
1 
 

Building and estimating a dynamic model of weight gain and loss for 

individuals and populations 

Hazhir Rahmandad (Hazhir@vt.edu), Nasim S. Z. Sabounchi (Sabounchi@vt.edu)
 

Affiliation: Grado Department of Industrial and Systems Engineering, Virginia Tech, Northern 

Virginia Center, Falls Church, VA, 22043, USA 

 

Abstract 

The obesity trends in the U.S. and many other countries are alarming. Models that can assess the 

potential impact of alternative interventions are much needed in turning the obesity trend. The 

purpose of this research is to study the dynamics of obesity in the United States over time to 

build a generic system dynamics model that can be used for obesity policy analysis at multiple 

levels. The model is multi-level in the sense that it builds on individual level models for both 

childhood and adulthood to capture the energy balance and weight change throughout the life of 

individuals, and aggregates individual level models to population level trends. We discuss the 

application of simulated method of moments to the calibration of this model. This approach 

enables community, state, or national policy analysis building on a calibrated model and offers 

promising methodological advances in model calibration in the field of system dynamics.  

1. Motivation and Introduction 

The obesity trends in the U.S. and many other countries are alarming. The percentage of 

Americans who are obese has doubled to near 30% during the past four decades, and close to two 

third of the population is overweight (Bray and Bouchard 2004; Ogden, Carroll et al. 2006). The 

increase of obesity leads to significant costs and loss of quality life. The costs will double every 

10 years if current trends continue (Wang, Beydoun et al. 2008). Multiple levels of factors are 

involved in creating the obesity problem. A few of these include biological, psychosocial, 

cultural, environmental, economic drivers, and also factors related to the food, physical and 

cultural environment which affect human behavior (Huang, Drewnosksi et al. 2009). The 

multiplicity of actors involved and the mechanisms that influence obesity call for a systems 

approach to analyze the problem and assess interventions. Models that can assess the potential 

impact of alternative interventions are much needed in turning the obesity trend. Such models 

can facilitate policy analysis by expanding the boundaries of our mental models and enhancing 
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learning from evidence (Sterman 2006). An increasing set of public health problems are relying 

on such policy-oriented models to develop reliable policy options. For example simulation 

models are now playing a major role in outbreak response planning (Kaplan, Craft et al. 2002; 

Keeling, Woolhouse et al. 2003; Eubank, Guclu et al. 2004; Ferguson, Cummings et al. 2006). 

SD applications of public health problems include a wide range such as drug abuse (Caulkins, 

Crawford et al. 1993; Homer 1993; Behrens, Caulkins et al. 1999), bio-terror contingency 

planning (Kaplan, Craft et al. 2002), individual obesity (Abdel-Hamid 2002), diabetes (Jones, 

Homer et al. 2006), polio vaccination strategies (Thompson and Tebbens 2007), chronic disease 

(Homer, Hirsch et al. 2004; Homer, Hirsch et al. 2007),  smoking (Levy, Hyland et al. 2007), 

cardio-vascular health (Homer, Milstein et al. 2008), and hepatitis (Behrens, Rauner et al. 2008), 

among others.  

 However building calibrated models of obesity using individual-level time series data has 

been hampered by practical and ethical considerations related to following and manipulating an 

individual‟s eating, physical activity, and weight change over extended periods of time including 

childhood years. Moreover, population level policy analysis requires models that are validated 

using representative population level data. Available dynamic models for obesity rely on short-

term time series data and small sample sizes (Kozusko 2001; Flatt 2004; Christiansen, Garby et 

al. 2005; Butte, Christiansen et al. 2007; Hall 2010) which reduces their direct applicability for 

policy analysis at the population level.  

 

1.1. Literature and Problem Definition 

At its core, body weight gain and loss follow a simple logic: if the amount of energy intake (EI) 

from different food and drinks exceeds total energy expenditure (TEE) due to resting metabolic 

rate (RMR), digestion, and physical activity (PA), then body weight will increase, otherwise 

individual loses weight or remains at the current weight if EI=TEE. However policy-oriented 

modeling is complicated by multiple different factors. First, RMR is itself a function of body 

weight, composition (fraction of body weight in fat mass (FM) vs. fat free mass (FFM)), sex, 

ethnicity, and age (Harris and Benedict 1919; Cunningham 1980; Bernstein, Thornton et al. 

1983; Schofield 1985; Astrup, Thorbek et al. 1990; Cunningham 1991; Maffeis, Schutz et al. 

