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Abstract
This  paper  explores  the  complementary  use  of  system  dynamics  and  case  study  research 
methodology for process theory development. The rationale for this is provided on the grounds 
of the limitations of human cognition, particularly in understanding the evolution of complex non 
linear systems and processes in time. This poses difficulties when attempting to arrive at causal 
mechanisms  for  phenomena  of  interest  with  some  confidence.  Viewing  research  as  an 
evolutionary process where better explanations are continuously sought, generated, selected and 
retained, simulation can be of use both in increasing the range of alternatives considered and 
serving as a concrete background against which the selection process takes place, thus facilitating 
the attainment of a satisfactory level of system understanding. Modelling and simulation has the 
added benefit of providing a documented artifact through which conclusions are reached and 
consequently it allows for replication or at least a thorough review. 

1 Introduction
Research aims at the attainment of sufficient levels of knowledge, through which useful theory  
can be developed or falsified. The vast array of methods and approaches available reflects the 
multifaceted nature of  phenomena that are investigated.  For  example,  in organization theory 
(Hatch,  1997),  these  can be  linear  or  non linear,  static  or  dynamic and single or  multi  level.  
Accordingly, one or more methods are applied to their study. This usually takes place either in 
vivo (the real world) or in some controlled laboratory experiment (in vitro). In the context of 
organisation theory, the former rather than the latter is most often the case, considering the open 
ended nature of  organizations as entities  that  exist  in a social  milieu.  Observing a particular  
phenomenon in reality can only be done once. Once it is over, a repeat is highly unlikely. This is a  
core difference to the natural sciences where controlled experiments are possible far more often.  
Consequently this requires that more attention and energy be directed in observing phenomena 
and as many of their facets as possible, as they unfold. In order to achieve this, the application of  
a suitable array of methods and/or perspectives is required. In this regard, this paper focuses on 
two methods  used  widely  in  a  variety  of  research  areas:  case  study (Yin,  2003)  and system 
dynamics (SD) modelling and simulation (Sterman, 2000). Adopting the view that models are 
autonomous  and  distinct  from  theory  and  the  real  world  (Morgan  and  Morrison,  1999),  it 
discusses the potential for their conjoint use, the advantages and potential complementarities that 
develop and places them along a three step process of theory development.

Section two discusses case study research methodology and section three explores some of the 
reasons for its limitations in studying complex system processes. Subsequently, section four looks 
at the nature of the research process and sets the scene for section five where the benefits that 
modelling and simulation can confer on case study research are discussed in an evolutionary 
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research context. Section six consolidates some of the points made in section five and relates the  
characteristics  of  each  methodology  to  the  overall  research  process.  Finally,  section  seven 
concludes the paper. 

2 Case Study Research
Case  study  research  focuses  on  understanding  phenomena  (in  single  or  multiple  cases),  at 
different levels of analysis. Case studies are rich, empirical descriptions of particular instances of 
a phenomenon that are typically based on a variety of qualitative and quantitative data sources 
and perspectives.  Yin (2003)  provides  a  generally  positivistic  approach to  case  research,  and 
defines it as an empirical enquiry that investigates a contemporary phenomenon within its real 
life context, where the boundaries between phenomenon and context are not clearly evident. It is 
also possible to consider a research design in which a generic hypothesis, dynamic or otherwise,  
is tested in several cases and contexts.

In contrast to experimental research designs that deliberately separate a phenomenon from its 
context, case studies examine a phenomenon in its real life setting and the influence that it might 
have. Because of this, case studies often begin without a strong consideration of a conceptual 
framework, and this provides some flexibility for modifying theoretical propositions, questions or 
activities as the analysis progresses.  Case studies can be used to accomplish various aims: to 
provide description, test theory, or generate theory (Yin, 2003). For example, in inductive theory 
development, theory is developed by tracing relationships among postulated constructs and/or 
looking for the same relationships across cases (Eisenhardt and Graebner, 2007). Of course, there 
is always the possibility that such theories concern an idiosyncratic phenomenon and as a result 
further generalization is difficult or impossible. Such a theory can still be testable and valid but its 
reach will be rather narrow, unlike theories like resource based view, population ecology and 
behavioural economics (Eisenhardt, 1989).

The article focuses on explanatory case studies. These usually consist of: (i) an accurate rendition 
of  the facts  of  the case,  (ii)  consideration of  some alternative explanations for them,  and (iii) 
conclusions based on the explanation that has been singled out as appearing to be most congruent 
with the evidence.  In process theory development, the search for an explanation is a kind of 
pattern  matching  process  between  the  event  sequence  as  observed  and  documented  in  the 
narrative and that of the explanation considered (Yin, 1981; Abbott, 1990). This is required even 
for a single case study because the explanation should link all of the factors analysed and relate  
them in a rational way. In effect the researcher constructs and consolidates a chain of evidence as 
he  conducts  the  case  study and  documents  it.  This  chain  can  consist  of  particular  pieces  of 
evidence,  from each stage of  research as it  shifts  from data collection to within-case analysis 
and/or cross-case analysis and to overall findings and conclusions.

If  there  is  limited  theoretical  knowledge  about  a  phenomenon,  then  inductive  theory 
development based on case study research can be a good starting point (Siggelkow, 2007). These  
can combine qualitative  with quantitative  evidence.  Although the  terms qualitative  and case 
study are often used interchangeably (e.g., Yin, 1981), case study research can involve qualitative 
and  quantitative  data  (Yin,  2003).  Moreover,  the  combination  of  data  types  can  be  highly 
synergistic. Qualitative data can provide an understanding of the relationships and dynamics that 
are thought to be in place. This is instrumental in securing the internal validity of the explanation 
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offered about  the  studied  phenomenon.  However,  just  as  in  hypothesis  testing,  an  apparent 
relationship may simply be a spurious correlation or may reflect the influence of some exogenous 
variable on the other two. Therefore, it is important to discover and provide an answer on why 
the relationship exists. Quantitative evidence can indicate relationships which may be overlooked 
otherwise.  It  can  also  keep the  researcher  from being carried away by  vivid,  but  erroneous, 
impressions in qualitative data, and/or it can bolster findings when it corroborates with them. In 
short,  qualitative  data  can  reveal  different  candidate  relationships,  or  rationales  for 
understanding  a  phenomenon  of  interest,  or  may  lead  directly  to  theory  which  can  be 
strengthened by quantitative support (Jick, 1979).

Subsequently,  having identified and described the phenomenon of  interest,  it  is  necessary to 
identify those processes which give rise to it at a level below that at which it is observed, in order  
to  explain it.  Thus, it  is  necessary to identify mechanisms which, given the properties  of  the 
constituent elements of the phenomenon and their interactions with the environment, give rise to  
it in time.  In linear systems, this is straightforward and analysis sooner or later points to the 
phenomenon's  source.  Where  non-linearity  is  present,  such  analysis  will  not  suffice,  as  the 
mechanisms which give rise to the phenomena cannot be located in the individual constituents  
but rather are a property of the system elements as a whole. This does not imply, however, that it 
is impossible to come up with simple explanations of non linear phenomena (Goldspink, 2002).

An approach that integrates these two modes of analysis (multi level and temporal or processual)  
is  said  to  be  contextualist  in  character.  The  multi  level  aspect  attends  to  the  causal 
interdependences between higher or lower levels of analysis upon phenomena to be explained. 
The horizontal aspect refers to the temporal sequential interconnectedness among phenomena in 
historical, present and future time. There are a number of characteristics of contextualist analysis 
(Pettigrew, 1990): (i) the study of change in the context of interconnected levels of analysis, (ii) the 
importance of revealing temporal interconnectedness, (iii) the need to explore context and action, 
i.e. how context is a product of action and vice versa and (iv) the absence of  linear, or singular 
causes of change. Indeed narrative approaches cannot be used to identify external singular causes 
(Abell, 2004; 2001). Thus there is no attempt to search for an overarching grand theory of change, 
or of  how and why a  single independent  variable  causes or even influences  a  dependent  or 
outcome variable. An awareness of this necessitates the adoption of a critical perspective.  

The search for an explanation in contextualist analysis, can be complicated by different temporal  
patterns that occur at different levels of the process (Lerner and Kaufman, 1985; Abbott, 1990). 
Time sets a frame of reference for perceiving kinds of changes and explaining them. For example, 
a firm may be changing more quickly or more slowly than the economic sectors of which it is a  
part.  Thus, it  may be difficult  to  detect  the influence of  changes of one level  on another – a 
perennial problem for contextualist research.  In other words, change and continuity are a matter 
of  time,  empirically  and theoretically.  Any adequate empirical  inquiry  into  change has to  be 
capable of revealing the temporal patterns, causes and movements from continuity to change and 
vice versa. This involves meeting certain challenges as discussed next.

