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Abstract 
The performance analysis of a general production–inventory control system under uncertain 
demand is presented.  In the model, the production order releases are determined based on 
the information feedback on the forecasted demand, work-in-process discrepancy and 
inventory discrepancy. Stability conditions are obtained in terms of the control parameters 
that manage the rate at which the above discrepancies are corrected.  The service and cost 
performances of the system in terms of order fill rate, item fill rate and average system cost 
are analyzed for various values of the control parameters within the stability region. 
Additional safety stock is considered to help achieve a desired level of service (desired order 
fill rate).  Results based on numerical simulations are presented and their implications are 
discussed. 
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1. Introduction 
 Production–inventory systems are integral to any manufacturing enterprise. An 
efficient and effective control scheme for such systems becomes crucial for industries to 
maintain their competitive edge, especially in the face of uncertain market conditions.  The 
foundations for a control system view of production–inventory systems were laid down by 
Forrester (1961) in his book Industrial Dynamics, which is based on system dynamics 
methodology.  The system dynamics models have since been used to capture the production-
inventory order behavior at an aggregate level using information feedback structures, with the 
model represented by differential/difference equations (Forrester 1961, Towill 1996, Sterman 
2000, Venkateswaran and Son 2007).  Past works in literature have mainly focused on the 
stability and controllability of generic production–inventory control system models, and their 
implications (Ortega and Lin 2004, Disney and Towill 2002, Riddalls and Bennett 2002, 
Disney et al. 2006, Venkateswaran and Son 2007, Bijulal et al. 2011). 

A popular production–inventory control model in literature, which is comparable to 
the Forrester’s model, is the Automatic Pipeline and Variable Inventory and Order based 
Production Control System (APVIOBPCS), well studied by Disney et al. (2006), 
Dejonckheere et al. (2003) and others.  APVIOBPCS models a production system with 
                                                 
1 The work was carried out during the author’s stay at Indian Institute of Technology Bombay as research intern. 
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pipeline delay, and considers the discrepancies in work-in-progress (WIP) and in end-
inventory to determine the production order releases.  These policies have been defined in 
continuous domain, and the equivalent discrete-time models come under the family of order-
up-to policies (Axsäter 2000).   
  Inventory control and production planning have also been well researched over the 
years from the Operations Research perspective, where the focus has been on the 
development of prescriptive models primarily aimed at minimizing inventory related costs 
(Hax and Candea 1984, Axsäter 2000).  Some key performance measures identified in 
literature are the inventory holding costs, backlog costs, lost sales costs and service level 
measures of order fill rate and item fill rate. To achieve the desired level of service in face of 
random demand, the system typically stocks additional inventory, i.e. safety stock, which 
tends to increase the system cost.  

A few works can be found on the cost performance of different types of production–
inventory control systems (Disney and Grubbström 2004, Disney et al. 2006, Chen and 
Disney 2007, Cannella and Ciancimino 2010).  All these works have analyzed the inventory 
and ordering cost performance of the APVIOBPCS model under different demand patterns. 
They have, however, focused their finding only along the Deziel and Eilon (D-E) setting 
(Deziel and Eilon 1967).  The D-E setting corresponds to the scenario where the rate of 
adjustment for WIP discrepancy equals the rate of adjustment of inventory discrepancy.  
Bijulal et al. (2011) have attempted to establish the variations in order fill rates obtained 
throughout the stability region of a slightly different production–inventory control system. 
However, the applicability of their model is restricted by the definition that a period’s 
demand is considered fulfilled only if there is sufficient inventory at the start of the period to 
satisfy the demand.   

In this paper some results from ongoing research work on the performance analysis of 
a general production–inventory control system model under uncertain demand is presented. 
In the model, the production order releases are computed based on the forecasted demand, 
adjustments for WIP discrepancy and adjustments for inventory discrepancy.  The rates of 
adjustments of these discrepancies are identified as the system control parameters. Stability 
conditions based on these parameters are derived.  The service and cost performances of the 
system in terms of order fill rate, item fill rate and average system cost are analyzed for 
various values of the control parameters within the stability region. Additional safety stock is 
handled in the system to help achieve higher levels of service.  Results based on numerical 
simulations are presented and their implications are discussed. 
 
2. Production–Inventory Model 
2.1 Notations Used 

Symbols, notations and abbreviations used in this article are summarized in Table 1. 
 