1993; Bitar, Fellmann et al. 1999; Frankenfield, Roth-Yousey et al. 2005). Changes in EI may 

influence RMR as well through a process known as adaptive thermogenesis (Rosenbaum, Leibel 
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et al. 1997; Jequier and Tappy 1999; Rosenbaum, Hirsch et al. 2008). Moreover, obesity is by 

definition about the tail of body mass index (BMI) distribution in a population. Models effective 

for obesity policy analysis should not only capture the dynamics of “average” individual, but 

should also be viable for predicting what happens to individuals in the tail of distribution.  

Finally, policy interventions are often not directly changing EI or PA, but do so through 

different indirect methods that use taxes on sugar sweetened beverages, availability of physical 

activity opportunities, school cafeteria menus, and other interventions to change EI and PA. 

Quantifying the effect of an intervention on EI and PA for different population members is 

needed in order to assess the intervention‟s impact on obesity. As a result of these challenges 

simulating population level weight gain and loss dynamics, and assessing alternative 

interventions in a new population group, requires dynamic models that 1) Capture the individual-

level body weight dynamics realistically, building on biological processes that regulate energy 

balance in body. 2) Connect individual level and population level dynamics in a robust and 

generalizeable fashion. 3) Express the impact of interventions on energy intake and physical 

activity for different individuals. 

 Previous work provides a strong starting point to model body weight dynamics in a single 

individual. (Kozusko 2001; Abdel-Hamid 2002; Christiansen and Garby 2002; Kozusko 2002; 

Flatt 2004; Christiansen, Garby et al. 2005; Butte, Christiansen et al. 2007; Song and Thomas 

2007; Thomas, Ciesla et al. 2009; Hall 2010). Modeling childhood weight gain and loss is more 

complex due to the presence of normal growth processes in children. Nevertheless a few 

researchers have tackled this topic by building childhood weight gain and loss models (Butte, 

Christiansen et al. 2007). While this literature provides a great starting point for modeling 

individual level body weight dynamics, three major shortcomings remain for using these models 

for population level policy analysis. First, none of the current models include both childhood and 

adulthood dynamics. Second, current models do not capture the dependence of RMR on age 

among adults, a factor that becomes relevant for modeling age-heterogeneous populations or 

dynamics over long time horizons. Finally, the current models focus on modeling a single 

“average” individual. Extending them to capture variations across individuals is critical for 

population health policy analysis. 

 In this study we plan to develop a dynamic model of individual weight change over time 

which overcomes the problems discussed above. Specifically, while the relationship between 
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RMR and age is not captured in current dynamic models of weight change; many statistical 

studies have included age as an independent variable in explaining RMR. (Harris and Benedict 

1919; Cunningham 1980; Cunningham 1991; Vaughan, Zurlo et al. 1991; Poehlman 1992; 

Maffeis, Schutz et al. 1993; Tershakovec, Kuppler et al. 2002; Speakman and Westerterp 2010). 

Some, (Poehlman 1992) find that “total daily energy expenditure and its components decline 

with advancing age” p.2057. However, Speakman and Westerterp (2010) find that in the second 

half of age (>57.8 for men and >39.8 for Women), RMR is negatively related to age, whereas in 

the first half it is positively related to age.  Therefore we can use this literature to build models 

that capture the change in RMR over an adult‟s life. Furthermore, we will combine childhood 

and adulthood equations from previous models to build a model that can be applied throughout 

the life of an individual.  

To address the third challenge, we will focus on identifying population level variations in 

relevant parameters that are important in explaining the variations in body weight across 

individuals. For example one can expect that all variations in weight can be explained solely by 

variations in EI and PA across individuals. Alternatively, variations in these inputs may not be 

enough to explain population level variations, and estimates of inherent (e.g. genetic) differences 

across individuals in parameters that determine TEE may be required. 

Estimating the aforementioned parameters requires strong empirical support. Ideally panel data 

on demographics, body weight and composition, EI, and PA for a large sample of individuals 

and over a long time would have provided the data to estimate relevant model parameters. 

However we could not identify any database with these characteristics. The most comprehensive 

study which has data on all the relevant variables and has reliably large sample sizes is the 

National Health and Nutrition Examination Survey (NHANES). While this survey is repeated bi-

annually since 2000, and three waves of data have been collected for it in the decades before 

that, the survey does not follow the same individuals over time. Therefore we will leverage 

estimation methods that can use this cross-sectional data base to estimate dynamic models that 

span over multiple years.  