Case Study Research As A Decision Process 
Collecting and analysing comparative and longitudinal data on change processes is a complex, 
social and intellectual task and the resultant accumulation of details can be overwhelming. The 
process  involves  cycles  of  expanding  complexity  and  simplification.  Periods  of  increasing 
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complexity and openness are necessary to gain appreciation of the richness of the subject matter  
being investigated. Periods of closure and simplification are also necessary for making sense of  
the data, for structuring them and identifying patterns in them. Subsequently further verification 
through more data collection can follow.

This  alternation between complexity  and simplification should provide the reflexive space to  
reveal  the  deep  seated  continuities  of  historical  and  social  processes  and  their  idiosyncratic 
untidiness. The end result of this process is a narrative that can include continuity and change, 
patterns and discontinuities, the actions of individuals and groups and the role of contexts and 
structures (Griffin, 1993).  For the analyst interested in the theory and practice of changing, the 
task  is  to  identify  the  variety  and  mixture  of  causes  of  change  and  to  explore  some of  the 
conditions and contexts under which these mixtures occur in time (Pettigrew, 1990). Arguments  
over the true or single source of change, while interesting and even worthwhile in the sharpening  
of academic minds and egos are ultimately pointless. 

Inevitably, at some point in time the results of research must be documented and disseminated – 
published. A time for this comes when an adequate level of understanding has been built up 
about a system or a phenomenon, and there is considerable confidence about the conclusions of  
the research. Whether this point has been reached or not, is a judgement made initially by the  
researcher. Subsequently, when this work is documented, it is usually subjected to the judgement 
of peers as well. The iterative nature of research usually entails facing this decision numerous 
times  (Morgan,  1983).  A  negative  decision  is  reached  on  the  grounds  that  the  work  can  be 
improved  and  provide  a  better  explanation,  or  more  confidence/support,  in  what  is  being 
proposed. This decision is influenced by scientific judgements about the quality and quantity of 
evidence and theoretical interpretation and it is also bounded by pragmatic considerations about 
the sequencing of work and the requirements of funding bodies (Pettigrew, 1990). There is no 
ideal time to write up research.

For example, the issue of concluding data collection and analysis is closely linked to the problem 
of evaluating the outcome of a change process (Pettigrew, 1990). Change is what the researcher  
defines it to be in his theoretical framework. Thus it is left to him to explicitly define what is 
perceived as change, and explain it by research. It is also left to them to stop the ensuing data 
cycle of increasing complexity and simplification.

Narrative – Quantification Continuum
The  scientific  endeavour  oscillates  in  this  continuum,  in  cycles  of  data  collection  and 
simplification, which can include the quantification and categorization of concepts and findings.  
The  narrative  and quantification  strategies  lie  at  the  two ends  of  a  continuum that  opposes 
empirical accuracy and theoretical parsimony. While the narrative approach leads to theoretical 
accuracy  (Weick,  1989),  quantification  leads  more  easily  to  parsimonious  theoretical 
conceptualizations (simplicity). This is because it abstracts from the original data and replaces the 
ambiguous,  rich  and  context  specific  description  with  precise,  and  more  general  indicators-
categories  with  clear  boundaries.  Accuracy  thus  is  not  necessarily  the  strong  point  of  such 
theories, even though the gap between the data and the emerging model may be defensible. The 
advantage of generality needs to be handled with care and having a study properly documented 
improves its transparency and thus facilitates the validation or falsification of the conclusions of  
the study.  
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At the narrative end of the continuum, the challenge is to consolidate the wealth of information of 
the case in generating insights and answering research questions, while avoiding details that are  
idiosyncratic to the data. It makes sense for researchers that go into great lengths to collect and 
compile rich qualitative data and descriptions of processes, to pay more attention to them before 
transforming this data into a smaller and manageable data set so that the specific is not lost in  
extracting  the  general.  At  the  other  end  of  the  spectrum,  relying  solely  on  quantification 
strategies, may lose critical elements of process understanding in abstractions so general, that the 
results obtained may be clear and unambiguous but fairly trite. Thus the quantification strategy 
gains credibility when some of the context or narrative is retained, that enables interpretation and 
confirmation of the mechanics of the model.  One of the quantification techniques is dynamic 
simulation (Langley, 1999). It is mainly used for examining the dynamic relationships between 
events and verifying dynamic theories that involve feedback loops. 

The following sections do not  focus  on the issue of  whether models  (linear  or complex)  can  
represent the true causes of phenomena (natural or social) in the real world. This issue has been 
explored  in  depth  elsewhere  (for  example  see  McKelvey,  1999a;  2002,  Goldspink,  2002, 
Richardson,  2001;  2004;  2005).  The  issue  dealt  with  in  the  following section  is  the  ability  of 
humans to infer the causes of the phenomena observed in complex systems by conducting case 
study research alone, and the value of simulation in relation to that.

3 Humans & Complex Systems
Research, consists in defining a system of interest and investigating it. The researcher develops 
some understanding of  its  dynamics,  its  behaviour and what influences  it.  In  the process  he 
develops his own mental model about the system, its modes of change and the problems it faces. 
This task requires knowledge of the empirical domain, theoretical sensitivity and creativity on the 
part  of  the  analyst,  in  order  to  identify  patterns  and  causal  mechanisms.  It  could  be 
straightforward and thus accomplished in a linear manner were it not for the complexity of the 
studied systems and their dynamic change processes, and the limitations placed upon their study  
by the human mind.  In  other  words,  in the complex systems view where everything can be 
considered  as  endogenous  and  part  of  a  single  overarching  system  (Richardson,  2005)  it  is  
impossible to know the system completely. 

Distinctions made between subject and object, outside and inside, exogenous and endogenous, 
define the boundary of the system and make a difference to the kind of knowledge that can be 
attained about it (Maturana and Varela, 1980). This is because systems are incompressible i.e. it is 
impossible to have an account, that is less complex than the system itself without losing some 
information  about  it  (Cilliers,  1998).  This  is  an  important  aspect  of  complex  systems for  the 
development  of  any  analytical  methodology,  or  epistemology.  Incompressibility  essentially 
means  that  any  system  description  through  a  perspective,  paradigm,  framework,  etc.  is 
incomplete.  Consequently,  any learning and progress in problem solving achieved through a 
system description is finite and partial. The choice of a particular perspective is dictated by the 
needs of the analysis – problem, rather than some permanent characteristic of the system itself. It  
is also dictated by the need to simplify in order to study it  because of human limitations on 
cognition  and  attention.  Therefore,  since  no  single  perspective  can  capture  the  intricacies  of 
complex systems, analysing problems in them requires two things: (i) the application of a number 
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of  perspectives,  and (ii)  the application of  perspectives  that  are complementary in  nature,  in 
recognition of the fact that human cognition is limited.  

This pluralistic attitude towards system study is even more necessary in social science research as 
systems are in continuous flux and boundary definition is even more a subjective matter than in  
natural  science.  It  presents  researchers  with problems for  research design and theory testing 
(Goldspink,  2002).  Thus  the  exploration  of  different  perspectives  is  imperative  for  the  same 
reasons of system complexity and human cognition limitations. The latter is widely referred to as 
bounded  rationality.  The  view  of  humans  as  boundedly  rational  individuals  has  been  put 
forward by Simon (1979, 1982; 2000) and specific aspects of it have been studied, such as the 
misperception of feedback (Sterman, 1994) and the stock and flow failure (Cronin et al., 2009) i.e.  
the innate limitation of humans to appreciate processes of accumulation.  

Misperception Of Feedback
People  systematically  misperceive  feedback  among  system  elements,  because  the  mental 
constructs that guide their decisions are dynamically deficient (Sterman, 1989a; 1989b). People 
adopt an “event based open loop view of causality” (Diehl and Sterman, 1995, p198),  do not 
appreciate  system  delays  and  feedback  processes,  and  the  possibility  that  the  intensity  of 
feedback loops in the system may change. The misperception of feedback hypothesis is supported 
by  studies  in  experimental  economics,  psychology  and  management  (Smith,  Suchanek  and 
Williams, 1988; Funke, 1991; Brehmer, 1992).  The same difficulties in learning have also been 
studied at the organizational level (Rivkin, 2000).

