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Abstract 

Detailed individual level simulation models are needed for better policy analysis to combat the costly 

obesity trends. Current models largely focus on adulthood and do not capture variations across 

individuals. In this paper I develop a simple simulation model spanning the full life cycle of an individual 

that captures both weight changes and growth in height. The model is tested for consistency with 

growth charts, robustness under different energy intake scenarios, and consistency with other empirical 

sources including a previous model from the literature and the experience of a lost ocean traveler. The 

results suggest the model structure is capable of capturing the key trends in growth and weight 

dynamics, however better data sources are needed to estimate a few of the model parameters 

empirically.  

Introduction 

The obesity trends across the world are alarming. The percentage of Americans who are obese has doubled to near 

30% during the past four decades, and close to two third of the population is overweight (Bray and Bouchard 2004; 

Ogden et al. 2006). This trend is leading to significant costs and loss of quality life (Wang et al. 2008). Multiple 

levels of factors, from biological to environmental, are involved in creating the obesity problem and thus a systems 

approach to analyze the problem and assess interventions is called for (Huang et al. 2009). Models that can assess 

the potential impact of alternative interventions are needed in assessing effectiveness of alternative policies. Such 

models can facilitate policy analysis by expanding the boundaries of our mental models and enhancing learning 

from evidence (Sterman 2006). However due to ethical and practical considerations in data collection available 

dynamic models for obesity rely on short-term time series data and small sample sizes (Butte et al. 2007; 

Christiansen et al. 2005; Flatt 2004; Hall 2010a; Kozusko 2001) which reduces their direct applicability for policy 

analysis at the population level. While this literature provides a great starting point for modeling individual level 

body weight dynamics, none of the current models include both childhood and adulthood dynamics. Moreover, the 

current models focus on modeling a single “average” adult and do not capture the impact of demographic and 

individual variations. Simulating population level weight gain and loss dynamics, and assessing alternative 

interventions in a new population group, requires dynamic models that 1) Capture the full life-cycle individual-level 

body weight dynamics realistically, building on biological processes that regulate energy balance in body, and thus 

have robust formulations. 2) Connect individual level and population level dynamics in a generalizeable fashion and 

capture variations across individuals that lead to obesity. 3) Express the impact of interventions on energy intake and 

physical activity for different individuals. In this paper we focus on developing a model that satisfies the first 

requirement and can be used to build models addressing the other two requirements as well. 

Modeling Body Weight Dynamics 

Several models of body weight dynamics have been discussed in the literature (Abdel-Hamid 2002; Butte et al. 

2007; Christiansen and Garby 2002; Christiansen et al. 2005; Flatt 2004; Hall 2010a; Kozusko 2001; Kozusko 2002; 

Hazhir Rahmandad 
Grado Department of Industrial and 

Systems Engineering 
Virginia Tech 

Hazhir@vt.edu 



Song and Thomas 2007; Thomas et al. 2009). These models vary in their level of complexity and the feedback 

mechanisms they capture. Common across most these models are the stock variables fat mass (FM) and fat free 

mass (FFM) which constitute the majority of body weight in a normal person. More detailed models may consider 

the stocks of glycogen, protein, and extracellular fluid mass and adaptive thermogenesis among others (Flatt 2004; 

Hall 2006, 2010b). While additional complexity could be important in evaluating dynamics that unfold in hours or 

days, results of comparative studies by Hall and colleagues (Chow and Hall 2008; Hall 2010a) suggest that for 

longer term dynamics FM and FFM provide much explanatory power with very little complexity. I therefore rely on 

these two variables as the main stocks of body mass in our model. Because we also model individual’s growth, a 

third stock variable capturing height is also included. There is currently no unified model for childhood and 

adulthood body weight and height dynamics in the literature. The current model create one such model by 

combining insights from the previous literature, most notably the models in literature by Hall (2010a) and Butte, 

Christiansen et al.(2007), and developing a new framework that considers energy supply and demand, their 

allocation, and the contribution of those allocation decisions to growth and weight loss. 