2. Analysis and Results  

The purpose of the research is to study the dynamics of obesity in the United States over time to 

build a generic system dynamics model that can be used for obesity policy analysis at multiple 
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levels. The model is multi-level in the sense that it builds on individual level Energy Models for 

both childhood and adulthood  (Butte, Christiansen et al. 2007; Hall 2010) to capture the energy 

balance and weight change throughout the life of individuals, and aggregates individual level 

models to population level trends. This approach enables community, state, or national policy 

analysis building on a calibrated model. The model distinguishes individuals based on sex, age, 

ethnicity, and socio-economic characteristics and takes physical activity and energy intake as 

inputs and provides the dynamics of body weight and body composition as outputs.  

We first introduce the individual level model of body weight dynamics used in this study. The 

population level model which consists of multiple replicas of individual model and their 

relationships will then be discussed. Finally we explain the calibration and parameter estimation 

processes and the results of the analysis.  

2.1 Individual Level Model of Body Weight Dynamics 

Several models of body weight dynamics have been discussed in the literature (Kozusko 2001; 

Abdel-Hamid 2002; Christiansen and Garby 2002; Kozusko 2002; Flatt 2004; Christiansen, 

Garby et al. 2005; Butte, Christiansen et al. 2007; Song and Thomas 2007; Thomas, Ciesla et al. 

2009; Hall 2010). These models vary in their level of complexity and the feedback mechanisms 

they capture. Common across most these models are the state variables fat mass (FM) and fat 

free mass (FFM) which constitute the majority of body weight in a normal person. More detailed 

models may consider the stock of glycogen, protein, and extracellular fluid mass and adaptive 

thermogenesis among other stock variables (Flatt 2004; Hall 2006; Hall 2010). While additional 

complexity could be important in evaluating dynamics that unfold in hours or days, results of 

comparative studies by Hall (Chow and Hall 2008; Hall 2010) suggest that for longer term 

dynamics FM and FFM provide much explanatory power with very little complexity. We 

therefore rely on these two variables as the main stocks in our individual model.  

 In considering weight dynamics, total energy intake is the most important factor about 

food and beverage consumed by an individual. While individuals could get their calories from 

carbohydrates, fats, or proteins, the impact on weight dynamics is not significantly different as 

long as the same number of calories is taken in. Therefore we focus on total EI and do not 

distinguish between different nutrients.  

 Factors influencing energy expenditure are a bit more diverse. At its core, these include 

the resting metabolic rate (RMR: the energy required to perform vital body functions while body 
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is at rest) which contributes to 50-75% of energy expenditure, the physical activity energy needs, 

and the energy for digestion of food and nutrients consumed and generation of new tissue. RMR 

itself depends on the body composition (energy needs for maintaining FM and FFM are 

different) as well as individual differences on individual, age, and gender specific variations not 

captured by FM and FFM. Energy expenditure attributed to physical activity (PA) is largely 

proportional to the total weight (BW=FM+FFM) and the intensity of PA. As we discussed 

before, there is no unified model for childhood and adulthood body weight dynamics in the 

literature, we therefore use slight modification of the models by Hall (2010) and Butte 

Christiansen et al.(2007) to represent the total energy expenditure (TEE) in adults and children 

respectively by equations (1) and (2): 

                                      
    

  
    

   

  
      (1) 

                              
   

  
      (2) 

The parameters of the childhood model are somewhat imprecisely specified because 1) The 

Butte Christiansen et al. (2007) study does not include children under 4 years of age, and is 

heavily under sampled for those above 15. 2) Many of the relationships expressed in their model 

are based on tanner stage, rather than age. As a result, we have to estimate the dependence of βL 

on age to complete the childhood model. The estimation procedure is discussed in calibration 

section below.   

Changes in the FM and FFM are dependent on the difference between energy intake and energy 

expenditure (EI-TEE). Specifically, the net energy surplus (shortage) is partitioned to be added 

(lost) between FM and FFM. The partitioning function is different for adult and children, where 

the adult model uses the empirical equation 1/(1+0.502*FM) (Forbes 2000; Chow and Hall 

2008) as the fraction of energy surplus/shortage contributing to changes in FFM and the 

childhood model uses an age and sex specific table function.  

 Individual variations in the childhood and adulthood models are captured in variables 

PAL and K respectively, keeping all other parameters constant across individuals. Our individual 

model switches from childhood to adulthood equations when an individual reaches the age 20. 

