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Abstract 

This research presents a System Dynamics SD approach to model and analyze a single stage 

scalable manufacturing system. The system is exposed to a random demand that is assumed to 

follow a normal distribution pattern. The main contribution in this paper, is adding new modules 

to the existing state of the art of capacity scalability management in order to bring it near to 

reality. The proposed modules allow for costs evaluation, scaling capacity on seasonal basis, 

and applying system breakdowns. A full-fledged simulation model (attached as supplementary 

material) was developed and tested using Vensim DSS. Two capacity scaling policies are 

presented and used to study the effect of the new modules on the system’s performance - where 

Capacity level, Inventory level, Backlog level and Costs are the measures of the system’s 

performance. The results show System Dynamics ability to model real conditions that face 

capacity scaling planners, and present the actual effect of system breakdowns on facility 

performance. Moreover, this study investigates the impacts of applying seasonal capacity scaling 

on scalable systems.  

Keywords: Scalable capacity, Manufacturing systems, System Dynamics, Simulation, 

Breakdowns, Production cost. 

1. Introduction 

    The history of manufacturing systems shows their evolution over the years as a response to an 

increasingly dynamic and global market with a greater need for flexibility and responsiveness. 

Recently, Reconfigurable manufacturing systems (RMS) had been introduced. It is defined as a 

manufacturing system that evolves its configuration over time in order to provide the 

functionality and capacity needed, when it is needed (Youssef et al., 2007). RMS is intended to 

combine the high throughput of dedicated manufacturing line (DML) with the flexibility of 

flexible manufacturing system (FMS) and react to changes quickly and efficiently (Koren et al, 
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1999). It allows repeated changes and rearrangements of the components of a manufacturing 

system in a cost – effective way. The main drawback of RMS is the high investments and high 

technological requirement needed to implement it. 
 

One of the key features of RMS is capacity scalability. Simply, it is the ability to adjust system 

capacity to meet variable period-by-period demand. Typical capacity scalability problem 

addresses when, where and by how much should the capacity of the manufacturing system be 

scaled to respond to the expected variable demand. Before RMS, Capacity change was limited to 

capacity expansion only. It was considered a long term investment decision. In RMS, on the 

other hand, capacity scalability addresses the reduction of capacity besides the expansion as well. 

Capacity scalability approach in RMS is considered as an operational decision that is able to be 

executed several times per one year. The challenge that faces scalable manufacturing system is to 

specify the best capacity scalability policy that satisfies facility objectives with minimum cost.  
  
This paper will contribute to the existing state of the art by introducing new realistic assumptions 

that help in assessing different scalable policies. A basic model that reflects the state of the art in 

modeling scalable manufacturing system (Deif & H. ElMaraghy, 2007) is presented first. In 

order to develop the basic model, three realistic modules are added to it in turn; First module 

includes a new method to evaluate the cost of implementing different scalable policies which 

will help in assessing it more precisely. Second module introduces seasonal capacity scaling 

which is based on scaling capacity every multiple time periods instead of each time period. Third 

module presents machine breakdown which is considered as a random factor that corrupts 

implementation of scalable policies. New modules will be analyzed by applying two different 

scaling policies and comparing their results. 

The rest of the paper is assigned as follow: In section 2, literature is reviewed. In section 3, the 

state of the art basic model is illustrated. In section 4, model refinements beyond the state of the 

art are explained. In section 5, two scaling policies are applied to analyze refinements. Finally, in 

section 6 summary and conclusion are stated. 

 

2. Literature review 

Capacity scaling is considered a classical problem in many industries, and it was known as the 

capacity expansion problem to satisfy increasing demand in a cost effective way. The first study 

of the capacity expansion problem was conducted by Manne (1967). Representative review of 

the classical capacity expansion problem can be found in Luss (1982). Since demand uncertainty 

increases and technological advancement are faster, the need to address the capacity scaling 

problem from a dynamic view point where capacity can be increased and decreased becomes an 

essential requirement.  