2.1 Model Description 

The production–inventory control structure model discussed in this paper is similar to 
the classical industrial dynamics model by Forrester (1961), and those studied by Bijulal et 
al. (2011) and is also comparable to the APVIOBPCS family of models.  The equations 
underlying the model are as follows: 
 )( 111 −−− −⋅+= nnnn FDCDFDFD ρ  (1) 

 111 −−− −+= nnnn CDPCRINVINV  (2) 

 111 −−− −+= nnnn PCRPRELWIPWIP  (3) 
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 Lnn PRELPCR −=  (4) 

 nnnn INVADJWIPADJFDPREL ++=  (5) 

 )()( nnnnn WIPFDLWIPDWIPWIPADJ −⋅⋅=−⋅= αα  (6) 

 )( nnn INVDINVINVADJ −⋅= β  (7) 

 
Table 1: Notations Used 

Symbol Description       Units   
α  Fractional rate of adjustment of WIP discrepancy  (rate) 1/time  
β  Fractional rate of adjustment of inventory discrepancy (rate) 1/time 
ρ  Smoothing factor (constant) for forecast    
L  Production delay      time period 
Tw  Time to adjust WIP discrepancy    time period 
Ti  Time to adjust inventory discrepancy    time period 
CDn   Demand in period n      units/ time period 
DINVn   Desired Inventory in period n     units 
DWIPn  Desired work-in-process in period n    units 
FDn   Demand forecast for period n     units/ time period 
INVn   Inventory at the start of period n    units 
INVADJn  Adjustments for inventory discrepancy in period n  units/ time period 
PCRn   Production completion rate in period n   units/ time period 
PRELn   Production order release in period n    units/ time period 
WIPn   Work-in-process at the start of period n   units 
WIPADJn  Adjustments for WIP discrepancy in period n  units/ time period 
b  Cost of backordering one unit per period   Rupees/unit/time 
h  Cost of on holding unit of inventory per period  Rupees/unit/time 
kDOFR  Scaling factor for safety inventory     
sD  Estimated standard deviation of demand 
ASCn   Average system cost until period n    Rupees. 
ABCn   Average backorder cost until period n   Rupees. 
AHCn   Average inventory holding cost until period n  Rupees. 
DOFR  Desired order fill rate 
IFRn   Item Fill Rate until period n 
OFn   0-1 variable. 1 indicates demand is fulfilled in period n 
OFRn   Order Fill rate until period n    
 

 
The forecasted demand (FDn) for period n is based on the first order exponential 

smoothing of the previous period’s demand (CDn–1), with smoothing constant ρ (Equation 1). 
The finished goods inventory INVn at the start of any period is the previous period’s starting 
inventory (INVn–1) plus the difference of the previous period’s production PCRn–1 and 
demand CDn–1, as shown in Equation (2).  Negative inventory represents backordered 
quantities.  Similarly, system WIP at the start of a period is the previous period’s starting 
WIP (WIPn–1) plus the difference of the previous period’s production orders PRELn–1 and 
production, as shown in Equation (3).  Equation (4) represents the production completion rate 
PCRn in the system as a pipeline material delay process to the production release, with fixed 
delay L. The production order release for period n, PRELn, is the sum of demand forecast, 
FDn, the adjustment for WIP discrepancy, and the adjustment for inventory discrepancy, as 



 4

shown in Equation (5). The WIP discrepancy is adjusted by a fractional rate α (Equation 6).  
The inventory discrepancy is adjusted by a fractional rate β (Equation 7). It is noted that 
feedback gains modeled here as α and β are modeled as 1/Tw and 1/Ti, respectively, in the 
past literature.   

Typically, the desired WIP and desired inventory levels are computed based on the 
expected system performance in steady or equilibrium state.  In steady state, the system 
inflows balance the outflows such that the stock levels (i.e. system state) remain the same 
(stable). Thus, in steady state the forecasted (expected) demand (FDn) will equal the mean 
end customer demand, and production order release (and production rate) will tend towards 
the expected demand.  Little’s Law states that in steady state the expected WIP in the system 
is the product of the expected throughput rate and the lead time (L).  Hence the desired WIP 
is set as the product of forecasted demand and the production lead time (Equation 6). 

Now, the desired inventory (DINVn) can be set to 0, in a bid to operate lean and 
minimize inventory holding costs.  However this settings (DINVn=0) may not provide 
adequate inventory coverage in the face of random demand.  In order to achieve higher 
inventory coverage (and hence higher service level) the desired inventory in the system has to 
been modified by adding a safety stock. 
 
2.3 Calculation of Safety Stock 

Suppose that the demand (CDn) in each period n is independent and Normally 
distributed with mean μD and standard deviation σD.  The enterprise may carry some safety 
stock to cover the random variations in demand.  The amount of variations covered by the 
safety stock will depend on the desired probability of stock out or the customer service level.  
Desired order fill rate (DOFR), a service level measure, is defined as the proportion of 
periods in which demand is fulfilled entirely. Since there is some lead time involved to 
produce the orders and replenish the end inventory, the DOFR can also be viewed as the 
probability of not having a stock out situation during the replenishment lead time (stock-out 
occurs when demand exceeds available stock).   Thus safety stock is the amount of additional 
inventory to be stocked to achieve the desired fill rate, and is given as SafetyStock= kDOFR · sR. 
In the above equation, safety factor, kDOFR = Φ–1(DOFR), where Φ(·) is the standard normal 
cumulative distribution function, and sR represents the standard deviation of demand during 
the replenishment lead time.  In the system dynamics model under study, there is a one period 
ordering delay and L periods of production delay, resulting in a total of L+1 periods of 
replenishment delay.  Since demand in each period is independent, the safety stock can be 
written as shown in Equation (8), where sD represents the estimated standard deviation of 
demand. 
 1+⋅⋅= LskkSafetyStoc DDOFR  (8) 