 Energy supply comes from energy intake (EI) and consuming body mass. Total energy intake is the most 

important factor about food and beverage consumed by an individual and nutrient composition is of secondary effect 

in modeling weight dynamics. Nutrient composition could become relevant in dynamics of growth, but we assume 

nutrient composition is relatively constant and therefore shortages in total energy would be a good proxy for 

nutrients needed for growth. Energy could also come from burning FM or FFM (either due to starvation, or if either 

mass is beyond what the body needs). These three sources create the total energy supply in our equations.   

Factors influencing energy demand include demand for maintenance of the body and energy demand for 

growth or processing of current body mass. Equation 1 summarizes these factors following Hall (Hall 2010a). The 

maintenance energy demand depends on basal metabolic rate (BMR) which contributes to 50-75% of energy 

expenditure, the physical activity energy needs, and the energy for digestion of food and nutrients consumed (     . 

BMR (                ) depends on an individual variation factor (k) and the body composition (energy 

needs for maintaining FM and FFM). Energy expenditure attributed to physical activity (PA) is largely proportional 

to the total weight (BW=FM+FFM) and the intensity of PA, thus the term      . In the current model we assume 

PA values are given as exogenous inputs. The energy required for developing new mass (or digesting existing mass) 

is captured in the term    
    

  
    

   

  
. Also following Butte Christiansen et al. (2007) we note that   and    are 

a function of age (Tanner stage) in children, before they stabilize in adulthood.  
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 We model energy demand for growth based on comparing current weight with the desired weight of 

individual in near future (i.e. dl years ahead) and the required body composition changes along with achieving that 

weight change. The weight change rate indicated to reach that desired level within dl periods is used to calculate 

current energy needs for growth. Desired weight is determined based on the desired height and desired body mass 

index (BMI
1
) for the individual at time t+dl, both modified around values from 50

th
 percentile of CDC growth charts 

(Kuczmarski et al. 2000). Desired height (Equation 2) is a weighted average of CDC growth charts, projected to dl 

periods ahead, and the current height plus the expected growth between t and t+dl. This average is then adjusted 

based on a factor that captures variations across individuals and different ethnicities in potential height. This factor 

(h(Age)) represents differences in genetic factors that influence potential height an individual can achieve and varies 

with age during growth years because there is much more (fractional) variability in potential height in the early 

years of life. Desired BMI is a weighted average of CDC median for an individual with the same age and gender, 

and current individual BMI (Equation 3). 
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 Body Mass Index, BMI, is defined as weight (in Kg) divided by height (in meters) to the power of two (BW/H

2
) and 

is widely used as a measure of obesity, where adults with BMI>30 are considered obese and those over 25 are 
considered overweight.  
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The desired weight change is then partitioned into desired changes in FFM and FM. To do so, the desired Fat Mass 

Index (FMIDesired) is calculated using the results of a regression model that was estimated separately for men and 

women as well as children and adults and reported in Appendix 1. These regressions predict FMI as a function of 

age, gender, ethnicity, BMI, and height.  The desired FM and FFM are then calculated (Equations 4 and 5), and the 

energy needs for growth in FFM (Fat Free Energy Demand: FFED) and FM (Fat Mass Energy Demand: FMED) 

will be determined so that the required mass is created within dl periods. If current FM (or FFM) are beyond the 

desired values, the extra energy that could be supplied from such reserve mass is calculated as negative FMED and 

FFED, and will be considered as a potential energy supply. These calculations take into account both the energy 

stored/released in/from tissue and the energy needs for generating new tissue or disintegrating existing tissue. These 

required parameters are all taken from the literature (Hall 2010a). Note that in these, and other equations, where Age 

is used, we allow the model to differentiate between calendar age and the growth equivalent age. Some individuals 

may grow faster, reach puberty earlier, and reach their maximum height at an earlier age, where as others may grow 

more slowly than their calendar age suggests. All the biological processes modeled use the growth equivalent age, 

which varies around calendar age by a constant factor. 
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 This model can take energy intake (EI) as an exogenous input. However, in practice reliable EI data is not 

available for large samples and over long time horizons, so we use an alternative set of expressions to endogenously 

generate EI values for a simulated individual. This equation is only used for testing different scenarios with 

endogenous energy intake and does not represent a real individual trajectory. It is set up so that energy needs for 

body maintenance (TMI) and growth (positive values of FFED and FMED) are captured. However it does not 

reduce the energy intake if sum of FFED and FMED are negative (i.e. the person is overweight and thus can lose 

weight and supply energy). If that effect is also included, the model practically would assume the individual will 

always adjust her energy intake based on a diet that brings her quickly to the desired weight and body composition.  