Recently, multiple modeling techniques are used to assist the capacity scalability planner to 

determine the best scalability policy based on different performance measures. Kim and Duffie 

(2005) presented a multi work station production system model that is based on control theory. A 

proportional control policy with a control gain Kb delayed by period Dk was applied, and it 

represents realities of hiring and firing labor force and other issues that prevent instantaneous 

adjustment of capacity to specify the new capacity. Deif & H. ElMaraghy (2007) proposed a 



 

 

3 
 

system dynamics approach for a single stage scalable capacity model. The model objective was 

to examine different scalable policies using multiple performance measures like inventory, 

backlog and capacity levels. Further analysis for the same capacity scalable model was presented 

on Deif & H. ElMaraghy (2011) focusing on a market-capacity integration policy. Spicer (2007) 

developed an integer programming optimization tool to investigate the optimal configuration 

plan of a scalable RMS. His objective was based on minimizing investment cost and 

reconfiguration costs over a finite horizon with known demand. Also he presented an optimal 

solution model for the multi period scalable-RMS using dynamic programming. Asl et al. (2003) 

presented a multi-period RMS that faces stochastic market demand. He used Markov decision 

theory supported with feedback control policy to conduct a capacity scaling plan for a finite time 

horizon. Deif & H. ElMaraghy (2009) developed a system dynamics approach to model and 

analyzes operational complexity of dynamic capacity in multi-stage production system with 

stochastic demand. The results of analysis showed that ignoring demand, internal manufacturing 

delay and capacity scalability delay can lead to wrong decisions concerning both scaling level 

and backlog management decisions. 

 

Although system breakdowns were not studied for scalable production system, several other 

studies of traditional systems can be readily applied to the current problem. Breakdowns are 

characterized by randomness and defined by frequency of breakdowns and time needed to repair. 

Many researchers assumed different breakdowns behavior. Chakaraborty et al. (2008) introduced 

a mathematical model for a generalized economic manufacturing quantity for an unreliable 

production system; he assumed the time to machine breakdown follows Weibull distribution, and 

proved that preventive maintenance reduces the system cost significantly and determined the 

optimal production lot size. Gracy et al. (2006) studied an Economic Production Quantity model 

for a single product subjected to random machine breakdowns that follow an exponential 

distribution of deterioration, and presented a mathematical model to determine the optimal 

production uptime that minimizes the expected total cost per unit time. Singa (2010) presented a 

mathematical model of the production inventory cost functions for systems with breakdowns and 

without breakdown. He assumed the random number of breakdowns per unit time follows a 

Poisson distribution and Time-to-breakdown should obey an exponential distribution. A 

complete solution procedure and a numerical example were conducted to confirm that the 

optimal run time for the proposed model is obtainable. 

 

Several authors defined few relevant cost items such as scaling cost and physical capacity cost. 

However, Capacity scaling costs was first introduced by Manne (1961) who presented the 

physical capacity cost for the new capacity expansion as a typical discounted concave function 

representing the economy of scale. Deif & W. ElMaraghy (2006 & 2007) added penalty cost 

which depends on number of rescaling point, and scalability effort cost. There work was directed 

to produce an optimal capacity scalability plan. Spicer (2007) defined another scaling capacity 

cost that includes more details as the number of modules sold and bought and used labor cost in 

the rescaling process. He also added lost capacity cost that represents the lost production 

opportunity during stoppage and ramp up to the new operational level. 
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3. The state of the art basic model 

The system dynamics model for capacity scaling (Figure 1) illustrates a single stage production 

system with added refinements (which will be explained later in section 4). In this section, we 

will focus on the state of the art dynamic representation of the production system that is suitable 

for capturing the ability to adjust the capacity and, hence, makes the model a valid representation 

for these systems.  The model expresses capacity as a stock level controlled by a scaling rate, the 

WIP as a stock level controlled by production start rate as an input flow and production rate as an 

output flow, the Inventory as a stock level controlled by production rate as an input flow and 

shipment rate as an output flow, and the Backlog as a stock level controlled by order rate as an 

input flow and shipment rate as an output flow. The model assumes a periodic demand that 

follows a normal distribution and is known at the beginning of each period, and that production 

rate equal capacity level at any period t. Basic model nomenclature is shown in Appendix A. 

 

Figure 1: Basic model with refinements 

 

 3.1 Basic Model Relationships 

The basic model for a scalable manufacturing system as introduced by Deif & H. ElMaraghy 

(2007) is presented here for brevity. It consists of the following modules; Demand Generation, 

Capacity Scalability Control, Production Control, Inventory Control, and Order Fulfillment 

Control. Each module is connected to the others by variables that are common to all modules. 