 
2.3 Calculation of Desired Inventory 

Based on how the demand is being fulfilled, different settings of desired inventory 
(DINV) becomes necessary: (i) A period’s demand is fulfilled from the inventory available at 
the start of that period. That is, the production in a period is not used to satisfy the demand in 
that period. In this case, there may not be sufficient inventory to meet the demand in that 
period, but still there could be a positive inventory holding at the start of the next period 
when the latest production quantity is included to inventory. The desired inventory required 
would be the mean demand plus safety stock (a detailed analysis of this scenario has been 
presented in Bijulal et al. 2011). (ii) A period’s demand is fulfilled (say, at the end of the 
week) from the inventory available at the start of that period plus the production in that 
period.  In this case, when the demand in a period is not fulfilled, the excess demand is 
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backordered (captured as negative inventory).  This latter scenario is modeled and analyzed 
in this paper. 

Since the demand is fulfilled (say, at the end of the week) from the inventory 
available at the start of that period plus the production in that period, desired inventory 
(DINV) can be set to cover only the variability in the demand, as follows: 
 1+⋅⋅== LskkSafetyStocDINV DDOFRn  (9) 

 
2.3 Measuring System Performance 

Order  fill  rate  (OFR), Item fill rate (IFR) and average  system  cost  per  period  
(ASC)  are  the  system performance measures selected to analyze the system behavior under 
stable parameter settings. OFR is the proportion of periods that the demand was satisfied in 
entirety, and is modeled using Equation (10) and (11). 

 ∑
=

=
n

i
in OF

n
OFR

1

1
 (10) 

 
⎩
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⎧ ≥+

=
otherwise0
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i

CDINVPCR
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IFR is the average fraction of demand units fulfilled during any period of time, and is 
modeled using Equation (12). 
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The system cost has been assumed to have two components: the holding costs and the 
backorder costs. Every unit stocked in inventory and carried over to the next period incurs 
cost h per period and every demand unit backordered incurs cost b per period. The average 
system cost (ASC) has been estimated as: 
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where +
iINV  and −

iINV  represents the excess inventory and backorder quantities, 
respectively. 
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As mentioned earlier, the demand (CDn) in each period n is independent and 
Normally distributed with mean μD and standard deviation σD.  A stock out is said to occur if 
the sum of the inventory at the start of a period and production in that period is less than the 
demand in that period.  Suppose the desired inventory (DINV) is set as 0, then the demand in 
the period is almost entirely met by that period’s production. Now, the expected production 
rate tends to the mean demand at steady state.  Therefore the probability of stock out will be 
~0.5. The probability that the order is fully met from stock, the order fill rate (OFR), then 
becomes 1 – Pr{stock out} ≈ 0.5.  Hence the production–inventory system presented in 
Section 2 can be expected to give OFR of about 50% when DINVn=0. 
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Suppose the desired inventory is set as per Equation (9); still, the system may not 
achieve the desired order fill rate as the system performance is influenced by parameters α, β 
and ρ.  Also, the DINV is a function of sD, the estimated standard deviation of demand (see 
Equation 9).  Hence the accuracy of this estimate will also influence the system performance. 

The production–inventory model, as described in this section, is represented in Figure 
1 as a stock and flow diagram. 
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(a) Sub-model of the production-inventory control system 
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(b) Sub-model of performance measurement 

Figure 1: Stock Flow Diagram of the Production-Inventory Control System 
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3. Region of Stability of the Production-Inventory System 
The production inventory system is represented by equations (1) – (13).  The 

conditions for stability are obtained from the transfer function derived from the z-transforms 
of Equations (1)–(7), (9).  Equations (10) – (13) models the performance measures that do not 
influence the model dynamics, and hence are not required for stability analysis.  To derive the 
system transfer function, the difference equations in time presented in Section 2 are 
transformed onto the z-domain, presented in Equation (14) – (20).  Equation (20) is the 
transformed equation after combining Equations (7) and (9). 

 )(
1

)( zCD
z

zFD
−+

=
ρ
ρ

 (14) 

 ( ))()(
1

1)( zCDzPCR
z

zINV −
−

=  (15) 

 ( ))()(
1

1)( zPCRzPREL
z

zWIP −
−

=  (16) 

 LzzPRELzPCR /)()( =  (17) 

 )()()()( zINVADJzWIPADJzFDzPREL ++=  (18) 

 ( ))()()( zWIPzFDLzWIPADJ −⋅⋅= α  (19) 

 ))(1()( zINVLskzINVADJ DDOFR −+⋅⋅⋅= β  (20) 

The  above  simultaneous  equations  in  ‘z’  are  solved  to  obtain  the  system  transfer 
function between output variable PREL and input variable CD, as shown in Equation (21). 