The relationship between K and PAL are discussed in section 2.3.  

 Figure 1, provides an overview of the causal pathways in the individual level model. The 

equations behind the solid lines are taken from previous models in the literature (Butte, 
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Christiansen et al. 2007; Hall 2010) while the equations represented by dashed lines are 

estimated statistically using NHANES data (See Figure 1 below). Full model is available in the 

appendix.  

 

Figure 1- Overview of individual level model and its major feedback loops and estimated relationships. 

 

2.2 Estimating Energy Intake and Physical Activity 

NHANES data is not time series. Therefore EI and PA levels reported in the survey cannot be 

directly used to recreate an individual‟s EI and PA over the course of simulation. On the other 

hand EI and PA values are required as inputs to simulate the individual level model. To 

overcome this challenge we need equations that generate realistic time series values for EI and 

PA for each individual in a population, while being consistent with overall distributional 

characteristics of the data in NHANES. The process of estimating these equations, is complex 

and beyond the scope of the current paper which focuses on body weight dynamics. However the 

resulting equations which are used in the simulation model are reported here with a brief 

explanation. 

Energy intake for individual i at time t depends on the expected energy intake for an 

individual with the same profile as individual i (EEI), adjusted based on a normalization factor 

(e) and an individual variation factor (ε) as shown in equation (3):  
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Expected energy intake (EEI) is calculated from a regression equation that is estimated 

based on NHANES data. Normalized values for 34 different independent variables ranging from 

age, sex, ethnicity, to body weight, year, and socio-economic status are used in this regression 

and the resulting coefficients of regression (βj; available in Appendix A) are used in equation (4) 

to calculate EEI: 

             (4) 

Normalization is conducted to correct for heteroskedasticity in the regression (e.g. 

typically, error terms are much larger for people who are heavier and eat more). The expected 

error term is used for the normalization of independent variable j for individual „i‟' as in the 

following equation:  

            (5) 

These expected error terms are calculated by doing another regression (i.e. equation (6)) 

that estimates non-normalized error terms based on different individual characteristics. 

(Regression coefficients αj can be found in Appendix A):  

            (6) 

Finally, the individual variation term is assumed to be a random normal variable which is 

gradually changing for each individual within the overall distribution of υ~N(0,σ). The variance 

parameter σ represents the variations in individual energy intake attributable to persistent within-

individual differences (rather than temporary differences from one day to the next) and from 

multiple measurements of EI for the same individual available in NHANES is estimated to be 

1.53. The parameter τ is estimated in the calibration procedure (see below) and dt is the time step 

for numerical integration: 

         
               

          
          (7) 

This formulation partitions differences between individuals‟ measured EI into 1) 

predictable factors (those estimated in the regression) 2) Unobservable heterogeneity among 

individuals (captured in ε term) and 3)Measurement error, which is estimated (using the fact that 

NHANES offers two EI estimates based on two different measurements for many individuals) 

and removed from the rest of analysis. We also allow the unobservable heterogeneity factor, ε, 

among individuals to change over time. For example an individual who initially was in the 95
th
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percentile of EI among his peers (those with the same independent variables), could gradually 

change his EI habits and move to a different percentile, without changing the overall distribution 

of EI for the population. By estimating the parameter τ we are able to estimate how fast 

individual energy intake percentile changes, if at all.  

A similar (but slightly simpler) set of regression equations are developed to generate 

physical activity values beyond the base level (PAActive) for each individual in a population. The 

variations across individuals are captured using a log-normal distribution with standard deviation 

σPA which is estimated in calibration. Put together, these equations can provide the synthetic, but 

empirically grounded, input data on EI and PA for any arbitrary population group. For example, 

one can generate realistic time series EI and PA inputs for a group of K-12 school children with a 

given ethnicity and socioeconomic characteristic mix. These relationships are highlighted in 

Figure 1 with dashed lines. 

 

2.3 Population Model 

Multiple replications of the individual level model (Section 2.1) can be simulated together to 

generate population level characteristics of interest such as percentage of the population that is 

overweight or obese. However creation of the population model requires more than just 

replicating the individual level model. Specifically, where a parameter is assumed to be different 

across individuals, the distributional characteristics of that parameter should be specified for the 

population. For example, individuals vary in their RMR constant term, K, within the adulthood 

model. However, previous research does not specify the distributional characteristics of K, such 

as its mean and standard deviation. Previous models also do not specify the dependence of K on 

age and gender, among others. Even after fixing all individual-independent model parameters 

based on the literature, such distributional parameters need to be empirically estimated for the 

population model. 