Stock And Flow Failure
Research on the stock and flow failure has shown that people, including those with a background 
in  science,  technology,  engineering,  mathematics  or  quantitative  social  sciences,  have  a  poor 
understanding of how stocks and flows result in accumulation or depletion. Evidence for this is  
provided in articles that investigate the stock and flow understanding of people (Sterman and 
Sweeney, 2007; Pala and Vennix, 2005) and the management of common pool resources (Moxnes, 
2000). The correct response to stock and flow problems is often counterintuitive, and it eludes 
even highly educated people with strong mathematics and calculus backgrounds (Cronin and 
Gonzalez, 2007; Sterman and Sweeney, 2002). People cannot correctly infer that a stock rises (or 
falls)  when its  inflows are  higher  (or  less  than)  its  outflows.  Instead,  people  often  use some 
correlation heuristic, concluding that a system’s output is positively correlated with its inputs 
(Cronin et al., 2009). 

Despite the fact that accumulation is a ubiquitous process that is present in most temporal, spatial  
and  organizational  scales,  people  perform  poorly  even  in  simple  dynamic  systems  with  no 
feedback processes, time delays, or nonlinearities, including systems consisting of a single stock 
with one inflow and one outflow (Sweeney and Sterman, 2000; Cronin and Gonzalez, 2007). The 
level of human performance is not a result of limits on working memory,  capability of mental 
computation, ability to read graphs, time constrains, or subject motivation. It is also not related to 
the attribute of the task, or the context or volume of data. Data presentation in numbers, text,  
tables, or graphical displays (bars or graph lines) does not alter the results. The stock–flow failure  
is a robust phenomenon that results from a failure to apply the basic principles of accumulation. 

Instead of these a range of inappropriate heuristics is employed.  Research in human dynamic 
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decision  making  shows  that  people  have  great  difficulty  in  understanding  and  managing 
dynamically complex systems i.e. systems with multiple feedback processes, time delays, non-
linearities,  and  accumulation  processes  (Sterman,  2002).  Furthermore,  learning  in  dynamic 
systems that would lead to improved performance is often slow and weak, even with repeated 
trials,  unlimited  time,  and  performance  incentives  (Kleinmuntz  and  Schkade,  1993;  Sterman, 
1989a; 1989b).  Bounded rationality places a limit  to human cognitive maps and the extent to 
which these can be used to correctly infer the behaviour of a system. Inevitably these insights are  
of limited value. In order to achieve effective learning both of these limits must be overcome  
(Sterman, 1994). Even in the case that a correct understanding of the system could be achieved 
relatively fast, it would be difficult for people to transfer the lessons learned from one domain to 
another, even in the case where the structure of the task structure is isomorphic (Sterman, 2010).

The implications of this phenomenon are significant since accumulation processes are ubiquitous.  
Failure to appreciate its dynamics can result in erroneous inferences about the causes of system 
behaviour,  or their timing. This could lead the research endeavour to an early conclusion, or 
produce an insufficient set of causes for the systems behaviour. In either case the learning about  
the problematic situation will have been compromised. Effective approaches to learning about 
complex dynamic systems require (Sterman, 1994): (i) tools to describe and frame issues, extract 
knowledge and beliefs from relevant actors in order to create maps of the feedback structure of  
the issue, (ii) formal models and simulation methods to explore and evaluate the dynamics of 
these maps and test intervention policies, and (iii) methods to sharpen scientific reasoning skills,  
improve group processes,  and overcome defensive routines for individuals  and teams.  These 
requirements must be satisfied in order to enhance the capability of individuals to learn and 
operate effectively in systems, or improve their design.

System Design & Interventions
Simulation is important for another reason as well. Humans learn through feedback generated by 
their  actions.  In  natural  sciences  this  is  accomplished through experimentation.  But  in  social 
systems real  world experiments for policy making are impossible in many cases or are quite 
costly.  In  addition  the  effects  of  the  implemented  decisions  may  take  considerable  time  to 
manifest. Therefore  simulation  should  be  considered  as  a  means  to  discover  how  complex 
systems  work  and  where  high  leverage  points  for  intervention  may  lie  (Meadows,  2008).  
However,  there are no methodological short  cuts to the task of searching for good candidate 
theories and explanations. There is very little value, if any, in drawing insights from simulations  
of poorly understood systems. What should be sought after is a model along with a plausible 
explanation of why it displays a behaviour similar to that observed in reality (Lane, 2008). The 
inevitable cyclicality in this statement should not be discouraging since in this paper it is not 
argued that either understanding or simulation unilaterally drives the other.

The understanding of change phenomena and particularly change towards sustainability, is even 
more important when it comes to policy making (Sterman, 2002). This is where recognizing the 
limits of our knowledge, and the ‘‘inevitable a priori’’ assumptions that lie at its roots can make a  
difference when acting based on our mental models (Meadows, 1980). If people are to become 
willing to adopt a new perspective,  and change their  assumptions about the world and their 
deeply entrenched behaviours, they must first see the constrains of their current beliefs. In this 
respect the value of simulation lies in improving human intuition about system behaviour and 
finding ways of overcoming policy resistance. 
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Effective Learning And Simulation
Following  on  from  this  it  is  obvious  that  effective  learning  involves  two  challenges:  (i) 
constructing meaningful system representations from which the dynamics of a system can be 
inferred, and (ii) deciding when a satisfactory level of learning about a system or a phenomenon 
has been achieved in order to draw insights and document conclusions. Deciding on when a level  
of  effective  learning  has  been  reached is  a  subjective  judgement  by  the  researcher  (or  those 
concerned), a human, that uses mental constructs and processes to analyse a system. The research 
effort stops when the level of understanding of the phenomenon or system, is judged as sufficient  
in  order  to  generate  with  confidence,  an  adequate  and  satisfactory  explanation  of  the 
phenomenon under investigation. However, this faces serious limitations: all individuals enact 
them in their cognitive processes. It is logical to extent this to research and hypothesize that it is  
equally  difficult  for  researchers  to  learn  about  larger  complex  systems  that  involve  human 
interactions. 

Even if researchers could learn perfectly from their environment, they can learn only as fast as  
events unfold.  Subsequently they have to reflect  upon them and update their  mental  models 
about the world. There are two limitations to this: (i) humans observe only one modality of the 
behaviour  of  systems  at  a  time,  the  one  that  actually  manifests,  and  (ii)  when  it  comes  to 
processes that unfold on different time scales (several decades), it is almost impossible to update 
mental models in any meaningful way, simply because it is impossible to observe how the whole 
process  unfolds.  Even  when  it  is  possible  to  attain  such  a  level  of  knowledge,  it  would  be 
available  only  after  the  process  itself,  by  which  time  it  would  be  rather  late  to  apply  it 
meaningfully  because,  as  said  colloquially,  experience  is  something  acquired  only  after  it  is 
needed. 

Consequently, for useful learning to occur, individuals have to close the loop from their mental  
models to reality and back (with all the limitations discussed), relatively quickly to the rate at  
which actual events and processes unfold in reality (Figure 1). Yet, in the real world, particularly 
the  world  of  social  action,  closing  this  feedback  loop  can  be  a  long  and  ineffective  process 
(Sterman, 1994).  This is inevitable when observing path dependent systems far from equilibrium. 
It is hard to control for certain variables in order to discern cause and effect (causal ambiguity).  
Thus learning is slow and less is learned going each time around the loop. Sometimes it is just not 
meaningful  to  set  up  experimental  settings  or  isolate  the  effect  of  the  variable  of  interest.  
“Systems happen all at once” (Meadows, 2008, p5) therefore it is necessary to study the system as 
a whole. This is where simulation has an advantage as the creation of experimental settings of  
greater inclusiveness in silico can be advantageous to conducting experiments in vitro or in vivo. 
This  comes  at  the  expense  of  attending  to  detail  but  for  studying  a  system's  behaviour, 
inclusiveness of causes takes precedence over detail (Sterman, 2000).
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In summary, case studies offer a rich description of real world phenomena and the context in 
which they occur. However, when it comes to understanding and learning about nonlinear and 
complex processes, conducting case studies based on human cognition alone is insufficient. This 
is where modelling and simulation can contribute, by isolating the phenomenon from its context  
and abstracting the causal mechanisms, in effect creating a laboratory experiment for learning 
and  changing  the  mental  models  of  humans.  Taken  together  with  a  roadmap  of  how 
computational modelling can be applied for theory development (Davis et al., 2007) they provide 
a conceptual outline of how to develop a good computational laboratory. 