They are introduced next:  
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a- Demand Generation: 

In the basic model, periodic demand D(t) is assumed to follow a normal distribution (equation 1). 

According to Huh et al. (2006), period-by-period demand should have a continuous distribution 

because demand is inherently continuous, the variance in demand is often high, and finally 

because continuous demand distribution may generate a more robust capacity plan than finite 

number of discrete scenarios.  

D t = AD t +  [SD2 ∗
2−DT

DT
]

2
 * Normal(0,1)                                                                          (1) 

Where DT: time step, SD: standard deviation of demand, AD: average demand.                                                                                                                                                                                     

b- Capacity Scalability Planning and Control: 

Capacity scalability decisions are controlled through the scaling rate SR(t) (equation 2).  

C t =  SR(t)
T

0
                                                                                                                             (2) 

Where T: final time 

The equation for the scaling rate SR(t) is determined by the required capacity RC(t) together with the 

scalability delay time SDT (equation 3).  

SDT

C(t)-RC(t)
SR(t)                                    (3) 

The required capacity RC(t) (equation 4) consist of three components; production start rate PSR(t), 

adjustment inventory AI(t), and work in process WIP(t) divided by manufacturing lead time MLT. It is 

defined in this manner to allow implementing different capacity scalability policies based on demand, 

inventory and WIP levels through manipulating WP and Wi, where Wp and Wi are constants that represent 

the weight of these levels considered in capacity computation. 

   

1.W  Wand  1W0  :where

MLT

WIP(t)
*)WW(1AI(t)*WPSR(t)*WRC(t)

ipp

ipip





















                                    (4) 

c- Inventory Control: 

The inventory control mechanism in the basic model follows the same one introduced by Sterman (2000). 

The inventory adjustment AI(t) is controlled by determining the gap between desired inventory DI(t) and 

current inventory I(t) and dividing it by inventory adjustment time IAT (equation 5). 

IAT

I(t)DI(t)
AI(t)


                               (5) 

The desired inventory DI(t) is assumed to be the result of multiplying the demand D(t) by the desired 

inventory coverage DIC (equations 6). This formulation ensures enough coverage of products for the 

anticipated demand. The desired inventory coverage DIC is defined based on two time factors; first is the 

minimum order processing time MOPT which guarantee maintaining enough coverage to ship at the 
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expected rate. Second is safety stock coverage SSC that ensure an adequate level of service (equation 

7).The current inventory level is defined as the accumulation of the difference between production rate 

PR(t) and shipment rate ShR(t) (equation 8). 

DIC*D(t)DI(t)                               (6) 

SSCMOPTDIC                                (7) 

I t =  (PR t − ShR t )
T

0
                                                                                                           (8) 

d- Production Control: 

The WIP level is the accumulation of the difference between the production start rate PSR(t) and the 

actual production rate PR(t) (equation 9). 

WIP t =  (PSR t − PR t )
T

0
                                                                                                     (9) 

The production start rate PSR(t) is set to be equal to the random demand D(t) (equation 10). The 

production rate PR(t) is controlled by the capacity scalability level, where it is set equal to capacity level 

C(t) factored by real system utilization U for practical considerations (equation 11).   

D(t)PSR(t)                                                     (10) 

U*C(t)PR(t)                              (11) 

e- Customer Orders Fulfillment: 

Customer orders are fulfilled by the order fulfillment rate OFR(t), which is controlled by the shipment 

rate ShR(t) (equation 12). The shipment rate is given by the minimum of either the desired shipment rate 

DSR(t) or the maximum shipment rate MSR(t) (equation 13).  

ShR(t)OFR(t)                            (12) 

MSR(t)),MIN(DSR(t)ShR(t)                            (13) 

The desired shipment rate DSR(t) is defined as a function of the current backlog B(t) and the target 

responsiveness time TRT (equation 14).  

TRT

B(t)
DSR(t)                              (14) 

The backlog level is presented as the accumulation of the difference between the order rate OR(t) that 

have the same value of demand D(t) (equation 15) and the order fulfillment rate OFR(t) (equation 16). In 

RMS systems, backlog is supposed to be at a low level; practically however, it cannot be zero. 