 Besides individual factors influencing EI and PAActive (See section 2.2), in our model we 

define a single individual variance factor which captures differences in RMR across different 

individuals. The basic idea is that even if two individuals have the same exact FM, FFM, EI and 

PA, they may still have different weight trajectories over time due to small differences in how 

their bodies process nutrients. Such differences should be expected and could be traced back to 

individual level genetic or environmental factors not represented in our relatively simple model. 
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We formulate this individual factor (ϵ) to depend on gender (G) and ethnicity (T: a vector (thus 

bold) of dummy variables for different ethnicities in NHANES), according to the following 

equation: 

                            (8) 

 Here parameters αG, αT, and σϵ should be estimated in the calibration process. These 

parameters will determine if there are ethnic and gender specific variations on how individuals‟ 

bodies react to different EI and PA profiles, and how much different individuals vary on this 

front once controlling for gender and ethnicity. Individual factor parameter then influences the 

childhood and adulthood models according to the following equations: 

                                      (9) 

                        (10) 

              
       𝑘               

             
  (11) 

 The value of PABase is taken from the Hall‟s model to be around 5 Kcal/Kg/Day. These 

equations ensure that the range of PAL remains consistent with empirical evidence (between 1.5 

and 2); that physical activity is accounted for in a comparable fashion in both childhood and 

adulthood models, and that the dependence of RMR constant term (K) on age can be included in 

our estimation process. The parameters ρch, sk, l, and tD should be estimated from the data to 

specify the magnitude of RMR constant term over an individual‟s life. 

 

2.4 Model Calibration and Parameter Estimation 

An innovative feature of this study is its methodological contribution towards estimating 

dynamic models based on cross-sectional individual level data from a population. As discussed 

before, no current database offers the large scale time series data typically used for estimating 

dynamic models similar to the one we are working with here. However, we note that the data in 

NHANES provides a lot of information in terms of the distribution of weights (and body 

composition) for different subgroups in the population. A good population level model should be 

able to match those distributions closely, and the quality of that match can inform parameter 

estimation and hypothesis testing. For example we can look at the sample mean and variance of 

body weights for 5-7 year old African American Male in NHANES data in 2005-2006 and 

compare that to synthetic results for a similar population (with similar demographics) simulated 
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using our model. If the two statistics (sample mean and variance) for the real population match 

those in the simulated population, we can have some confidence about the ability of the model to 

recreate the historical results. In fact we can also change model parameters to reduce the 

discrepancy between different statistics, i.e. to calibrate the model and estimate the unknown 

parameters. Given that our model can be applied to simulate weight change for individuals 

across different age, ethnicity, and gender groups, we could scale up the comparison above for 

many different sub-population statistics to increase the precision of the comparisons, and to find 

better parameter estimates. This is the core idea we follow in this study.  

This method can be identified as an instance of the Simulated Method of Moments 

(SMM) which is one of the most versatile econometric estimation methods available (McFadden 

1989; Lee and Ingram 1991; Duffie and Singleton 1993) . In this perspective, the mean and 

variance of body weight for each group is a distributional “moment” from the population, for 

which simulation and real data could be obtained and compared. More generally, denote the x be 

the vector of observed variables (e.g. the individual weight and body compositions for all the 

population members), x
s
 (θ) the simulated vector for the same variables in simulation s generated 

using parameter vector θ in the model, and µ(x) a vector of functions of the observed data. The 

SMM uses the following optimization problem to estimate the parameter vector θ: 

            
 

      
 

 
           

 

   

           
 

 
          

 

   

 (12) 

The matrix W denotes the weighting function used. When multiple moments are to be 

compared, and the difference between pairs minimized through changing model parameters, one 

needs to assign weights to the error term resulting from each pair of simulated and empirical 

moments. If the model has no specification error, a large set of weighting functions provide 

consistent estimate. However, to increase the efficiency of the estimates and to increase 

robustness against model mis-specification, these weights should depend on the variability 

inherent in each moment, and its correlation with other moments. For example if the mean body 

weight for a population group is very uncertain, e.g. due to the limited number of data points 

available for that group, we should put a limited weight on the error term arising from the 

difference between empirical and simulated moments for that sub-group. In contrast, more 

established moments should be given higher weights. These weights are typically proportional to 

the observed covariance matrix for µ(x
s
 (θ)). Note that as a result this procedure requires 
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multiple simulations to generate estimates for the µ(x
s
 (θ)) and its covariance matrix and conduct 

a single comparison with data. 