There is a range of models with which different social phenomena can be studied. For example, 
organizational learning, decision making rules, search, innovation and imitation processes and 
organizational design (Burton and Obel, 2011; Carley, 2009). Hence, empirical data gathering and 
field  or  laboratory  case  studies  can  be  utilised  to  construct  an  initial  range  of  alternative 
explanations for a process or phenomenon. Subsequently, computational models can be used to 
corroborate this evidence, and expand the mental models of researchers by offering a means to 
articulate more elaborate explanations, explore system boundaries and in effect venture beyond 
that which can be learned otherwise (Goldspink, 2002).  

Since case study and modelling and simulation capture different aspects  of  the phenomenon 
under study, the results of both methods can be juxtaposed to deepen the insights and broaden 
the  understanding  of  the  system  (Mingers  and  Brocklesby,  1991).  The  effectiveness  of  the 
complementary use of case study and simulation is based on the assumption that the strengths of 
each method counter the weaknesses in the other and that these differ between methods (Jick, 
1979). It is also suggested by the discussion so far that only convergent inferences about the same 
problem  from  different  methods  really  constitute  knowledge,  the  basis  for  formulating  and 
refining theory (McGrath et al., 1982). 

4 Theory Development & Disciplined Imagination
Theory development takes  place by an individual  researcher (or  group),  and it  may concern 
phenomena at spatial and temporal scales smaller or larger than the human scale. In conducting 
research,  the  researcher  learns  something  about  the  system  of  interest.  This  involves  the 
development  (or  alteration)  of  his  mental  model  as  he progressively  comes to  grips  with its  
behaviour. The end result is an understanding of the system and explanation of its modes of 
behaviour under given conditions with a certain degree of  confidence i.e.  a theory about the 
behaviour of the system. 
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Figure 1. Feedback between reality and mental models (adapted from Sterman, 2000)
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In creating useful theory a number of choices and simplifications with regard to the phenomena 
of  study  has  to  be  made  (Siggelkow,  2007).  Starting  from  different  assumptions  a  range  of 
different explanatory attempts are usually made. Then the researcher evaluates their plausibility 
by looking in depth at the available evidence, and creating a convincing narrative in order to 
illustrate the rational behind each proposed theoretical mechanism for the phenomenon under 
study. Consequently, theory development involves the design, trial and interpretation of thought 
experiments in which explanations under different perspectives are tried out. This in essence, is 
an evolutionary process of generation and selection among a variety of different explanations at 
the level of the researcher. It has an artificial dimension as the theorist intentionally selects or  
rejects them. It can be  driven by abstract mental activity (thought experiments) or peer review. 
There is also a natural selection dimension to it through empirical tests and application in the real 
world. Finally, that which survives the selection process is retained provisionally as a plausible 
theory. It is assumed that through this process, the explanatory strength of theory is increased. In 
this conceptualization of research process, learning and theorizing are construed as the outcome 
of a cumulative process where a number of theoretical schemes and/or mechanisms that have 
some correspondence to their assumed ontological referents,  goes through a selection process 
(Weick, 1989). Through this, the researcher aspires to reach a level of understanding about the 
system so that he is in a position to make an inference about the behaviour of the system under 
certain conditions. 

However,  if  inferences about systems at human spatial and temporal  scales are erroneous as 
discussed, then it can be safely assumed that it also holds for making inferences in any other 
scale. The implication is that the research effort is fraught  with difficulties as: “the theorist is 
overloaded by demands  to  run a  miniature  evolutionary system in a  head that  suffers  from 
bounded rationality.  That load reaffirms the value of working toward theories of the middle 
range.” (Weick,  1989,  p529).  The demands of  theory development from a rationally bounded 
individual, necessitates the exploration of the use of simulation and thus the adoption of different  
perspectives in developing a range of possible explanations to phenomena.

Theory development, as a selectionist evolutionary process at an aggregate level has been treated 
elsewhere,  therefore  this  is  not  addressed  in  detail  here  (Cambpell,  1979;  1985;  1988;  1997; 
McKelvey, 1999b). Instead, the following sections take a view at the micro – individual level of 
theory development and the role of modelling and simulation.

Simulation & Theory Development 
One of the obvious uses of computational  models  is  to aid in theory construction or explore  
processes for which there are no well established theories (Davis et al., 2007). In addition models 
are  a  way  of  implementing  theories  about  phenomena  that  have  been  derived  based  on 
observations but cannot be applied (the big bang theory for example and application of fractals in 
silicon graphics applications) (Morgan and Morrison, 1999). In every case, the construction of the 
model involves more than the mere translation of theory and an abstract representation of reality. 
Validating a simulation model  is  directly  related to the epistemic status  of  the knowledge it 
incorporates and is one of the central epistemological problems of computer simulation methods 
(Kuppers and Lenhard 2005). A model is partially independent from theory (or mental models)  
and from real world phenomena, i.e. there is no one to one correspondence with either of them. It  
is an intermediary artefact between theory and the world that can be used in a variety of ways to  
explore  them.  In  this  capacity  it  can  be  considered  as  part  of  the  learning  process.  This 
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conceptualisation is shown in the following figure.

An important requirement in developing theories from case research, is the demonstration of 
their validity. This involves meeting the criteria of internal validity, construct validity, external  
validity,  and reliability (Gibberr et al.,  2008). A characteristic of published research in the top 
management journals for example, is that authors report and demonstrate on how they meet each 
one of these criteria. Modelling and simulation can be of use in meeting some of these criteria.  

Internal Validity
This relates to the causal relationships identified or proposed after analysing a case study. It is  
imperative that the researcher provide some logical argument for them and demonstrate that they 
are plausible in order to support his research conclusions. It follows that internal validity is built  
in the data analysis phase of the study (Gibber et al., 2008). Internal validity must be aimed for 
from the  outset,  by  formulating  a  clear  research  framework  to  enable  the  demonstration  of 
outcome y as a result of a variable x, and avoid overdetermination or underdetermination. In  
order  to  arrive  at  underlying theoretical  reasons for  why the  relationship  exists  between the 
ontological constructs, the case data must provide a good understanding of the dynamics that 
underlie  the  relationship.  Then the  internal  validity  can  be  assessed by  comparing  observed 
patterns  to  those  derived  from  candidate  theories  or  those  inferred  from other  case  studies 
(Denzin and Lincoln, 1994; Eisenhardt, 1989), or by looking at the data from different research 
perspectives which can involve different methods (Mingers and Gill, 1997; Yin, 1994) or different 
scientific paradigms (metatriangulation) (Gioia and Pitre, 1990;). 

Nevertheless,  metatriangulation is not a substitute for single – paradigm theory building, but 
rather  an  alternative  for  exploring  complex  phenomena  from  disparate  theoretical  and 
epistemological perspectives. It should be viewed as an extension of established strategies aimed 
at enhancing the potential insights available from existing literature, data, and the researcher's 
intuition.  Metatriangulation follows many of  Weick's  (1989)  prescriptions  for  building theory 
using  "disciplined  imagination,"  deliberately  and  dramatically  increasing  the  quantity  and 
diversity of literature reviewed, of analytical methods used, and of conjectures examined (Lewis  
and Grimes, 1999). 

The role of simulation in enhancing the internal validity of case study is in providing a further 
test for the causes that are thought to generate the observed system behaviour and thus increase 
confidence in the research conclusions.

Construct Validity
Construct validity is a measure of the quality of the conceptualization or operationalization of the 
research  design  constructs.  It  reflects  the  quality  of  work  in  the  data  collection  phase  and 
consequently the extent to which an accurate observation of reality has been made, through the 
applied research process (Denzin and Lincoln, 1994). The construct validity of a case study can be 
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improved in two ways: (i) by providing a clear chain of evidence to allow readers to reconstruct 
how the researcher went from the initial research questions to the final conclusions (Yin, 1994), 
and  (ii)  by  studying  the  phenomenon  from  different  angles,  using  different  data  collection 
strategies and sources.  

Simulation can be of value as the documentation produced in the model development phase of a 
model, can provide at least part of such evidence. Following the methodology of any modelling 
method results in the construction of documentation and diagrams (apart from the model itself).  
Documenting a model while developing it, is a standard practice in every simulation method that 
includes documenting the assumptions, abstractions, producing flow charts or causal diagrams, 
producing  variable  descriptions  and  assigning  units  for  each  one.  These  can  function  as 
intermediate objects (for example causal loop diagrams in SD) from data collection to inference of 
the system's behaviour and conclusions and can facilitate better the reconstruction of the path the 
researcher  followed.  They  provide  an  insider's  view  into  the  decisions  and  the  process  the 
researcher followed from data collection to research conclusions. They can thus function as a 
further means of communicating theory development process (Goldspink, 2002). For example, in 
SD modelling the construction and presentation of  causal  loop and stock and flow structure 
diagrams of the model is standard practice. It can be used as a guide post for other researchers to  
understand  how  the  researcher  progressed  from  an  initial  research  question  through  data 
collection to final research conclusions (Homer and Oliva, 2001). 