 })1(){1)(1(
})1))(1(11()1)(1){(1(

)(
)(

1 βααρ
βρρα

+−−+−−+

−+−++++−−
= + LL

DDOFR
L

zzzz
zzLskLzzz

zCD
zPREL

 (21) 

Equation (20) shows the general expression of the system with a fixed production 
delay L, the smoothing factor of demand forecast ρ, fractional adjustment rates α and β, the 
scaling factor of safety stock (kDOFR) and the estimated standard deviation of demand sD.  It is 
observed that the denominator polynomial is independent of kDOFR and sD, which implies that 
these parameters (and hence desired inventory value) do not affect the stability of the system.  
However, kDOFR and sD appear in the numerator polynomial and hence can be expected to 
affect the dynamics of the system response.   

To determine the stability bounds, the denominator polynomial needs to be solved. 
Since it is not possible to solve for general L (due to presence of zL), a fixed pipeline delay of 
L = 3 periods has been assumed. All further discussions in this article pertain to a model with 
pipeline delay of 3 periods.  Equation (22) represents the system transfer function with L = 3. 

 })1(){1)(1(
})1))(1(21()31)(1){(1(

)(
)(

34

3

βααρ
βρρα

+−−+−−+

−+−+++−−
=

zzzz
zzskzzz

zCD
zPREL DDOFR

 (22) 

The transfer function system presented in Equation (22) is stable, in the bounded-
input bounded-output (BIBO) sense, if the roots of the denominator polynomial are inside the 
unit circle in the complex plane (Venkateswaran and Son 2007).  The conditions for stability 
in terms of the parameters α, β and ρ have been obtained using Jury’s test (1964).  Equations 
(23)–(26) show the ‘binding’ conditions for stability. Equation (23) represents the expression 
for the right boundary, Equation  (24)  represents  the  expression  for  the  lower  boundary  
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and  Equation  (25) represents the upper boundary. The region of stability defined by these 
equations in the (α, β) plane is shown in Figure 2.  It is further assumed that (α, β and ρ) are 
non-negative. 

 )23(2
4)2(243 22

β
ββββ

α
+−

+−−−−
≥  (23) 

 )23(2
4)2(243 22

β
ββββ

α
+−

+−+−−
≥  (24) 

 2
2+

≤
βα  (25) 

 2≤ρ  (26) 

The system guarantees to be stable when the values of α and β are inside the stable 
region. Parameter selection on the boundary makes the system variables to continue sustained 
oscillations; while parameter selection outside the boundary causes the system variables to 
continue oscillations with exponentially increasing amplitude.  Preliminary simulation runs 
with i.i.d. Normal demand revealed that time varying stochastic input to the system does not 
affect the system’s BIBO stability. Also, it has been found that the system performance 
measures OFR, IFR and ASC deteriorates for unstable parameter selections.  Hence, the 
investigations of system performances presented in this article are limited within the stable 
region of the parameter setting. 
 

 
Figure 2: Stability boundary of the production-inventory system with L = 3  

(Source: Bijulal et al. 2011) 
 

4. Experimental Settings 
 System performance measures OFR, IFR and ASC (Equation (10)–(13)) for various 
settings of the parameters α, β and ρ and the methods of computing sD have been analyzed. 
 In order to understand the impact of sD on the system performance, three different 
settings are taken. In the first case, the estimated standard deviation of demand equals the 
actual standard deviation of demand (sD = σD). This captures the scenario where the demand 
variance is known and hence used in decision making.  In the second case, sD = ν FDn where 
the coefficient of demand variation ν = μD/σD.  This captures the scenario where ν of demand 
process is known and the demand forecast FDn is a true estimate of the mean demand 
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(Makridakis et al. 2005, Axsäter 2000).  In the third case, sD is computed dynamically as the 

sample standard deviation of the observed demand process, i.e. sD = ∑
=

−
−

n

i
ii FDCD

n 1

2)(
1

1 .  

This captures the scenario where the demand process is unknown.   
To observe the effect of smoothing factor, ρ, on the system performance, three 

settings of ρ, have been selected as 0, 0.2 and 1.  When ρ = 0, the forecasted demand remains 
unchanged from its initial value throughout the time horizon. 
 A total of about 335 (α, β) pairs spread throughout the stable region (see Figure 2) 
have been taken for the simulation study.  The points are listed in Table A1 in the Appendix. 
 Now, it can be expected that the setting ρ =0, α =1, β =1 achieve the desired OFR 
since at this setting the WIP and inventory discrepancies are always fully accounted for and 
no noise due to forecasting is part of the ordering process. 
 
4.1 General Simulation Settings 

The production lead time L has been fixed as 3 time periods. The values of backorder 
cost b and holding cost h are both taken as Rs. 2 per item per period.  DOFR has been 
selected as 80% which results in kDOFR = Φ–1(DOFR) = 0.85.  The initial values of the stocks, 
FD0, WIP0 and INV0 are set equal to the mean demand, desired WIP and desired inventory 
values respectively. The demand in each period has been assumed to be Normal(1000, 10).  It 
has been ensured that the same random demand pattern is used across multiple simulation 
runs, which allows for a valid comparison of the results. 

The simulation model as described by the Equations (1) – (13) is modeled and 
analyzed using Powersim® 2.51. The simulation run length is kept as 3650 time periods, with 
update interval as 1 time period. As it was observed that the system reached steady state in 
the early part of the run, the replication length of 3650 has been found to be adequate for this 
study. A round-off error of up to 0.01 was assumed to be acceptable in evaluating the 
conditional statement in Equation (11). 
 