          (                   (8) 

 A key formulation for this model is the allocation of energy from different sources to different demands of 

the body. This formulation takes into consideration five potential sources of energy supply and demand, and 

allocates energy according to a market-based allocation mechanism. Specifically the energy is demanded for 

maintenance (TME), required fat mass growth (Max(0,FMED)), required lean mass growth (Max(0,FFED), reserve 

lean mass deposit, and reserve fat mass deposit. The latter two components store whatever energy left over from EI 

after allocating the sources of energy to other three demanded needs. This extra energy is partitioned between the 

FM and FFM according to the empirically driven partitioning function in equation (Chow and Hall 2008; Forbes 

2000). 

                                 (            (9) 

The energy is supplied from five potential sources. EI is the primary source. Reserve FM and FFM deposits can 

provide additional energy if there is demand for it (Max(0,-FMED) and Max(0,-FFED)). Finally, when other supply 

sources fall too short, required FM and FFM could be disintegrated to supply the maintenance energy and keep the 

individual alive. The parameter tmin specifies the minimum time to disintegrate and digest tissue and sets the 

maximum amount these latter sources can supply.  



 Once the sources of supply and demand for energy and the maximum levels of supply/demand for each 

source are determined, we use the Vensim ™ function that offers a market clearing price mechanism to allocate 

resources from multiple sources to multiple demanders. The details of this allocation algorithm go beyond the scope 

of this paper, but the basic idea is that different demand/supply sources have different priorities. These priorities are 

conceptually similar to prices at which demand/supply materializes in a market: if a demand source has very high 

priority, it will consume the resources at very high market prices. A supplier with low priority will supply the 

resource at low prices. The market clearing price is calculated by balancing out different supply and demand 

sources, so that at some level of priority (e.g. market price) the total supply and demand are equal. That (aggregate) 

priority level then sets the amount supplied/demanded by each source, based on source priorities. To operationalize 

this function we need to set individual priority functions (similar to supply or demand curves) for different sources. 

These priority functions and the resulting demand/supply source matching is reported in Table 1. In each cell of the 

table we identify if the given supply source (row) may supply energy to the given demand source (column). For 

example body will use supply of EI to satisfy TME with no reservation, thus the Y marker in the relevant cell. N 

means the priority of supply source is higher than demand, and therefore no supply will be provided from this 

supply source to the corresponding demand (e.g. essential FFM will not be used to generate reserve FM). We also 

identify the priority and width parameters used for defining the supply and demand curves
2
 in the simulations.  

 

Table 1- Priorities of different energy supply and demand sources in energy allocation process. 

Demand 

Supply 

TME (10,1) Required 

FFM (6,1) 

Required FM 

(6,1) 

Reserve FFM 

(2,1) 

Reserve FM 

(2,1) 

EI (0,1) Y Y Y Y Y 

Required FFM (9,1.2) Y N N NA N 

Required FM (8.9,1) Y N N N NA 

Reserve FM(4,1) Y NA Y NA N 

Reserve FM (4,1) Y Y NA N NA 

 

Finally individual height is adjusted towards the desired height (from Equation 1). This adjustment is a 

function of energy availability for required FFM growth (EAFFM), if energy is limited for this demand, the height 

growth will be hampered. Catch up growth is possible if enough nutrition is provided later, but only during 

childhood (up to the age of 20 in this model). Equation 10 specifies this formulation. 
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 Figure 1, provides an overview of the causal pathways in the individual level model. The model is 

initialized based on input initial values that a user provides to specify Birth Date, Gender, Ethnicity, BMI, growth 

equivalent age factor, and relative height of a simulated individual. Initial FM and FFM are determined using total 

weight (from initial BMI and Height) and population level estimates of fat fraction from regression results (reported 

in appendix 1). Key parameter values are listed in Table 2 and full equations are available in the model provided 

online with the submitted paper.  