External Validity
External validity, or ‘generalizability,’ indicates the extent to which theories or insights derived 
from research, are valid in a broad range of contexts. While it is not possible to generalize using  
statistics, from a number of firm case studies to the population of firms in the same industrial  
sector (Yin, 1994; Numagami, 1998), it is possible to generalize from empirical observations to 
theory. Conducting a cross study of case studies ranging from four to ten, can be the basis of 
theory development (Eisenhardt, 1989). It is also possible to conduct multiple case studies of the 
same empirical  setting instead of  conducting and analysing multiple case studies of  different 
ones. The possibility of using simulation here lies in the identification of causal mechanisms that  
generate the observed pattern of each case study so that both mechanisms and generated patterns 
can  be  compared.  This  would  allow  both  identifying  common  mechanisms  at  work  and 
corresponding similarities in patterns. On a meta level,  the use of a model, specific to a case,  
would allow the researcher to state whether there is a common mechanism across case studies or 
not and thus reinforce analytical generalization. 

System dynamics methodology includes tests for checking the external validity of a model in 
order to determine whether it is a model of a class of systems to which the particular one belongs  
(Sterman,  2000).  This  test  involves  checking  whether  the  model  can  reproduce  the  range  of 
behaviour that are specific  to  the class  of systems (hence the name family test).  This kind of 
generic  model  that  produces  a common behaviour pattern across documented cases is  called 
canonical situation model (Lane and Smart, 1996). For example a model of Bass diffusion should 
be able to generate more than the classic S-shape adoption curve. In reality products may fail, or 
may be in fashion for a while but never be adopted. A canonical innovation model should be 
capable of capturing these patterns. 
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Reliability 
High reliability is testament to the absence of random error in research, that enables researchers  
to repeat it and arrive independently at the same insights and conclusions (Denzin and Lincoln, 
1994). The key attributes for case study reliability are transparency and replication. Transparency 
requires the careful documentation and clarification of the steps of the research process, in effect 
reporting how it was conducted. The supply of documentation (case study documents, and the 
narratives  collected  during  the  study)  along  with  other  supporting  material,  also  facilitates 
replication  (e.g.,  Leonard-Barton,  1990).  In  this  respect  a  working  model  can  function  as  an 
additional  record of  how the  research  was conducted (because  it  entails  following a  specific 
modelling  methodology),  and  as  concrete  link  between  the  data,  the  theory  and  the 
operationalization of its constructs. 

Replication of work and results is a necessary step in scientific progress and has been mostly 
absent  from  organizational  research  (Jick,  1979).  Replicating  a  qualitative  case  study  is  not 
something attempted very often. Qualitative methods are problematic to replicate. On the other 
hand,  quantitative  methods  are  not  when  properly  documented.  In  principle  model 
documentation enables the replication and verification of its results and consequently the insights 
and causal explanations proposed. Furthermore it enables the application of the same model in a 
different context, thereby testing its generality. An added benefit to facilitating replication is that 
documenting the limitations of the case study and having a simulation model, provides a solid 
ground for further research and theoretical refinements. Here SD has an advantage as the range 
of software tools is more limited and model documentation is fairly standardised compared to  
agent based models (Schieritz and Milling, 2003). Most crucial is the fact that formal structural 
and behavioural validation procedures are available for SD modelling (Sterman, 2000). Despite 
efforts  at  constructing a general  framework for  designing,  testing and analysing  agent  based 
models, for example in ecological modelling by Grimm et al. (2005) and Grimm et al. (2006), there 
seems to be no widely accepted framework yet (Richiardi et al., 2006).

5 Simulation For Evolutionary Theory Development 
In  order  to  argue  for  the  benefits  of  modelling  and  simulation,  the  research  and  theory 
development  process  is  conceptualised  in  three  steps  of  variety,  selection  and  retention. 
Modelling and simulation can offer specific benefits in each of these steps. This implies that it can 
be used in parallel with case study research. 

Modelling  in  order  to  study a  problem,  always  involves  making  a  judgement  about  system 
boundaries  i.e.  how  wide  is  the  range  of  potential  causal  factors  involved,  considering  the 
temporal nature of the phenomenon as well. Recognising this, highlights the fact that studying a  
system as a closed entity inevitably narrows its scope. Since all boundaries are transient (given 
enough time) and complex systems are sensitive to small changes (Richardson, 2005), boundary 
definition is important and it reflects the assumptions made, particular analysis needs, and aims 
rather than the systems themselves (Cilliers, 1998).  In fact, a more accurate phrase is exploring  
their boundaries for the best way to draw them. This is particularly important in longitudinal 
case studies. 

Simulation is an obvious tool with which to engage in exploring the implications of different  
system boundaries. It is an integral part of its methodology. For example, in SD it is called family 
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member  testing  (Sterman,  2000).  It  can  also  facilitate  the  generation  of  a  range of  candidate 
alternative explanations by alternating the assumptions, the generative mechanisms and thus the 
boundaries of the model.  Hence,  the heterogeneity of the researcher's  thought experiments is  
expanded  beyond  his  individual  capacity.  Finally,  selecting  among  them  is  easier  since 
visualisation and quantification with simulation allows the consistent application of criteria or 
even the application of more diverse criteria. A characteristic that allows the parallel use of case 
study and modelling and simulation is the search for an explanation. It is an iterative process 
both  in  modelling  and  simulation  (Sterman,  2000)  and  in  case  study  research  (Yin,  2003).  
Therefore the cycles of iteration in both methods, can follow from and feed to one another as  
shown in the figure below. 

This diagrammatic depiction of the research process is discussed next in terms of the steps it 
involves. In each one a description of what it involves is followed by the relevant benefits of the  
application of modelling and simulation. Following Weick (1989) theory development process 
thus is  viewed in terms of  what simulation has to  offer,  in:  (i)  stating a problem by making 
explicit  assumptions,  increasing  the  accuracy  and  detail  of  the  representation  and  making 
representation  more  detailed,  (ii)  formulating  thought  trials  by  increasing  their  number  and 
heterogeneity,  and  (iii)  selecting  among  thought  trials  by  applying  criteria  consistently  and 
simultaneously or applying more diverse criteria. It is thus argued that it provides an auxiliary 
means for the researcher to run a mini evolutionary system (Weick, 1989) and thus offers an 
increased possibility of seeing (Siggelkow, 2007. p23): “the world, …, in a new way.” which is  
what is really sought in theory development.

Step 1: Creating An Explanation Of Observed Patterns
A necessary step to process theorization, i.e. the challenge of taking an ensemble of data and 
arriving at a theoretical understanding is postulating explanatory mechanisms for the process 
(Van  de  Ven,  1992;  Langley,  1999).  Analysing  and  developing  theory  about  interdependent 
processes that generate non linear patterns is demanding. This is the case even when each one is  
understood separately, as the whole can be greater than the sum of its parts. Thus the empirical 
analysis  of  processes  with  complex  interactions  that  include  feedback  has  limited  value, 
particularly when data are hard to obtain or are simply non existent (Harrison, 2007). Analysing  
this ensemble of data may not suffice for pattern exploration, and modelling and simulation may 
be necessary in order to really explore patterns and develop an understanding about how the  
world works (Sterman, 1994). However it is crucial that the data are not stripped of their richness, 
dynamism and complexity.
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Simulation and modelling provides a powerful  methodology for research on complex system 
behaviour. Modelling involves identifying the key underlying processes for the behaviour of the 
system  and  their  pattern  of  interaction.  Subsequently,  these  are  formalized  as  mathematical 
equations or sets of computational rules that can be simulated. An advantage to the process is  
that the construction of a model is not bound to data availability. Consequently modelling and 
simulation can proceed, even when there are very little or no data to ground it on. It can even be  
used to explore the dynamics of theoretically postulated processes, even when there cannot be 
any immediate empirical assessment (Harrison et al., 2007).