5. Results and Observations 

A preliminary set of experiments were conducted with DINVn = 0 (no safety stock) to 
determine the impact of random demand on system performance.  All other system 
parameters are as described in Section 4. The results are summarized in Table 2.  For both 
settings ρ=0.2 and ρ=1, the best performance (max OFR, max IFR and min ASC) was 
obtained at (α, β) = (0, 0).  Apart from this particular point, the OFR response of all other 
points was quite close to 0.5, validating our earlier claim.  The high values of IFR (99%) are 
attributed to the low standard deviation of demand as compared to the mean demand.  Also, it 
is seen that with ρ=1, the service levels have improved, but the ASC has worsened. 
 

Table 2: System performance with no safety stock 
 ρ=0.2  ρ=1 
 Max min mean median max min mean Median
OFR 0.6201 0.4901 0.5046 0.5013  0.6695 0.4934 0.5071 0.5008
IFR 0.9935 0.8979 0.9823 0.9898  0.9955 0.5271 0.9485 0.9798
ASC 408.41 34.45 71.52 40.76  1891.07 35.09 206.90 80.78

 
Next, experiments have been conducted by considering safety stock, i.e., DINVn is set 

as per Equation (9), with desired order fill rate (DOFR) as 80%. The variation of the 
performance parameters, in response to the different settings of sD, and ρ over the (α, β) 
plane is analyzed. A total of 335×3×3=3015 experiments have been conducted. 
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Recall that the estimated standard deviation of demand, sD = σD = 10 in the first case, 
for all settings of ρ. In the second case, sD= ν FDn= 0.01FDn= 10 when ρ =0; the sD varied 
between 9.95 and 10.05 when ρ =0.2; and the sD varied between 9.8 and 10.2 when ρ =1.  In 
the third case, sD is the sample standard deviation, which stabilized at: 10.03 when ρ =0; 
10.55 when ρ =0.2; and 14.00 when ρ =1. 

Based on the results, it is observed that the order fill rates obtained are higher and 
closer to the DOFR when safety stock is considered, as expected. For (α, β) points on the 
stability boundary, the OFR obtained were between 0.48–0.53 across all settings of sD, and ρ. 
This is again as expected since these critically stable points will cause sustained oscillation, 
with constant amplitude, of the system output PREL.   
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(c) OFR for sD = sample standard deviation of demand process 

Figure 3: OFR obtained under different setting sD and ρ across along D-E line  
 

Figure 3(a)–(c) illustrates the achieved OFR for different combinations of sD and ρ 
across various α=β settings. The α=β setting indicates equal weightage to both WIP and 
inventory discrepancy in the ordering scheme, and is commonly referred to as the Deziel-
Eilon (D-E) line (Deziel and Eilon 1967).  The (α, β) points used to generate the above 
curves are given in Table A2 in the Appendix. It can be seen from Figure 2 that (α, β) values 
greater than 2 along the D-E line will result in unstable system response.  

Some common patterns of behavior are observed for all three settings of sD (see 
Figure 3).  When ρ =0, three distinct regions of OFR can be observed as one moves along the 
D-E line: (i) Initially, there is a steep increase in the OFR as the (α, β) value is increased 
from 0 along the D-E line, with the OFR reaching about 0.70 at value 0.2 on the D-E line;  
(ii) The OFR then stabilizes around 0.78 for (α, β) values between 0.7 to 1.6 on the D-E line; 
(iii) Finally, a steep drop in the OFR is observed for (α, β) values beyond 1.8 on the D-E line, 

ρ =0 
ρ =0.2 

ρ =1 
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ρ =1 
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with the OFR reaching about 0.70 at value 2.0 on the D-E line.  Interestingly, when ρ =0.2, 
low settings on the D-E line (< 0.6) results in high OFR of about 0.77; mid settings on D-E 
line (1.2 to 1.8) achieves a lower OFR of about 0.72; and high settings on the D-E line (> 1.9) 
results in a steep drop in OFR.  Now, when ρ =1, it can be seen that OFR steadily deteriorates 
from a high OFR of 0.8 (at α=β =0.05) to a very low OFR of 0.5 (at α=β =2.0) as one moves 
upwards along the D-E line.  It is seen that when sD is computed dynamically as the sample 
standard deviation of the observed demand process, an OFR of about 0.85 is achieved at α=β 
=0.05 setting.  This apparent ‘anomaly’ could be attributed to the higher value of sD, and 
hence DINV, in these settings.  In general, there seem to be some critical point along the D-E 
line, when ρ  > 0, beyond which the OFR measures deteriorates rapidly.  Also, it is noted that 
the setting α = β =1 and ρ =0 achieves high OFR, close to the desired order fill rate, for all sD 
settings.  
 The empirical contour graphs for OFR obtained from the simulation results are 
presented in Figures 4(a) to 4(i).  Overall, it is seen that among the OFR contours, the 0.75 
contour (the contour marking the region with high OFR) decreases in area as ρ increases from 
0 to 1, for all settings of sD.  Also, there is a marked shift in the region within the (α, β) plane 
where high OFR is obtained for different values of ρ.   