In our application we define the moments (µ function) to be the mean and variance of 

population weights for 110 subpopulation groups (11 age groups, 5 ethnicities, and 2 genders), 

resulting in 220 moments to be matched against observed moments in a population of 5971 

individuals from 2005-2006 NHANES for whom all the relevant data points are available. The 

number of individuals in each sub population varies between 1 (a few of the groups in the 80< 

age group) and 280 for African American male teenagers. In practice the computational costs of 

the SMM method could be prohibitive: simulating a large population (over 5000) of individuals 

is costly, multiple (S) replications may be required to calculate the objective function, and many 

(several to hundreds of thousands) simulations are required for any numerical optimization 

algorithm to find the unknown parameter vector. In order to overcome computational barriers, 

we modify the method to use S=1, and use sample mean, variance, and kurtosis to calculate 

estimates for the variance of sample mean and variance of sample variance. These estimates are 

used for the weights (W; a diagonal matrix is used) in the optimization problem above.   

 Figure 2, provides an overview of the statistical analysis and calibration procedure used. 

To capture the changes in EI and PA overtime, the statistical analysis used data from three 

rounds of continuous NHANES, conducted in 2001-2002, 2003-2004, and 2005-2006. This 

allows us to simulate body weight change in each individual over the 2001-2006 period, which is 

ample time to reach long term trajectories of body weight for each individual, starting from 

initial weights specified by expected values in 2001. The EI and PA values also depend on body 

weight, therefore the regression equations are embedded as part of the simulation model and 

create the synthetic EI and PA trajectories endogenously. The results of the body weight mean 

and variance for different sub-population groups is compared against the same metrics from the 

2005-2006 NHANES data, and the weighted difference is minimized by calibrating the free 

parameters of the model. 
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The parameters estimated in the calibration procedure include those explaining EI and 

individual factor distributions at the population level (τ, σPA, αG, αT, σϵ, ρch , sk, l, and tD) as well 

as parameters specifying the dependence of βL on age during childhood. This relationship 

captures the biological observation that children‟s energy expenditure per unit of weight declines 

over time as they grow older. Consistent with Butte et al. (2007), an inverse S-shape functional 

form for this relationship is assumed (input to the function is individual i‟s Age, Ai). Here βL 

comes out as the average of βL0 and βLF at age aβ and symmetrically decreasing between these 

two extremes with a logistic curve with a slope related to sβ. Parameters βL0, βLF, aβ, and sβ are 

estimated in the calibration procedure. 

       
                    

             
 (13) 

 

Statistical Analysis 

 

Input         Output          Both 

 

BWsimulated1 

BWsimulated2 

 

Minimize Payoff = 

 𝒘𝒊 𝑺𝒖𝒃𝒑𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝑩𝑾 𝑴𝒐𝒎𝒆𝒏𝒕𝒔𝑫𝒂𝒕𝒂  𝒊

𝑺𝒖𝒃𝒑𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝑩𝑾 𝑴𝒐𝒎𝒆𝒏𝒕𝒔𝑺𝒊𝒎𝒖𝒍𝒂𝒕𝒆𝒅 
𝟐 

                                              Data for 5971 individuals 

Sequence 
Number 

Income Education Age Sex Ethnicity BW 

1 1 3 6 0 2 83.7 
2 1 4 23 1 2 71.6 
3 1 3 37 1 5 218.6 
4 0 4 44 1 1 93.7 

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . . . . . 

5971 1 5 43 0 4 101.7 

Source: continuous NHANES 2005-2006 

 𝑛 𝑟𝑔𝑦 𝑛  𝑘 𝑖𝑗

  𝑖
=   𝑖 +  𝑖 +  𝑗 ;     𝑖 =     𝑖  

BWsimulatedN 

 ℎ𝑦 𝑖𝑐 𝑙 𝑐 𝑖𝑣𝑖 𝑦𝑖𝑗

  𝑖
=  𝑍𝑖 +  𝑖 +  𝑗 ;     𝑖 =    𝑍𝑖  

The Core Model 

FM

FFM

dFM

dFMM

FM

FFM

dFM

dFMM

FM

FFM

dFM

dFMM

Continuous NHANES (all series for statistical analysis, 2005-2006 for calibration) 