A further benefit of simulation is the theoretical rigour it introduces in the research process. A 
phenomenon may appear to be well  understood, but an attempt to specify an equation for it 
often exposes gaps in this understanding and may open new research avenues. The discipline of 
formalizing  a  process,  forces  researchers  to  face  issues  and  assumptions  they  may  have 
acknowledged  but  vaguely  addressed,  or  perhaps  not  even  recognized.  Thus  the  minimum 
contribution of formalization is the emphasis on addressing this category of issues both in theory 
development and empirical work, and subjecting them to analysis and refinement (Harrison et  
al., 2007). In other words, simulation can help capture a more complete, holistic and contextual  
portrayal of the system under study. Coupled with case study research it can help the researcher 
probe further into the system's behaviour. Consequently, the use of more than one methods, can  
offer  more  than just  a  way to  enhance  the  reliability  and validity  of  research  (Jick,  1979)  as 
outlined in previous sections. The combination of case study and modelling and simulation does 
justice  to  the  richness,  dynamism  and  complexity  of  social  phenomena  while  it  remains 
understandable  and  useful  to  others  with  the  added benefit  that  the  codified  model  can  be 
reproduced and enhanced for further research by others.

Nevertheless, postulating underlying causal explanations, is not sufficient (McKelvey, 2002). For 
scientific progress requires that the research arrives at the best possible set of causal mechanisms. 
This involves generating (step 2) and evaluating a set of alternatives (step3).

Step 2: Imagining Alternatives
The immersion in rich case data enables the use of cases as inspiration for new ideas and the 
development  of  alternative  theories.  This  step  entails  making  and  varying  assumptions,  
hypothesizing a range of relationships between explanatory variables and/or creating a range of 
different representations of the system based on different ontologies. Rather than holding onto a 
single perspective or theory, and trying to stretch it to fit the data, it is generally better to develop  
and juxtapose alternative perspectives, and then determine which theory better explains the data 
(Mitroff and Emshoff, 1979). The probability of arriving at a satisfying explanation, increases with 
the number of theoretical variations that are generated and tried out, and with the number and 
diversity of the selection criteria, that are applied to them. 

This step can be conceptualised as the preparation and conduct of experiments with the aim of  
understanding a phenomenon and finding plausible causes. Here lies a fundamental constraint as 
this process of disciplined imagination takes place in the mind of the researcher (Weick, 1989), a  
boundedly rational individual (Simon, 1982; 2000). Inevitably, researchers are both the source of  
variation  and  the  source  of  selection.  They  need  to  assert  the  consequences  of  theoretical 
arguments and assumptions they make, generate alternative explanations and hypotheses, and 
test the validity of proposed explanations. The exposition of the fallibility of human judgement in 
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the  previous  sections  points  towards  the  use  of  modelling and simulation  for  extending the 
cognitive capacity of the analyst in running the mini evolutionary system of competing theories. 

Modelling and simulation can facilitate this process of generating and testing the validity of a  
range of candidate explanatory mechanisms in replicating a phenomenon (Harrison, 2007).  In 
effect this involves asking what if questions (Burton and Obel, 2011; Oreskes et al., 1994).  The 
development  and  use  of  a  simulation  model  and  subsequently  the  analysis  of  its  displayed 
behaviour, provides an unambiguous expression of a theory and at the same time it is a test of its  
ability to reproduce behaviour patterns (Lane, 2008). 

Step 3: Evaluation, Selection & Retention
The  third  step  involves  addressing  the  ontological  adequacy  of  the  phenomena  to  model 
relationship, as well as selecting one among many alternative candidate explanations (McKelvey, 
2002). This is a milestone as it allows for a temporary stop to the research process, in order to  
document the results and conclusions. This judgement should be made based on the criteria of  
parsimony, testability and logical coherency and on how well the model represents and accounts 
for the real phenomenon i.e. explanatory power (Pfeffer, 1982). Selection should also proceed by 
considering counterfactuals i.e. situations where the postulated causal mechanisms are tested for 
the possibility of generating some non plausible behaviour pattern.  The complementarity with 
case studies is that it is possible to test for counterfactuals (Griffin, 1993) something that usually is  
not done with modelling and simulation.  For example,  the logic for constructing causal  loop 
diagrams  it  to  connect  causes  to  manifest  effects  thus  not  addressing  at  least  explicitly  the  
possibility  of  counterfactuals.  In  addition  the  mechanisms  under  investigation,  should  not 
overdetermine or underdetermine the phenomenon under study, i.e. the proposed theory should 
include the necessary and sufficient, non unique causes for generating it. Ideally, the variables the 
model involves should be easy to operationalise and inform with real world data.  This is  an 
additional criterion that can be utilised especially regarding for policy making. 

While  it  is  possible  to  evaluate  the  parsimony  and  testability  of  theory,  the  requirement  of 
internal logical consistency and over/under-determination is harder to assess based on a case  
study  alone  due  to  bounded  rationality.  In  addition  it  involves  some  form  of  boundary 
exploration. Modelling and simulation provides a heuristic with which to accomplish this and 
increase the confidence in deciding between alternative truth claims as well as for substantiating 
theoretical validity (Goldspink, 2002). This is possible with models as they embody propositions 
which can be refuted logically or empirically, provided that the modelling methodology has been 
followed rigorously i.e. assumptions have been made explicit and the model has been submitted 
to adequate tests for validation (Barlas, 1996; Sterman, 2000). 

Consequently,  this  allows  its  use  for  determining  the  range  of  conditions  under  which  the 
proposed mechanisms are valid, and thus control for nomic necessity i.e. that (McKelvey, 1999a, 
p21): “one kind of protection against attempting to explain a possibly accidental regularity occurs 
when rational logic can point to a lawful relation between an underlying structure or force that, if  
present, would produce the regularity”. In other words, modelling approaches enable a plurality 
of representations that can be compared by simulating them (Kuppers and Lenhard, 2005). This 
improves the comprehensiveness of the explanations considered and the end result  will  be a 
better explanation and a better theory. It is not possible to do this to the same extent mentally.
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Pattern Matching
In  theory  development,  it  is  possible  that  both  an  inductive  and  a  deductive  approach  are 
utilised. In their combined use, some kind of pattern matching principle is used. The matching of 
patterns deduced from theory and patterns derived from observation, yields greater theoretical 
validity.  Process  theory  development  through  case  studies,  provides  explanations  of  a 
phenomenon or behaviour based on the series of events that drive it. Understanding these events 
is central to developing or improving process theory. Their sequence, their nature, and the way 
they  interact  (stochastic,  deterministic,  reinforcing  or  counterbalancing)  is  important  (Mohr, 
1982).  Drawing on the raw data of the case study, to form an explanation of how events interact, 
requires analysing them, and their interactions in terms of the behaviour pattern they generate. 
The difficulty  lies  in that  processes  are not solely composed of  discrete  events and temporal  
phenomena.  A range of  other  qualitative  and quantitative  information is  usually  required to 
create a complete pattern of how a process evolves. 
One technique employed to explore this ensemble of data or for proposing theoretical patterns for 
consideration  in  subsequent  studies,  is  pattern  matching.  It  requires  a  theoretical  pattern  of 
expected outcomes, an observed pattern of effects and an attempt to match the two. The observed 
pattern encompasses the ensemble of collected data and their interrelationships. Depending on 
the level of noise of the real data, it provides a way of generating a description that contains less 
than the total description of the system, while still reflecting some fundamental understanding of 
it  (Richardson,  2005).  The  theoretical  pattern  embodies  a  hypothesis  about  the  expected 
behaviour of a system based on the relevant theoretical concepts and their interrelationships.  
Both patterns can comprise verbal descriptions, diagrams or a set of mathematical expressions.  
The  idea  is  that  the  observed  pattern  is  compared  with  that  derived  from  the  postulated 
explanatory mechanisms for  the process (Trochim,  1989).  It  resembles  hypothesis  testing and 
model  building  approaches.  Because  of  the  range  of  forms  allowed,  detailed  or  complex 
hypotheses can be studied, from a multivariate rather than a univariate perspective. 

If the two patterns match, then this increases the probability that the proposed theory explains  
the  phenomenon.  It  is  also  important  to  demonstrate  that  there  are  no  plausible  alternative 
theories or explanatory mechanisms that account for the observed pattern. This requires that a 
series of plausible explanatory mechanisms be generated (step 2) and rejected (step 3) if  they 
don't  generate  the  expected  pattern.  Modelling  the  postulated  explanatory  mechanisms  and 
simulating them is a rigorous and systematic way of implementing pattern matching. Such an 
approach has been explored for example in SD where the behaviour of the model is compared to 
the observed pattern of the real world (Barlas, 1989).

If there is no match, then the researcher should attempt to reconcile the differences by refining its  
explanation  or  searching  for  alternatives.  In  the  process,  the  obscured  dimensions  of  the 
phenomenon may be  uncovered,  for  example  by using simulation to  focus  on the  timing of  
interactions  among  system  elements.  These  additional  viewpoints  can  produce  insights 
discordant  to  the widely  accepted theory and thus offer  the opportunity  to  search for better  
explanations and refine them as in the case of Sastry (1997). Examples of such pattern oriented 
modelling  applications  exist  in  other  scientific  domains  as  well,  for  example  in  ecological 
modelling (Railsback and Johnson, 2011).