Figures 4(b), 4(e) and 4(h) clearly show that OFR improves above the α=β line, i.e. 
when α > β  while it reduces below it, i.e. when α < β.  Also, better OFR performance is 
observed for α ≤ 1 and β ≤ 1 region across any setting of sD and ρ.  The results thus indicate 
that there exists a well defined operating region within the stability region which can help 
achieve better system performance, i.e., high OFR, under stationary random demand.  It is 
further observed that the scenario α=β=1 (representing the case when the discrepancy in WIP 
and discrepancy in inventory are completely accounted for in every order) does not result in 
the highest OFR values, except when ρ = 0.  Even then, it is not the unique best point.   
 Figures 4(a) to 4(f) shows that the DOFR of 80% is achieved neither with sD= σ, nor 
with sD= ν FDn though the achieved OFR comes close (~78%) for some parameter settings.  
However for the case of sD = sample standard deviation an OFR greater than 80% is achieved 
for ρ > 0.2  (see Figures 4(h) and 4(i)).  This may be attributed to the higher safety stock 
carried in the system under this sD setting. 

The average system costs (ASC) appears to be the lowest at the regions of maximal 
OFR, for a given setting of sD, and ρ.  The median value of ASC was found to be about Rs.47 
when ρ =0, about Rs.53 when ρ =0.2, and about Rs.89 when ρ =1, across all settings of sD.  
Also, for similar values of OFR, the ASC increases as ρ goes from 0 to 1, for a given sD.  The 
dominant costs for ASC were found to be the holding costs.  The holding costs were generally 
higher when sD was set as the sample standard deviation of the demand, since in this setting, 
the DINV levels were higher. 

The intersection regions of high OFR and low ASC are illustrated in Figures 5(a) to 
5(i).  In the plots, the thick black lines denote the ASC contours and the thick grey lines 
denote the OFR contours.  The desired order fill rate (DOFR) is taken as 80%.   

Now, as with OFR contours, it is observed that the ASC contours also decreases in 
area as ρ increases from 0 to 1, for all settings of sD.  Also, it is seen that the scenario α=β=1 
does not result in the lowest ASC values, except when ρ = 0.  An interesting observation is 
that in general the region of low ASC is much larger than and completely encompasses the 
region of high OFR for all settings of sD and ρ.  That is, for the same system cost ASC values, 
the OFR service levels of 75% or 78% can be obtained.  This implies that the system 
parameters can be fine-tuned to obtain higher service levels without increasing system costs.   
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(a) sD = 10, ρ =0         (b) sD = 10, ρ =0.2             (c) sD = 10, ρ =1 
 

     
 (d) sD = ν.FDn, ρ =0        (e) sD = ν.FDn, ρ =0.2     (f) sD = ν.FDn, ρ =1 

 

     
(g) sD = sample std.dev, ρ =0    (h) sD = sample std.dev, ρ =0.2    (i) sD = sample std.dev, ρ =1 
 

Figure 4: OFR contours obtained under different setting sD and ρ for stable (α, β) points 
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(a) sD = 10, ρ =0         (b) sD = 10, ρ =0.2      (c) sD = 10, ρ =1 
 

     
(d) sD = ν.FDn, ρ =0        (e) sD = ν.FDn, ρ =0.2     (f) sD = ν.FDn, ρ =1 

 

     
(g) sD = sample std.dev, ρ =0    (h) sD = sample std.dev, ρ =0.2    (i) sD = sample std.dev, ρ =1 
 
Figure 5:  Superimposed OFR and ASC contours obtained under different setting sD and ρ for 

stable (α, β) points 
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6. Discussions and Future Work 
 The production-inventory control system based on the classical industrial dynamics 
model has been modeled and analyzed for its service level and cost performance.  The control 
parameters for the system are: α, the fractional rate of adjustment for WIP, β, the fractional 
rate of adjustment for inventory, ρ, the smoothing constant used in forecasting, and sD, the 
standard deviation of demand used to determine the safety stock levels.  Experiments are 
conducted with various control parameter settings in order to quantify the system 
performances, and the results are presented in Section 5. 