Figure 2- Overview of statistical estimation and calibration procedures. 
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2.5 Calibration Results 

Following the procedure discussed in section 2.4, we conducted the calibration procedure. The 

algorithms are implemented in Vensim™, and using model compilation and other time-saving 

techniques we could calibrate the model through overnight simulations on an Intel Core 2 Quad 

CPU @ 2.66GHz with 4GB memory. The obtained payoff (see equation 12) was 6568. Table 1 

reports the parameter estimates for the calibrated model. Parameters specifying βL the 

relationship with age show reasonable ranges and values consistent with previous literature 

(Butte, Christiansen et al. 2007). Other parameters are harder to evaluate based on external 

metrics because many of them are introduced for the first time in the literature and prior values 

are not available.  

 
Table 1- Estimated parameter values from calibration. Values identified by * point to estimates that fall on the boundaries of 

searched parameter space. 

 Description Value Units 

τ EI Change time constant (Eq*** please add equation numbers for all 

parameters below) 

1.14 Year 

σPA Standard deviation of log-normal random term multiplied by average 

individual physical activity to provide values for a single individual 

0.001* dmnl 

αG Male individual factor (0 is for female) -1* dmnl 

αTW Ethnicity individual factor for white (Mexican American assumed 0) -0.88 dmnl 

αTB Ethnicity individual factor for African Americans (Mexican American 

assumed 0) 

-0.39 dmnl 

αTH Ethnicity individual factor for other Hispanic (Mexican American 

assumed 0) 

-1* dmnl 

αTO Ethnicity individual factor for other ethnicities (Mexican American 

assumed 0) 

-1* dmnl 

σϵ Standard deviation of individual factor term distinguishing between 

individuals. 

1* dmnl 

ρch Constant term for PAL used in childhood 4* dmnl 

kmin Minimum value for the relationship between constant term of RMR 

and age. 

-

100,000* 

Kcal/Year 

sk Individual scale factor for adults 333874 Kcal/Year 

l Slope at inflection point for the relationship between constant term of 

RMR and age. 

0.019 1/Year 

tD Age at inflection point for the relationship between constant term of 20* Year 
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RMR and age. 

βL0 Starting value for the relationship between βL and age. 36.13 Kcal/Kg/

Day 

βLF Final value for the relationship between βL and age. 5.47 Kcal/Kg/

Day 

aβ Age at inflection point for the relationship between βL and age. 7.13 Year 

sβ Slope at the inflection point for the relationship between βL and age. 0.55 1/Year 

 

 Figure 3, reports a few sample histograms for weight distributions of different 

subpopulations compared across simulated (blue, left bars) and empirical (red right bars) data. 

While the overlaps between the distributions are relatively good, a few systematic biases could 

be observed. First, the simulation results tend to include too many under-weight individuals. 

Moreover there are often a few very obese individuals in the empirical data who are not 

replicated in the simulations. The overall fit between the model and empirical data on mean 

weight is mixed. For most population groups the average weight is within 10% of the empirical 

results. But for a few of the groups, the variations observed are as high as 50% which lead to 

relatively high penalty function in the calibration. Mean weight for boys is slightly 

overestimated, is fairly precise for girls, and is underestimated for adults, especially at older 

ages.   

 The model developed here is promising as a first step to develop a generic, multi-purpose 

platform for testing the impact of different interventions designed to fight obesity. As such, the 

model can be easily configured to include different variations in EI and/or PA resulting from an 

intervention, and predict the changes in population weight as a result. For example, what would 

be the impact of changing the food offered in school cafeterias? Fox, Gordon et al. (2009), 

estimate that children in schools obtain 160-200 Kcal/Day from competitive foods provided in 

school cafeteria. Therefore the impact of any intervention focused on altering competitive food 

offerings will likely be limited to this level of change in EI. Figure 4 reports one such simulation 

experiment in which EI for a cohort of K-12 children is reduced by 180 Kcal/Day at the 

beginning of 2011 and the average weight and its distribution is followed over the next decade.  
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Figure 3-Sample results comparing body weight distributions for simulation (blue/left) and empirical(red/right) data across a 
few population subgroups. 

