perform below/above a particular threshold, and hence, to identify
exemplars that represent regions in the multi-dimensional uncertainty space with high con-
centrations of highly undesirable or desirable outcomes (e.g. catastrophic subspaces) or of
outcomes with particular characteristics.
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Figure 7: Risk Envelope Diagram of Lyme disease (E=5=catastrophic; D=4=very serious; . . . )

The second option, time series clustering, is used here, both for selecting a representative set
of exemplars for a computational CA, and for selecting very few exemplars for a traditional CA.

(a) Dendrogram (b) 100 exemplars

Figure 8: Dendrogram and 100 exemplars

Figure 8(a) shows the resulting dendrogram of the clusterer applied to the ‘smoothed number
known and unknown sick’. Figure 8(b) plots a set of 100 exemplars selected from the 1000 runs:
one automatically selected exemplar for each of the 30 clusters supplemented with 70 hand-picked
exemplars from the larger clusters proportional to the cluster size. Comparing the corresponding
blue risk envelope in Figure 7 with the original red one shows that this subset is not only represen-
tative for the ensemble in terms of types of behaviors, but also in terms of total NRA scores. This
subset could thus be used as representative ensemble in a model-based CA under deep uncertainty.

The same techniques could also be used to select one or a much smaller set of scenarios,
e.g. for plotting in a traditional risk diagram and/or use in a traditional CA. Forcing the top 4
classes in the dendrogram (see Figure 9(a)) based on a classification on the final NRA score, and
selecting only one exemplar per clusters results in the scenarios displayed in Figure 9(b). Cluster
1 represents 995 cases, cluster 2 represents 105 cases, cluster 3 represents 4 cases, and cluster 4
represents 896 cases. The behaviors of these four scenarios on some of the most important key
performance indicators are displayed in Figure 10. The first and fourth exemplars would be good
representative scenarios for all ‘very serious’ and ‘serious’ lyme scenarios in a traditional NRA.
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(a) Dendrogram (b) Exemplar for each of 4 second-level clusters

Figure 9: Dendrogram and exemplars for 4 second-level clusters

3.7 Post-NRA: Capability Analysis under deep uncertainty

The 100 runs subensemble generated in step 6 could then be used as representative set for the
entire ensemble in a capability analysis under Deep Uncertainty (see (Pruyt et al. 2012)). The
results could then be plotted in a risk envelope diagram in order to assess the (uncertain) risk
reduction brought about by one (see Figure 11(a)) or multiple capabilities strategies (see Figure
11(b)), or compare risks and risk reductions over multiple risks (see Figure 11(b)).

4 Conclusions and Future Research

The goal of this paper was first and foremost to illustrate the SD model-based version of the
Dutch NRA approach. This paper therefore illustrates the model-based process of the NRA for a
particular risk. It involves normal ESDMA followed by plotting of the risk envelopes and scenario
discovery to distill representative scenarios. The methods, techniques, and scripts for doing so are
available, and could even be used in real time.

The second goal of the paper was to shed light on the risk posed by lyme disease. The future
evolution of Lyme disease in the Netherlands is still deeply uncertain. A substantial part of the
problems caused by Lyme may remain hidden (i.e. not unambiguously attributable to Lyme
disease). Simulation models may therefore be useful to make the invisible and uncertain risk
visible.

At first, Lyme was selected because both approaches could be used for it. Along the way, it
became clear that the quantitative variant may be more appropriate for Lyme disease: not only
is it a slumbering risk, it is also deeply uncertain due to different perspectives on Lyme and due
to a lack of knowledge and information.

The medical profession and the Lyme patient association have different perspectives on Lyme
disease. Modeling these different perspectives results in very different models about the same
issue. Professionals believe that the diagnosis of chronic Lyme disease should be based on specific
symptoms, chronic neuroborreliosis and acrodermatitis chronica atrophicans. The Lyme patient
association believes that Lyme diagnosis should be based on a much broader definition of symp-
toms. According to the Lyme patient association, the group of chronic Lyme patients should be
much larger than the group would be according to physicians. Physicians are skeptical about
broad definitions that do not include proof of infection with Borrelia. This group of patients is
nevertheless part of the group treated for Lyme disease in the Netherlands.

Another major controversy relates to Post-Lyme disease syndrome (PLDS) – which refers to
people who have chronic complaints after treatment for Lyme disease. According to the medical
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Figure 10: Behaviors of the four representative cases on important key performance indicators

(a) with CA under deep uncertainty (b) comparing envelopes with flu

Figure 11: Risk Envelopes Diagrams
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profession, these chronic illnesses may be treated unnecessarily for Lyme disease, resulting in
additional costs and possible complications.

The model presented in section 3 may be problematic for both sides of the Lyme polemic – the
discussion about what may or may not be seen as chronic Lyme. Separate models to represent
each of the perspectives may be necessary.

Apart from these different perspectives on Lyme and PLDS, most information and data related
to Lyme disease in the Netherlands are outdated or incomplete. Using information and data from
other countries, eg the USA, may be an option, although it is well known that Lyme in the USA
and in the Netherlands are different. Another option may be to treat data and information as
uncertain.

After different models representing the different perspectives have been constructed, an ES-
DMA could be performed over all models to compare the differences and similarities in outputs
generated by the difference in perspectives, and to find unifying policies. Different policies for deal-
ing with Lyme disease may also be tested and their robustness compared over the full ensemble
of scenarios generated with the three models.

Current and future work will thus extend this single-model ESDMA to a multi-model ESDMA
with this NRA model, a model reflecting the perspective of the medical profession, and a model
reflecting the perspective of Lyme patients.
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