The results obtained do offer some insights, which could be beneficial to enterprise 
management. Firstly, holding of additional safety stock is essential for achieving higher 
service levels. Under the base case of not having any safety stock, the system was able to 
achieve an order fill rate of about 50% only. Secondly, setting of control parameters inside 
the stability region is required, even with safety stock, to achieve higher order fill rates. (α, β) 
points on the stability boundary result in OFR of about 50% only, while OFR rapidly 
deteriorates for points outside the stability region.  Unfortunately, the DOFR of 80% is never 
achieved under most configurations though the OFR does come close (~78%) for some 
parameter settings. Thirdly, it is observed that the contour marking the region with high OFR 
decreases in area as ρ increases from 0 to 1, for all settings of sD.  Fourthly, the results seem 
to indicate that under stationary demand conditions, the WIP discrepancies are to be adjusted 
at a higher rate than inventory discrepancies, that is, α ≥ β is desired. These make intuitive 
sense since WIP is purely internal to the production system while the inventory discrepancies 
are triggered by external (unknown) demand. Under all combinations of sD, and ρ, the results 
indicate that the region enclosed by α ≤ 1, β ≤1 and α ≥ β  has comparatively better 
performances than other regions.  Hence it is desirable for the production system to adjust 
WIP discrepancies at the same or higher rate than inventory discrepancies.  Fifthly, 
completely accounting for the discrepancies, i.e. α =β =1, may not always be the best option. 
α =β =1 means that the system tries to adjust the discrepancies fully in each period which 
may not be required under stationary demand conditions.  Sixthly, the system parameters can 
be fine-tuned to obtain higher service levels without increasing the system costs. That is, for 
the same system cost ASC values, higher OFR service levels can be obtained by fine tuning 
the control parameters.   

As future work, the transfer function in z-domain is to be explored to seek analytical 
insights into the amplitudes and settling times of the system response.  Further, appropriate 
procedures to determine the optimal safety stock required to achieve the desired order fill rate 
based on the control parameter settings can be investigated. 
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Appendix 
Table A1: (α, β) points used in the simulation runs 

No. α β No. α β No. α β No. α β No. α β 
1 0 0 21 0.02 0.03 41 0.05 0.2 61 0.1 0.3 81 0.2 0.25 
2 0 0.01 22 0.02 0.05 42 0.05 0.3 62 0.1 0.35 82 0.2 0.3 
3 0 0.02 23 0.02 0.1 43 0.05 0.4 63 0.1 0.4 83 0.2 0.35 
4 0 0.05 24 0.02 0.15 44 0.05 0.45 64 0.1 0.45 84 0.2 0.4 
5 0 0.1 25 0.02 0.2 45 0.07 0.05 65 0.1 0.5 85 0.2 0.45 
6 0 0.2 26 0.02 0.3 46 0.07 0.1 66 0.1 0.55 86 0.2 0.5 
7 0 0.3 27 0.02 0.4 47 0.07 0.15 67 0.15 0.1 87 0.2 0.55 
8 0 0.4 28 0.02 0.45 48 0.07 0.2 68 0.15 0.15 88 0.2 0.6 
9 0 0.45 29 0.03 0.02 49 0.07 0.25 69 0.15 0.2 89 0.2 0.65 

10 0.01 0.01 30 0.03 0.01 50 0.07 0.3 70 0.15 0.3 90 0.2 0.7 
11 0.01 0.02 31 0.03 0.03 51 0.07 0.35 71 0.15 0.4 91 0.3 0.01 
12 0.01 0.05 32 0.03 0.05 52 0.07 0.4 72 0.15 0.5 92 0.3 0.05 
13 0.01 0.1 33 0.03 0.1 53 0.07 0.45 73 0.15 0.6 93 0.3 0.1 
14 0.01 0.2 34 0.03 0.15 54 0.07 0.5 74 0.15 0.55 94 0.3 0.15 
15 0.01 0.25 35 0.03 0.2 55 0.07 0.55 75 0.15 0.65 95 0.3 0.2 
16 0.01 0.3 36 0.03 0.3 56 0.1 0.05 76 0.2 0.01 96 0.3 0.25 
17 0.01 0.35 37 0.03 0.45 57 0.1 0.1 77 0.2 0.05 97 0.3 0.3 
18 0.01 0.4 38 0.05 0.05 58 0.1 0.15 78 0.2 0.1 98 0.3 0.4 
19 0.01 0.45 39 0.05 0.1 59 0.1 0.2 79 0.2 0.15 99 0.3 0.5 
20 0.02 0.02 40 0.05 0.15 60 0.1 0.25 80 0.2 0.2 100 0.3 0.6 