 

Table 2- Model parameters and their explanation 

Param Value Unit Comment 

                                                           
2
 Supply/demand curves follow the integral under a triangular function centered around priority with the given 

width. The height of the curve is the maximum supply/demand for the specific source. See Vensim help files on 
Many-to-many allocation functions and related supply/demand curves. 



dl 1 Year Growth projection horizon 

   2555 Kcal/kg/Year Physical activity level for an average 
individual based on 7 Kcal/Kg/Day 

   230 Kcal/Kg Energy need for turnover of lean mass 

   180 Kcal/Kg Energy need for turnover of fat mass 

  0.1 Dimensionless Thermic effect of feeding 

  0.3 Dimensionless Sensitivity of height growth to energy 
availability 

p 0.502 1/Kg Scaling factor for partitioning equation 

sb 0.3 Dimensionless Weight of CDC based projection on 
desired weight 

tmin 0.1 Year Minimum time to transform mass to 
energy 

k 100000 Kcal/Year Basic energy expenditure for the 
individual 

   1800 Kcal/Kg Energy density of lean mass 

   9400 Kcal/Kg Energy density of fat mass 

   (                 
   (        

       Kcal/Kg/Year Energy requirement for sustaining lean 
mass changes with age and also depends 
on gender. 

   1168 Kcal/Kg/Year Energy requirement for sustaining fat 
mass. 

sw 0.5 Dimensionless Weight of CDC based projections on 
desired height 

 

 
Figure 1- Overview of individual level model and its major feedback loops. Not all causal connections are shown 

and the fat mass (FM) and fat free mass (FFM) are combined to keep the visualization simple. 
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Results 

In this paper we report some preliminary results from the model developed above. We first 

explore the base case behavior of the model in a scenario where Energy Intake (EI) is set at the 

equilibrium value required for basic growth, and compare the results with CDC growth charges and 

predictions from the fitted regression models. We would then test the behavior of the model under 

several scenarios to assess its robustness and suitability for policy applications. 

In Figure 2 we compare the behavior of the model and different empirical sources regarding 

height and BMI for a simulated white male (identifier 1) and a white female (identifier 2) followed from 

birth to age 80. The empirical height and BMI values are coming from the CDC charts. The model 

matches the CDC Height projections very closely, which is expected due to the fact that desired height 

comes from these charts (Equation 2) and there is no significant energy shortage in these scenarios to 

hamper growth. The behavior of BMI is slightly different from the CDC charts, specifically, BMI lags CDC 

chart values during childhood. To understand this consider that desired BMI follows a weighted average 

of current BMI and the CDC projections (Equation 3). The impact of current BMI on desired BMI make it 

lag the CDC chart values  and thus creates a gap between the real BMI and the CDC graphs. This effect is 

most important when CDC values for BMI change rapidly, i.e. in early ages. In fact if the weight 

parameter, sb, is changed to 1 (giving full weight to CDC charts), then the gap between the graphs 

shrinks considerably.  

 
 

Figure 2-Comparison of height and BMI model projections against CDC growth charts. 

Next we compare the behavior of key model variables across 6 different individuals (Hispanic 

Male/Female, White Male/Female, and Black Male/Female with indicators 1-6 respectively). These 

results are reported in Figure 3. Consistent with empirical observations, simulated male subjects are 

taller, heavier, and have a larger BMI. Fat fraction starts high for the male but goes down while it slowly 

growths for the female. The impact of ethnicity is limited in general and is most pronounced on height 

differences (blacks are slightly taller than whites who are slightly taller than Hispanics) and childhood fat 
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fraction which is slightly higher for Hispanic children. Overall the variations by gender and ethnicity are 

modeled to follow the empirical observations and simulations are consistent with those basic trends. 

 

  

  
Figure 3- Base case simulations for 6 representative individuals with different gender and ethnicities (Line markers are: 1: 
Hispanic male; 2: Hispanic female; 3: white male; 4: white female; 5: black male; 6: black female). Weight, Height, BMI, and 
Fat Fraction are reported over 80 years of life from birth. 