Timing Of Interactions
The analysis,  comparison and explanation of  patterns  (empirical  or  theoretical)  is  incomplete 
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without setting a reference time frame. Adopting different time frames can make phenomena 
appear incremental or abrupt. Therefore, any attempt at explaining them has to reveal also how 
they unfold in time and how events perturb the system as they may cause a different response at  
different  time instances.  Consequently,  when looking  at  observed and proposed (postulated) 
patterns of processes through time, apart from matching the geometric pattern (change/stability), 
their  timing must also be matched,  i.e.  the observed phenomenon and that derived from the 
postulated mechanisms must arise in the same point in time. 

This requires tracing events over time and compiling the narrative of  the case in a temporal  
sequence. Narratives are inherently longitudinal and they are likely to involve many different 
types  of  data  and variables  and not  limited  to  a  single  independent  or  dependent  variable. 
Whether it  is  explicitly constructed or  implicitly assumed,  the utility  of  this  sequence lies  in 
investigating and determining the causality of events from the start of the phenomenon to finish. 
The analytic goal is to compare the observed sequence of events, with that predicted by some 
explanatory theory. Evaluating the match of the two patterns in terms of timing entails observing  
the following conditions (Yin, 2003):
• Some events precede others while the reverse is impossible.
• Some events occur contingent on others.
• Some events can only follow other events with a pre-specified delay.
• Certain types of events occur only during specific time periods. 

Locating events temporally involves a further complication in that different kinds of events can 
be found at  different  levels  of  analysis  (Lerner and Kaufman,  1985;  Abbott,  1990).  While  the 
validity  of  the  temporal  pattern of  observed events  is  given,  the validity  of  the  theoretically 
derived pattern in terms of time has to be demonstrated. Drawing on an analogy from biology,  
the evolution of a single organism can occur at a different pace than that of the wider group  
and/or species to which it belongs. In organizational studies, a firm adapts to its environment at  
a different pace than the entire business sector it belongs to. In general the pace of events at a 
single level, influences the pace of processes at another. The demonstrated limitations of humans 
on making inferences about temporal processes that occur at a single level of analysis obviously 
necessitates resorting to auxiliary methods for analysis of multi level phenomena.   

From Narrative To Model And Back
The model of the game of avalanche (Lane, 2008) provides an exemplary case, of selecting among 
competing explanatory propositions as suggested by Weick (1989). It illustrates that purely verbal 
explanations  cannot  always give an adequate account  of  some social  phenomena even when 
cause  and  effect  are  temporally  and  spatially  proximal  and  real  life  experiments  can  be 
conducted. Apart from being used to learn something valuable about team building and self-
organization, modelling and simulation can also support the process of scientific discovery in the 
social sciences. Several verbal accounts can be produced as explanations of what happens in the 
game. However, if they remain verbal then their degree of plausibility is limited with no direct  
means of choosing between competing arguments and explanations. Although an open ended 
inductive research approach,  offers  considerable potential  for  theory development,  facing the 
uncertainty of selecting between alternative arguments and explanations may potentially delay 
the decision on when a satisfactory explanation has been constructed. Generating one is different 
than actually recognising one. 
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When the model can reproduce the phenomenon of interest then the focus of the research process 
can move from data  collection to system analysis  and conclusions.  Obviously the same logic  
applies in exploring alternative explanations (step 2) or when the one originally considered is 
refuted. In either case, the model can provide some guidance as to the amount and kind of data 
required to proceed further. In this respect,  the construction of a simulation model provides an 
additional means to the decision making involved in research and the data collection process. 
This  in  effect  follows  from  the  perspective  that  theory  guides  observation  (Chalmers,  1982; 
Sterman, 2000).

The rationale is that in postulating explanatory mechanisms for the behaviour of the system, the 
researcher initially has a rough idea about the kind of data that are required to support his claim.  
However,  as the system description is progressively enriched, it  becomes difficult to see how 
structure may be linked to behaviour and where research should be focused. Relying solely on 
narrative descriptions and mental experiments faces limiting returns. Shifting from case study 
description  to  modelling  (figure  3),  entails  moving  from  detailed,  accurate  description  to 
simplification and thus reveal the system structure that is essential to its behaviour. It can also 
provide  insights  into  whether  more  should be  added or  included in  greater  detail  and thus 
provide  guide  posts  for  further  case  development  and  hypothesis  refinement  in  an  iterative 
manner (Homer and Oliva, 2001). In this way the modelling is construed as a heuristic reflective 
process for furthering the study of a phenomenon rather than the end to a process (Oreskes et al.,  
1994). 

A central characteristic of case studies is the use of qualitative data along with quantitative. Any 
simulation  method  can  handle  numerical  data.  However,  if  qualitative  data  are  not  to  be 
excluded, they have to be included somehow with soft variables. There are ways to address this 
issue in various modelling methodologies. For example any textbook on SD covers the principles 
and offers guidelines for modelling decision making and human behaviour, and for formulating 
nonlinear relationships, including soft  variables (for example,  Sterman, 2000).  The use of soft 
variables in SD simulation covers a wide range of applications in management and social sciences 
(Sterman 1985; Oliva and Sterman 2001; Sastry, 1997, Rudolph and Repenning, 2002).  A model 
can also be constructed precisely because real data about a system may be unavailable. In this 
event a simulation can function as a source of data about the world (Winsberg, 2006).

Notable examples of using simulation for developing process theory include Cyert and March 
(1963) (behavioural theory of the firm), Cohen, March and Olsen (1972) (garbage can model of 
organizational  choice),  Sastry  (1997)  (formalization  of  the  punctuated  equilibrium  model  of 
change) and Lant and Mezias (1992) (organizational learning). These models exhibit considerable 
simplicity and generality but are generally weak in terms of accuracy. They may utilise real data 
that were collected at some time and inspired the ideas behind the model. These models have 
several advantages. They provide a virtual laboratory for risk free experimentation assuming that 
their basic assumptions are intuitively reasonable. The disadvantage of not relying directly on 
real measured quantities has the benefit that they enable the study of theoretical constructs that 
are unobservable in reality (for example managerial energy in the garbage can model). Third,  
they may question aspects of,  and/or allow the detection and correction of inconsistencies in 
existing theoretical frameworks (eg Papachristos, 2011, Sastry, 1997). The greatest strength these 
models  exhibit  is  to  demonstrate  how a small  set  of  plausible  mechanisms,  can generate the 
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complex behaviour patterns that are observed in reality. 

A benefit  in  the  combined application  of  the  research  strategies  under  consideration,  is  that 
generating a case study narrative is not only intended as a stand alone description of phenomena  
or  as  input  for  models  and  outlining  phenomena.  It  is  also  of  value  in  evaluating  and 
contextualising  the  results  of  the  model  (Winsberg,  2006),  interpreting  and  evaluating  their 
implications  because the resultant  type of  knowledge is  itself  complex and is  a  statement  of  
options and their constraints (Pidd, 2004). This point is of particular relevance when it comes to 
modelling social systems. In this case, it is not possible to restrict the evaluation of the model to  
results available in a numerical form, in order to evaluate the fit of a mode to the real system  
behaviour. Considerable relevant knowledge is in descriptive, qualitative form, contained in the 
experience of those that have conducted a case study of the system and are familiar with its 
history of performance and artifacts (Randers, 1973).

Extending the argument further, communicating a theory or model requires eventually reverting 
to narrative to some extend (for example the IPCC scenarios). Thus the feedback between real 
phenomena and model closes where the real world narrative overlaps with the generated model 
behaviour (Goldspink, 2002). This is directly relevant to the correspondence of the model to the 
actual real world patterns. Demonstrating this, is not really a case of comparing numerical results 
to reality, because as argued forcefully by Oreskes et al. (1994) this is not possible. Assessing the 
results  of the model  and their  validity,  is  an empirical  task and this  leads to iterating cycles  
between validation and experimentation, case study and modelling (Goldspink, 2002). A measure 
of the correspondence of the model to the world is provided by the extent to which description  
and model generated behaviour patterns match. 

The iterative process (steps 1 to 3) involves matching of patterns and their timing and can come to 
a  conclusion  through  a  number  of  ways.  The  creativity  in  applying  different  perspectives 
naturally may diminish, or some of the perspectives may converge in a way that points towards a 
satisfactory explanation, or a particular perspective may emerge as the dominant one among 
others (Richardson et al., 2001). Thus the end of the process does not necessarily come with the 
arrival to a single dominant explanations. In complexity based analysis a more democratic rather 
than authoritarian or imperialist style of research is the norm (Flood, 1989) allowing room for  
quantitative, qualitative or intersubjective viewpoints.