D(t)OR(t)                                            (15) 

B t =  (OR t − OFR t )
T

0
                                                                                                       (16) 
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The maximum shipment rate is determined by the available inventory level I(t)  divided by the minimum 

order processing time MOPT (equation 17). 

MOPT

I(t)
MSR(t)                             (17)  

3.2 Capacity scaling policies 

In order to examine the model ability to simulate the real system, two policies will be applied on 

the presented model. First policy is inventory based policy; it is based on changing the capacity 

scalability level to adjust production rate to meet the target inventory level (equation 18). This 

policy showed a perfect performance based on scalability cost. However, it shows a modest 

performance under cyclic demand scenario (Deif & H. ElMaraghy, 2007). Also it is highly 

recommended for long life products and low holding cost applications. 

RC(t) = AI(t)                                                                                                                                              (18) 

 

The second policy was introduced by Kim et al. (2005). The capacity scalability mechanism is 

based on adjusting capacity level to satisfy the previous backlog level factored by a control gain 

Kb (equation 19). Kim set the Kb = 0.368, where capacity was adjusted without overshoot and 

with little oscillations.  

 

RC(t) = Delay fixed( B(t),1)*Kb                                                                                                 (19) 

Where, Delay fixed is a function in Vensim DSS. 

 

4. Model refinements beyond the state of the art. 

Although the basic scalable capacity model includes many manufacturing system aspects, some 

performance measures and real conditions in manufacturing systems could not be adopted using 

it. In order to refine the model to consider these new aspects, additional modules are introduced 

to the basic model; First module is dedicated to evaluate Production costs which represents an 

important performance measure for any manufacturing system, second module enhance capacity 

scaling control to be able to scale capacity on seasonal basis. This is a substantial requirement for 

industries exposed to specific demand pattern each season; last module simulates manufacturing 

system breakdowns that cause stoppage of production. Each module is described as follow: 

4.1 Production costs   

One of the most important performance measures that are required for any decision maker to 

determine the best decision is the expected costs that results from his decision. Accordingly, a 

production cost module will be added to the base model. The objective of this module is to help 

in the assessment of different capacity scaling policies. It involves different manufacturing costs 

and capacity scaling costs. The criteria of selecting production costs included in the module are 

the ability to match system planning level. This means that selected costs are neither strategic 
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which is used in production planning for a long period nor operational that is used in accounting 

daily expenses.  

Based on this criterion, the total cost module (Figure 2) is presented as the summation of four 

main components; Capacity Cost CC(t), Scaling Cost SC(t), Backlog Cost BC(t) and Inventory 

Cost IC(t). Capacity Cost CC(t) is defined as the cost of producing full capacity at time t. It 

includes costs of raw material, salaries of workers involved in the production process, overheads, 

etc. it is formulated as the result of multiplying capacity level C(t) with capacity unit cost CUC 

(equation 20).  

 

Figure 2: Production Cost module 

 

CC(t) = CUC * C(t)                                                                                                                    (20)             

 Where   CUC = Capacity unit cost.  

The second component evaluates Scaling Costs SC(t) which is composed of two items; first 

component is a fixed scaling cost FSC that represents overheads of stopping production to 

rescale capacity, lost production, and fees of labors involved in ordering and estimating new 

capacity. Fixed scaling cost FSC is assumed to be independent on type of capacity scalability (up 

or down). Second item is physical scaling costs incurred to increase or decrease capacity levels 

including adding/removing another spindle to a machine, adding/removing a machine, and new 

hired or fired workers. Physical scaling cost is assumed to be proportional to the change in 

capacity. It is assumed that Scaling up unit cost is equal to scaling down unit cost and no 

outsourcing is allowed.  

 

Here, two conditions may exist; First condition is when capacity level C(t) is not equal to the 

required capacity RC(t); scaling cost SC(t) will be formulated as the difference between required 

capacity RC(t) and the existing capacity C(t) multiplied by scaling unit cost SUC and added to 
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the fixed scaling cost FSC. Second condition is when capacity level C(t) is equal to the required 

capacity RC(t), scaling cost SC(t) will be equal to zero (equation 21).  