The third set of results assesses the behavior of the model under a wide range of input EI trajectories to 

assess the robustness of the formulations and their plausibility (See Figure 4). In each scenario we report 

the four variables height (1), weight (2), fat fraction (3), and BMI (4) for a single white, female simulated 

individual. Panel a reports the base case results which will be used as a comparison point. Individual’s 

weight and BMI in this setting are almost constant in adulthood due to the assumption that EI equals the 

desired value for maintenance and growth. These small variations are due to asymmetric nature of EI 

equation (see Equation 8; note that negative values for FFED+FMED do not reduce EI). The first 

experiment, Panel b, increases the EI by 1% beyond the equilibrium level throughout life. As a result the 

individual consistently gains weight throughout her life. Panels c and d, in contrast, report on 

experiments where individual is consuming less energy than is required by her body. In panel b the 

individual consistently suffers from a 10% shortage in energy intake, below what is required for 

maintenance and catch up growth. As a result she has significant problems with weight gain and also she 

does not grow to her full potential for height by adulthood. In panel d the individual is getting 1% less EI 

than is needed for both maintenance and growth during childhood and only maintenance of her current 

body mass during adulthood. This is achieved by removing the second argument in Equation 8 

(Max(0,FMED+FFED)) when the individual reaches age 20. As a result she grows to adulthood without 
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any major problem (only slight chronic under-weighing). However due to removal of the extra energy 

needed for catch up growth, she loses significant weight and starves by the end of simulation. This 

experiment shows the important role of the assumptions going into the EI equation. Specifically if catch 

up growth energy needs are included in EI calculations, the individual is more likely to survive shortages 

of energy because her base level needs are significantly more.  

Finally, panels e and f report on an individual exposed to sinusoidal oscillations in EI with amplitudes 

10% of equilibrium EI. Similar to the previous two experiments, panel e includes the growth catch up 

term in EI calculations but panel f does not. As a result in the first case the individual’s weight and BMI 

oscillate around a steady state value, where is in the second experiment the individual faces a long term 

decline in weight. This decline is generated by the asymmetry in weight gain vs. loss due to the energy 

needs for processing body mass into/from energy. As a result upward (growth) cycles are slightly more 

energy consuming per kilogram of body weight generated, than are downward (diet) cycles, which leads 

to a downward shift in weight over time. 

 
 

 
 

 
 

Figure 4-Model behavior under different energy intake (EI) scenarios. Height (1), Weight (2), Fat Fraction (3), and BMI (4) are 
reported for 6 different scenarios: a) Base case (equilibrium) b) 1% more EI than required for growth and maintenance. c) 
10% less energy than required for growth and maintenance. d) 1% less energy than required for growth and maintenance, 
during childhood, and only maintenance during adulthood. e) EI oscillating with 10% amplitude around required levels for 
growth and maintenance. f) Same as e, except no growth catch up energy is included during adulthood. 
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Finally, we compare the models predictions with two other empirical sources. First, we compare the 

models projections with those provided by an empirically validated model by Hall (Hall 2010a). In this 

experiment we track the weight changes of an 80 kg and a 120 kg middle aged female over a 10 year 

period, where the individual starts with equilibrium energy intake and then starts and maintains a diet 

cutting down on her energy intake by 500Kcal/day for the next decade. Hall reports on this experiment 

in his paper, and we replicate the experiment for a white female starting at age 303. The results are 

reported in Figure 5 and are compared with Hall’s results. In short the two simulations are fairly 

consistent, with Hall’s model taking slightly longer to reach steady state. 

In a second empirically motivated experiment we simulate the fate of Louis Zamporini, the American 

athlete and serviceman in second world war. After his airplane crashed over Pacific ocean in September 

1941, Zamporini and a colleague stayed on a raft for a period of 47 days with almost no food beyond a 

few small fish they could catch. A third serviceman succumbed to starvation during this ordeal. The two 

survivors were then arrested by Japanese forces as they had drifted across the Pacific ocean to Japanese 

territories and remained a prisoner of war for the rest of the WWII. Zamporini’s story is documented in 

the book “Unbroken” (Hillenbrand 2010).  Accordingly, within this time period he had gone from being 

very athletic and weighting 76 kg to weighing as little as 36 kg. The simulation starts from a similar initial 

state (his fitness is reflected by lower initial fat fraction than typical) and tracks his fate in the absence of 

any energy intake for 47 days. The result is a loss of weight to 39 kg (Figure 6), which is roughly 

consistent with Zamporini’s experience. In the simulation he takes several months to catch up to his 

previous weight, when eating at the level required for both maintenance and body mass catch up. 