101 0.3 0.7 121 0.5 0.6 141 0.6 1.1 161 0.8 0.4 181 0.9 0.7 
102 0.3 0.8 122 0.5 0.7 142 0.6 1.2 162 0.8 0.5 182 0.9 0.8 
103 0.3 0.85 123 0.5 0.8 143 0.6 1.3 163 0.8 0.6 183 0.9 0.9 
104 0.4 0.05 124 0.5 0.9 144 0.7 0.1 164 0.8 0.7 184 0.9 1 
105 0.4 0.1 125 0.5 1 145 0.7 0.2 165 0.8 0.8 185 0.9 1.2 
106 0.4 0.2 126 0.5 1.1 146 0.7 0.3 166 0.8 0.9 186 0.9 1.4 
107 0.4 0.4 127 0.5 1.15 147 0.7 0.4 167 0.8 1 187 0.9 1.5 
108 0.4 0.6 128 0.6 0.1 148 0.7 0.6 168 0.8 1.1 188 0.9 1.6 
109 0.4 0.7 129 0.6 0.15 149 0.7 0.7 169 0.8 1.2 189 0.9 1.7 
110 0.4 0.8 130 0.6 0.2 150 0.7 0.8 170 0.8 1.3 190 0.9 1.8 
111 0.4 0.85 131 0.6 0.25 151 0.7 0.9 171 0.8 1.4 191 1 0.1 
112 0.4 0.9 132 0.6 0.3 152 0.7 1 172 0.8 1.5 192 1 0.2 
113 0.4 0.95 133 0.6 0.35 153 0.7 1.1 173 0.8 1.6 193 1 0.4 
114 0.4 1 134 0.6 0.4 154 0.7 1.2 174 0.8 1.65 194 1 0.5 
115 0.5 0.1 135 0.6 0.5 155 0.7 1.3 175 0.9 0.1 195 1 0.7 
116 0.5 0.15 136 0.6 0.6 156 0.7 1.4 176 0.9 0.2 196 1 1 
117 0.5 0.2 137 0.6 0.7 157 0.7 1.5 177 0.9 0.3 197 1 1.2 
118 0.5 0.3 138 0.6 0.8 158 0.8 0.1 178 0.9 0.4 198 1 1.4 
119 0.5 0.4 139 0.6 0.9 159 0.8 0.2 179 0.9 0.5 199 1 1.6 
120 0.5 0.5 140 0.6 1 160 0.8 0.3 180 0.9 0.6 200 1 1.8 
201 1 1.9 221 1.1 2 241 1.3 0.7 261 1.4 1.3 281 1.5 2 
202 1 1.95 222 1.2 0.4 242 1.3 0.8 262 1.4 1.4 282 1.5 2.1 
203 1.1 0.2 223 1.2 0.5 243 1.3 0.9 263 1.4 1.5 283 1.5 2.15 
204 1.1 0.3 224 1.2 0.6 244 1.3 1 264 1.4 1.6 284 1.6 1.2 
205 1.1 0.4 225 1.2 0.7 245 1.3 1.1 265 1.4 1.7 285 1.6 1.25 
206 1.1 0.5 226 1.2 0.8 246 1.3 1.2 266 1.4 1.8 286 1.6 1.3 
207 1.1 0.6 227 1.2 0.9 247 1.3 1.3 267 1.4 1.9 287 1.6 1.4 
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No. α β No. α β No. α β No. α β No. α β 
208 1.1 0.7 228 1.2 1 248 1.3 1.4 268 1.4 2 288 1.6 1.5 
209 1.1 0.8 229 1.2 1.1 249 1.3 1.5 269 1.4 2.1 289 1.6 1.6 
210 1.1 0.9 230 1.2 1.2 250 1.3 1.6 270 1.5 1 290 1.6 1.7 
211 1.1 1 231 1.2 1.3 251 1.3 1.7 271 1.5 1.1 291 1.6 1.8 
212 1.1 1.1 232 1.2 1.4 252 1.3 1.8 272 1.5 1.05 292 1.6 1.9 
213 1.1 1.2 233 1.2 1.5 253 1.3 1.9 273 1.5 1.2 293 1.6 2 
214 1.1 1.3 234 1.2 1.6 254 1.3 2 274 1.5 1.3 294 1.6 2.1 
215 1.1 1.4 235 1.2 1.7 255 1.3 2.1 275 1.5 1.4 295 1.6 2.2 
216 1.1 1.5 236 1.2 1.8 256 1.4 0.8 276 1.5 1.5 296 1.7 1.4 
217 1.1 1.6 237 1.2 1.9 257 1.4 0.9 277 1.5 1.6 297 1.7 1.45 
218 1.1 1.7 238 1.2 2 258 1.4 1 278 1.5 1.7 298 1.7 1.5 
219 1.1 1.8 239 1.2 2.05 259 1.4 1.1 279 1.5 1.8 299 1.7 1.6 
220 1.1 1.9 240 1.3 0.6 260 1.4 1.2 280 1.5 1.9 300 1.7 1.7 
301 1.7 1.8 311 1.8 2 321 1.9 1.8 331 2.1 2.35    
302 1.7 1.9 312 1.8 2.1 322 2 2.05 332 2.1 2.3    
303 1.7 2 313 1.8 2.2 323 2 2 333 2.1 2.2    
304 1.7 2.1 314 1.8 2.3 324 2 2.1 334 2.1 2.25    
305 1.7 2.2 315 1.9 2.35 325 2 2.2 335 2.2 2.5    
306 1.7 2.25 316 1.9 2.3 326 2 2.3       
307 1.8 1.6 317 1.9 2.2 327 2 2.25       
308 1.8 1.7 318 1.9 2.1 328 2 2.35       
309 1.8 1.8 319 1.9 2 329 2 2.4       
310 1.8 1.9 320 1.9 1.9 330 2.1 2.4       

 
 
 

Table A2: Points used along the D-E line, i.e. (α = β) 
S.No 1 2 3 4 5 6 7 8 9 10 
α = β 0 0.01 0.02 0.03 0.05 0.15 0.2 0.3 0.4 0.5 
S.No 11 12 13 14 15 16 17 18 19 20 
α = β 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 
S.No 21 22 23 24 25      
α = β 1.6 1.7 1.8 1.9 2      

 
 