The three steps outlined, emphasize the continuous refinement and development nature of theory 
development process. They are at the core of case study research which requires the rich, detailed 
qualitative  description,  but  it  is  also  at  the  core  of  modelling  and  simulation  methods,  for  
example system dynamics (Homer, 1996). The search for an explanation is an iterative process in 
modelling and simulation (Sterman, 2000) and in case study research (Yin, 2003). Thus they can 
be  applied in  parallel  rather  than in  a  serial  manner  for  identifying  and developing  further 
generally applicable causal structures. These, derived from the experience gained in one dynamic 
situation, can then be transferred to another (Saysel and Barlas, 2006; Paich, 1985; Senge, 1990; 
Lane and Smart, 1996; Wolstenholme, 2003). The conceptualisation developed in section 4 and 5 is 
illustrated in figure 4.
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6 Case Studies & SD: Retaining The Essentials
Some strengths of case study theory building also lead to weaknesses. It is an approach where 
theory is produced from detailed data.  However,  the intensive use of empirical evidence can 
yield theory which is overly complex. An attribute of good theory is its parsimony and grounding 
to reality, but given the use of voluminous empirical data, there is a risk of producing theory 
which is exceedingly detailed and complex. Researchers working with case studies at some point 
have to  elevate themselves  above the  level  of  intricate  details  in  order  to  provide  a  broader 
perspective. Without cross case comparison they may be unable to retain essential relationships 
from idiosyncratic ones in order to increase the generality of the theory (Eisenhardt, 1989).

A  second  challenge  is  to  develop  a  theory  that  does  not  overdetermine  the  phenomenon. 
Consequently from all the candidate explanations for a phenomenon one should be selected that 
goes beyond the particular details of the case study and strikes a balance between generality,  
simplicity and accuracy (Weick, 1979) by including the minimum set of possible causes for the 
phenomenon. Inevitably in this process the analyst will have to make choices, assumptions and 
simplifications  (Siggelkow,  2007).  Modelling  and  simulation  can  facilitate  this  process.  The 
development and analysis of a simulation model provides an overview of the range of outcomes 
that causal  mechanisms generate.  This  increases their  level  of  specificity  by avoiding surplus 
detail while retaining their internal validity.

In the modelling examples on organizational  research cited earlier,  the benefits  of  combining 
qualitative  and  quantitative  methods  to  form a  more  complete  picture  of  a  phenomenon  in 
organizational  research,  far  outweighed  the  costs  of  time  and  effort.  Implementing  this 
methodological strategy, however, requires researchers to be more familiar and comfortable with 
the  ontological,  epistemological,  and  methodological  foundations  of  both  qualitative  and 
quantitative  research  (Shah  and  Corley,  2006).  The  conjoint  application  of  two  methods  for 
research,  may  place  considerable  burden  on  analysts  (Brocklesby,  1997).  It  can  therefore  be 
broken down in two parts: (i) the theory – model, and (ii) model – phenomena comparisons that  
correspond  to  analytical  and  ontological  adequacy  (see  figure  below).  When  a  model  that 
reproduces a real world phenomenon is developed then in the first part theoreticians can work on 
developing further formalized models  and then through applied research their  utility can be 
assessed.  Finally,  empirically  oriented  researchers,  can  compare  models  with  functionally 
equivalent real world structures (McKelvey, 2002). This has the added benefit of looking into both 
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Figure 4. Theory, case study and simulation modelling
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sides of the trade off between theory accuracy and simplicity-generality. 

From Accuracy To Simplicity
While this paper looks at two strategies only, there are several that can be employed in process 
research. Some rely more on raw data (narrative strategy and grounded theory) and result in 
higher  accuracy.  Others  trade  this  for  increased  parsimony  and  generality,  by  being  more 
reductionist (quantification and simulation). Together,  they define a narrative – quantification 
continuum where operating at either extreme runs the risk of sacrificing key data dimensions. In 
between lies an array of alternative strategies broadly conceptualised as grounding, organizing 
and replicating strategies (Langley, 1999). 

The  focus  of  each  strategy  ranges  from the  meaning  of  processes  for  individuals  (grounded 
theory  and  narrative),  to  identifying  temporal  patterns  (visual  mapping,  quantification  and 
grounded theory) and causal mechanisms in a process (alternate templates, temporal bracketing 
and quantification) (Langley, 1999). The strategies close to the narrative strategy offer ways of 
systematically generating structured descriptions. In this capacity they are primarily used in the 
initial stages of research when there is little prior understanding or theory, for a phenomenon. 
They are used to describe events, define constructs, and formulate hypotheses and propositions. 

Quantitative and simulation strategies can be conceptualised as replicating strategies since they 
represent different ways of decomposing the data for the replication of theoretical propositions. 
These strategies can draw on almost any or all of the others. The question of choice of strategies is  
more than just a trade off between desired levels of accuracy, simplicity and generality as shown 
in Table 1, and more than just a case of picking logically linked combinations. It is also a question 
of taste, of research objectives, the kinds of data available and of moving from one to the other in  
a creative manner. 

From the list of strategies in table 1, the narrative, visual mapping, quantification and computer  
simulation are amongst those that are used in SD methodology as well. In that context they are 
used  to  move  progressively  from  qualitative  description  of  a  problem  (narrative),  to  visual 
mapping (causal loop diagram in SD terminology), to a working model simulation (quantification 
and simulation) (Sterman, 2000). The properties from table 1 are used in figure 6 to conceptualise 
the  progression  from  the  specific  and  the  qualitative,  through  abstraction  and  disciplined 
imagination,  to  understanding  and  generalization  which  may  involve  the  construction  of 
quantitative models.
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Table 1. Research strategies for process theory (adapted from Langley, 1999)

Narrative
Grounded Theory
Temporal bracketing
Visual mapping
Synthetic strategy
Quantification
Computer 
simulation

Strategy Accuracy Simplicity Generality

High

Low

Low

High High

Low



7 Conclusions 
The paper had as its main focus the process of developing a causal explanation of an observed or 
experienced phenomenon or  problem.  This  requires  its  careful  observation  and the  structure 
surrounding  it.  Two  methods  for  addressing  this  task  were  discussed,  SD  and  case  study 
research. While SD provides the tools for transferring observations into feedback structures it is 
less so equipped for observation. The claim of this paper is that case study can be such a method 
which used in a complementary way can enhance theory development. 

Conceptualising the theory development process in terms of three evolutionary steps, the two 
methods are brought side by side and the potential  complementarities  and benefits  each one 
offers are explored. An account of how the overall process fits together has been created, and how 
it progresses from accuracy to simplicity and theoretical parsimony. Specific requirements in such 
a  process  are  discussed,  such  as  pattern  matching  and  iterating  between  case  study  and 
modelling. Reflecting on the character of the overall process reveals an evolutionary perspective, 
the implications of which are worth pursuing further. 

In keeping with the line of argument developed in this article about the partial viewing imposed 
by any methodology, it is suggested that a viable goal for SD is the development of middle range 
theories  (Merton,  1968)  with  a  high  level  of  generalizability  that  apply  to  certain  classes  of 
systems only instead of overarching theories of social life. In effect it should not try to account for  
all the aspects of a system (Kopainsky and Luna-Reyes, 2008; Schwaninger and Grosser, 2008). 
This is a conclusion that is in line with the history of SD which from its inception dealt with such  
large-scale issues.  (see,  for example, Forrester,  1961; 1969; 1971, Meadows, Meadows, Randers 
and Behrens (1972) and Meadows, Randers and Meadows, 2004). 

Overall,  the  inductive  capability  of  case  study  method  can  help  to  build  relevant  dynamic 
models, grounded in data, and with an increased chance of arriving at relevant generic structures  
with rigour. The latter is accomplished through modelling and simulation by abstracting and 
testing  hypotheses  about  how real  world  phenomena unfold.   This  hypothetico  –  deductive 
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Figure 5.  Progressing from accuracy to generality
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combination  then  increases  the  probability  of  arriving  at  a  satisfactory  explanation  with 
confidence by clarifying which of the hypothesized structures generate the observed phenomena. 
This  pendulum  like  process  oscillates  between  context  and  structuring  process  and  spirals 
towards  better  insights  and  better  theory,  while  guarding  against  theory  becoming  overly 
complex. 
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