 

                                                           
3
 Hall’s model does not distinguish individuals based on age, gender, or ethnicity, and only applies to adults. 

However only very slight variations would be observed if we simulated an adult from a different demographic. 

 

 
Figure 5- Comparison of model results (right) with Hall (Hall 2010a) (left) projections in simulating weight change of an adult 
female starting from 80/120 kg initial weight and equilibrium EI, taking a diet that reduces her EI by 500 Kcal/day, and 
continuing that for 10 years. 
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Figure 6- Simulation replicating the experience of Louis Zamporini in 47 days of having almost no energy intake when lost on 
Pacific ocean.  

Discussion and Future Work 

In this paper I have developed one of the first integrated models of body growth and maintenance that 

spans both childhood and adulthood, includes height dynamics, and differentiates individuals based on 

gender and ethnicity. The model provides projections for weight and height dynamics that are roughly 

consistent with CDC growth charts. It also shows qualitatively reasonable behavior under different 

extreme scenarios as well as in comparison with empirically motivated test cases. As a result the model 

can be a good test bed for analyzing the differential impact of different interventions that target obesity 

with different emphasis on various population groups. 

A few shortcomings of this research offer opportunities for further research. First, the model 

parameters are largely taken from the previous literature, however a few important parameters 

including the weighting factors for determining desired height and weight (sb and sw; see Equations 2 

and 3), the sensitivity of height growth to energy availability ( ), and the growth projection horizon (dl) 

are currently set at base case values based on exploratory analysis but have not been calibrated to 

empirical data. Population level data for body weight, height, and composition is available through 

national surveys such as the National Health and Nutrition Examination Survey (NHANES) which could 

inform such calibration. However no time series data is available over long time horizons (beyond a few 

weeks) that includes accurate energy intake measurements. Given the central role of energy intake in 

body weight dynamics, one will need to estimate an equation that determines EI endogenously, while 

also predicting the population level distributions for body weight, height, BMI, and body composition. 

Further validation could be pursued through comparing the model predictions against empirical tests of 

diet and physical activity programs. Moreover, the model should be further compared with existing 
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simulation models in the field to provide a clear understanding of similarities and differences across 

different models and whether they have any policy implications.  

 

Appendix 1- Regression results used for assessing fat mass index and initial fat fraction. 

Desired fat mass index (Fat Mass/Height^2) for an individual is estimated using step-wise linear 

regressions that are fitted to NHANES 2000-2008 data on body fat mass, BMI, height, age, and ethnicity. 

Only the best fitting model is reported where all independent variables are significant at 0.001 level.  

BMI (kg/M^2), Age (years), and Height (M) are continuous variables while Hispanic and Child (i.e. under 

20) are binary variables. FMI is in Kg/M^2 and Fat Fraction is a dimensionless value between 0 and 1. 

Male Child: FMI=BMI*0.177335+BMI^2*0.00701678+Hispanic*0.468919-Age*0.34449+2.70458, 

Male Adult: FMI=BMI*0.0277482+BMI^2*0.00756044+Age^2*0.000343892-0.186475 

Female Child: FMI=BMI*0.40371+BMI^2*0.0032376+Hispanic*0.32056-2.72373 

Female Adult: FMI=BMI*0.490372+BMI^2*0.00176694-Age*0.108299+Age^2*0.0015991+ 

Height*2.83091-6.79844 

 

Initial Fat Fraction (FM/BW) for an individual is estimated using step-wise linear regressions that are 

fitted to NHANES 2000-2008 data on body fat mass, BMI, height, age, and ethnicity. Only the best fitting 

model is reported where all independent variables are significant at 0.001 level. 

 

Male: FF=sqrt(BMI)*9.15649+Hispanic* 1.57162+Age* 0.0813697+Child*28.3113-Child*Age*1.55691-

26.5456 

Female: FF=-11.77+ sqrt(BMI)*13.9054-Height*3.35054+BMI*Height^2*0.126261+ 

Hispanic*1.23887+Age*0.0158701+Child*2.46072-Child*Age*0.117857-BMI*0.956517 
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