 

                       

                      SUC * |RC(t) – C(t)| + FSC,     if RC(t) ≠ C(t) 

 

SC(t) =                                                                                                                                         (21) 

                       

                       0,           Otherwise 

Where   SUC = Scaling Unit Cost, FSC = Fixed Scaling Cost 

 

The third component is inventory cost IC(t) which represent cost of holding goods in stock. It 

includes ware housing depreciation, insurance, taxation, obsolescence and shrinkage cost at time 

t. Inventory cost is directly proportional to inventory level I(t) (equation 22). 

 

IC(t) = IUC * I(t)                                                                                                                         (22) 

 Where IUC = Inventory unit cost. 

The forth component is backlog cost BC(t) which reflect penalties of late delivery costs. It is 

simply presented as backlog level B(t) multiplied by backlog unit cost BUC (equation 23).  

BC(t) = BUC * B (t)                                                                                                                    (23) 

Where BUC = Backlog unit cost. 

Total costs TC(t) are deduced by summation of capacity, scaling, backlog, and inventory costs 

(equation 24) at each time period. In order to calculate the average cost for any time horizon, 

new stock for storing and adding total costs is introduced as Cumulative cost. It is formulated to 

integrate total costs until the final time (equation 25). Consequently, the average total cost is 

determined by dividing cumulative cost by the final time (equation 26). To compare between 

policies with different time horizons, the unit cost measurement is required. The cumulative cost 

is divided by the cumulative demand (equation 27, 28). 

 

TC(t) = CC(t) + SC(t) + BC(t) + IC(t)                                                                                        (24)  

Cummulative cost =  TC(t)
T

0
                                                                                                    (25) 

Average cost = (Cumulative cost) / T                                                                                         (26) 

Cumulative demand =  D(t)
T

0
                                                                                                   (27) 

Unit cost = (Cumulative cost) / (Cumulative demand)                                                               (28)  
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4.2 Seasonal capacity scaling 

One of the most disturbing problems in the basic model is the need to readjust capacity each time 

period. This issue requires high efforts and costs to achieve it. However, if we investigate the 

real life we will find many industries characterized by having a certain period-by period demand 

within a specific season. For these industries there is no need to rescale capacity level each time 

period. Otherwise, capacity planning takes place on quarterly (every three months) or seasonal 

basis while demand is updated period-by-period. According to this new approach, capacity 

scaling mechanism that was introduced in the basic model will be modified to be adapted with 

seasonal capacity scaling. 

Seasonal capacity scaling is based on maintaining capacity at a constant level for a fixed number 

of periods or a season, while demand remains periodic. At the end of season, capacity will be 

rescaled according to the average demand of the following season. New variables will be added 

to the basic model to achieve this property. These variables are responsible to define number of 

periods that represent the season and to prevent capacity scaling within season periods. 

This logic is implemented to the model through adding fixed scaling period FSP and seasonal 

index SI (Figure 3); Fixed Scaling Period is defined as the number of periods per one season, and 

Seasonal Index SI present a pulse function that allows capacity scaling only at the beginning of a 

season and blocks capacity scaling within the season (equation 29&30). For simplicity, the value 

of the seasonal capacity will be taken as the demand value for the starting period in the season. 

However, different scaling policies may easily apply different assumptions to select the new 

capacity used for the new season.  

SI(t) = PULSE TRAIN (FSP, 0, FSP, Final time)                                                                      (29) 

SR t = (RC(t) − C(t)) ∗ SI t  / SDT                                                                                        (30) 

Where: PULSE TRAIN is a function in Vensim DSS 

             SDT= Scalability Delay Time 

 

Figure 3: Seasonal capacity scaling module 

4.3 System breakdown  

System breakdowns are considered an operational phenomenon that highly influences a 

production process. It affect capacity planning deeply especially when it shifts from an in control 
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state to out of control state in a random pattern. In this situation, a capacity scaling decision may 

be inferred to overcome the impact of breakdown on the production process. In order to handle 

the problem of introducing system breakdowns in to the manufacturing system, a new module is 

added to the basic model.   

Proposed module includes two main variables; first is the frequency of breakdowns which are 

assumed to be a random variable that follows a uniform distribution, and is represented in the 

model as the uptime duration. Second is the time lost during system breakdown which is 

assumed a random variable that follows a normal distribution, and is represented in the model as 

down time duration (Chakraborty, 2008). To simplify breakdown module, Breakdown 

occurrence is assumed to stop the production process. 

Model handling of breakdowns is based on identifying a Flag which indicate production system 

status whether it is on uptime or downtime. When Flag has a value of one, this means that 

production system is in uptime. While when flag have a value of zero, this means that breakdown 

exists. This mechanism is accomplished by introducing new parameters and relations (equation 

31-36). Flag is defined in a separate module (Figure 4) and is added to the basic model.  

 

Fig (4): System breakdown module 

DUT= Random uniform (X, σ)                                                                                                   (31) 

DDT= Random normal (Min, Max, X, σ)                                                                                   (32) 

DF= Delay fixed (Flag, DT, 0)                                                                                                    (33) 

DTNE= Delay fixed (TNE, DT, 0)                                                                                             (34) 

                      DTNE,         t<DTNE 

TNE=             t + DDT,     DF>0                                                                                                 (35) 

                       t + DUT,     otherwise        

                    DF,              t < DTNE 

Flag=                                                                                                                                           (36)                                                     

.                   1- DF,           Otherwise                                                                                                                                                                                                                                                                        
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 DUT (Duration up time): uptime period of manufacturing system. 

 DDT (Duration downtime): downtime period of manufacturing system. 

 DF (Delayed flag): flag value delayed by time step.  

 Flag: variable that indicate system situation (if uptime or down time). 

 TNE (Time next event): time of the next uptime or downtime.  

  DTNE (Delayed time next event): time of the next uptime or downtime delayed by      

specific period. 

  X, σ: average value and standard deviation of the distribution. 

  DT: time step. 

The reader may refer to the breakdown module attached in the supplementary material.    

                                                                                

5. Policy analysis 

In order to investigate the dynamic behavior and performance for the new modules added to the 

basic model, two different policies will be used for analysis; Inventory based policy and Kim 

policy. Capacity level, Inventory level, Backlog level and Total cost are considered the 

performance measures of the system. These measures are selected to reflect system stability, 

responsiveness and expected cost. The analysis will be executed on two steps; first is by adding 

seasonal capacity scaling and production cost modules to the basic model, while the second is by 

adding system breakdowns and production cost modules to the basic model. The reason behind 

separating seasonal capacity scaling and machine breakdown is to examine the effect of each of 

them on the system independently. This will ensure more insight for the assessment of each 

module. The model is constructed and analyzed using Vensim DSS package. 

The model will be initialized at equilibrium table 1 (i.e. the initial values of the WIP, capacity, 

inventory and backlog levels are set to the target values (Sterman, 2000)) and simulated for 100 

month. The selected values for the different time parameters are based on a case study of make-

to-order furniture manufacturing company (Deif & H. ElMaraghy, 2007). 

Table 1: Model initial conditions 

Parameter Value Unit Parameter Value Unit 

Average demand (AD) 10,000 Parts Utilization Level (U) 100% - 

Demand Standard Deviation  

(SD) 

1,000 Month 
Target Responsiveness Time 

(TRT) 

1 Month 

Manufacturing Lead Time (MLT) 1 Month Inventory weight (Wi) 0 - 

Inventory Adjustment Time (IAT) 2 Month Demand weight (Wp) 1 - 

Minimum Order Processing Time 

(MOPT) 

1 Month 
Scalability Delay time (SDT) 

1 Month 

Safety Stock Coverage (SSC) 2 Month CUC, IUC and BUC 50 pound 
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5.1 Seasonal capacity scaling and production cost 

Figure 5 (a-d) shows the response of performance measures assuming a season of 3 periods 

(SI=3) while applying Inventory based policy and Kim policy. System response for any 

performance measure will be considered stable if its pattern oscillates around a fixed average 

value (average value is constant along the time horizon). The results show a stable response for 

capacity, inventory, backlog and total cost in both policies. But variability in total cost and 

backlog response was higher than that in capacity and inventory response for both policies. The 

reason of higher variations is due to fixing capacity level within a season regardless of demand 

variations. Consequently, backlog and total cost are accumulated at higher levels. This 

performance advocates that using seasonal capacity scaling is more preferred than periodic 

scaling from system stability point of view. 

 

Figure 5: Dynamic Response for Different measures in case of seasonal capacity scaling 

 (d) 

(a) (b) (c) (d) 
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5.2 System breakdowns and production costs 

System breakdowns module is connected to the basic model through a Flag that is multiplied by 

the production rate PR (equation 37). Duration uptime DUT and duration downtime DDT are 

computed according to equations (38 & 39). Figure 6 (a-d) illustrates the effect of system 

breakdowns on different performance measures. As shown in figure 6 (b & d) breakdowns cause 

a great disturbance (blowing up) in backlog and total cost response for Inventory based policy. 

This occurred due to low values of inventory and capacity levels provided in this policy, where 

inventory level reaches zero value several times along the time horizon, figure 6 (c). On the other 

hand, figure 6 (a-c) shows high variations in the response of capacity, backlog, inventory, and 

total cost for Kim policy; where all these responses highly oscillate around their average value.  

                               

Flag*U*C(t)PR(t)                            (37) 

DUT= Random uniform (1, 7, 0)                                                                                                (38) 

DDT= Random normal (1, 7, 4, 1, 0)                                                                                          (39) 

In general, system breakdowns lead to random performance for all variables considered in both 

policies. This was expected due to the random nature of breakdown proposed in this work. In 

future work to face this problem the model structure needs to be modified and new scaling 

policies have to be developed.  
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Figure 6: Dynamic Response for Different measures in case of machine breakdowns 

 

6. Summary, conclusion and future work 

This paper presented a model for a manufacturing system that is characterized by capacity 

scalability. Modeling was based on a system dynamics approach to better reflect the dynamic 

nature of capacity scalability process. The paper contributes to the knowledge of capacity 

scalability management by adding new refinements to the existing state of the art. The new 

refinements include adding production costs estimation, scaling capacity on seasonal basis and 

adopting system breakdowns. Each of these refinements was defined and introduced to the 

scalable model in the form of module. Multiple performance measures including capacity level, 

inventory level, backlog level and total production costs were selected for analysis and 

assessment of the new refinements. Two capacity scaling policies were used to illustrate and 

analyze the effect of the new refinements on the basic model performance. The main conclusions 

of the conducted analysis are: 

 Systems Dynamics is a viable approach to model traditional as well as manufacturing 

systems with scalable-capacity. 

 A diversity of cost schemes and realistic assumptions such as Seasonal capacity scaling, 

equipment breakdowns, and variable production capacity decisions can be successfully 

modeled. Total cost can be used as an objective criterion to compare different scaling 

policies.  

 Seasonal capacity scaling is an important approach in scalable systems that lead to more 

stable systems and decreases scaling cost deeply. 

 

 

(c) (d) 



 

 

16 
 

Possible future research directions are: 

 Traditional optimal search and parametric analysis methods can be devised to optimize 

the system's performance and select best capacity planning policies.  

 More suitable scaling policies need to be developed to avoid the unstable effect of 

system breakdowns. 
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Appendix A 

 

Basic Model nomenclature: 

 

C = Capacity level at time t. 

B = Backlog level at time t. 

I = Inventory level at time t. 

WIP = WIP level at time t. 

PR = Production rate at time t. 

PSR = Production start rate at time t. 

AD = Average demand. 

SD = Standard deviation for the normal demand distribution. 

DT = Time step. 

OR = Order rate at time t. 

ShR = Shipment rate at time t.  
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OFR = Order fulfillment rate at time t.                                                                    

TRT = Target responsiveness time.  

DSR = Desired shipment rate at time t. 

MSR = Maximum shipment rate at time t.              

MOPT = Minimum order processing time.  

SSC = Safety stock coverage time. 

DIC = Desired inventory coverage time.                                                                    

IAT = Inventory adjustment time. 

I = Desired inventory level at time t. 

AI = Adjustment for inventory rate at time t. 

U = Utilization level of the available capacity. 

RC = Required capacity at time t. 

SDT = Scalability delay time. 

SR = Scalability rate at time t. 

MLT = Manufacturing lead time.  

MUT = Manufacturing unit time. 

Wi = The relative weight of inventory consideration in capacity scalability decision. 

Wp = The relative weight of demand consideration in capacity scalability decision. 

 