  The model developed here is promising as a first step to develop a generic, multi-purpose 

platform for testing the impact of different interventions designed to fight obesity. As such, the 

model can be easily configured to include different variations in EI and/or PA resulting from an 

intervention, and predict the changes in population weight as a result. For example, what would 

be the impact of changing the food offered in school cafeterias? Fox, Gordon et al. (2009), 

estimate that children in schools obtain 160-200 Kcal/Day from competitive foods provided in 

school cafeteria. Therefore the impact of any intervention focused on altering competitive food 

offerings will likely be limited to this level of change in EI. Figure 4 reports one such simulation 

experiment in which EI for a cohort of K-12 children is reduced by 180 Kcal/Day at the 

beginning of 2011 and the average weight and its distribution is followed over the next decade.  
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Figure 4-Results from a hypothetical intervention reducing K-12 student energy intake by 180Kcal/Day starting 2011. 

 

It is important to note that a major part of capturing the impact of interventions relates to 

assessing the impact of each intervention on EI and PA. Our model does not provide any direct 

way to measure or simulate that causal link and relies on empirical estimates provided from other 

studies. Nevertheless, to the extent that such estimates exist, this model provides a flexible 

environment for testing their impact on body weight distribution in general, and obesity patterns 

in particular. 

3. Discussion and Limitations:  

The contributions of this work are twofold. First, for the first time in the public health literature 

we provide an integrated model of weight gain and loss that covers both childhood and 

adulthood and connect it to population level weight dynamics. The resulting model provides a 

flexible, validated, module to be integrated in any policy analysis project. The model is robust to 

extreme conditions, does not require parameter estimation, and can be plugged with any 

hypothetical interventions.  

Second, we adopt the SMM for application to arbitrary system dynamics models. SMM is 

very flexible and enables SD models to be estimated using not only panel or time series data but 
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also cross sectional population statistics. This can open the door to much wider use of nonlinear 

feedback-rich models in data intensive domains traditionally dominated by simpler regression 

models. Computational challenges involved in the estimation process should be considered 

judiciously to maximize the impact of this methodological innovation in future research. 

The results presented here provide a first cut at a complex modeling and estimation 

project, and future work should focus on improving the results in light of less-than-perfect fit 

between the model and the data in many settings. In fact we experimented with a few different 

specifications and calibrated the model under several different assumptions, but the 

underestimation of weight for older adults remains a robust result in the model. Two alternative 

hypotheses could explain this issue. First, the individual level models used as the starting point 

for this study may be deficient and require structural or parametric changes. We are currently 

exploring this possibility by conducting a meta-analysis of different studies connecting RMR and 

different individual level variables. Furthermore, energy intake data in NHANES may be 

inaccurate due to personal reports not being verified independently (Pryer, Vrijheid et al. 1997; 

Pomerleau, Ostbye et al. 1999; Asbeck, Mast et al. 2002; Pikholz, Swinburn et al. 2004; 

Poslusna, Ruprich et al. 2009). This is especially problematic if the reporting bias varies across 

age, gender, and ethnicity due to memory recall problems and value of different body images in 

the respondent‟s mind. Should we conclude that this is the main culprit in the resulting variations 

between the model and the data, we will need to consider other data sources which have avoided 

this bias through more objective energy intake assessments. Finally, concerns for computational 

costs and plausibility of resulting parameters lead us to restrict the searched parameter space. 

However, several parameters were estimated to be on the imposed boundaries of the parameter 

space, which suggests a larger parameter space may need to be explored in the optimization 

problem.  
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Appendix A 

******************************** 

Given Parameters based on original models/literature 

******************************** 

 
basal energy need of FM kf = 2354 
 Units: kcal/(kg*Year) 

  

beta = 0.24 * 0 + 0.1 

 Units: Dmnl 

  

C = 10.4 

 Units: kg 

  

deltaBase = 5 * 365 

 Units: kcal/(kg*Year) 

  
efficiency in conversion of energy to FFM eff = 0.42 

 Units: Dmnl 

  

efficiency in conversion of energy to FM ef = 0.85 

 Units: Dmnl 

  

EtaF = 180 

 Units: kcal/kg 

  

EtaL = 230 

 Units: kcal/kg 

  
Fat Energy Content cf = 9250 

 Units: kcal/kg 

  

GammaF = 3.2 * 365 

 Units: kcal/(kg*Year) 

  

GammaL = 22 * 365 

 Units: kcal/(kg*Year) 

  

Lean Energy Content cff = 1070 

 Units: kcal/kg 
  

MaxEI = 4e+006 

 Units: kcal/Year 

  

MinDieTime = 0.25 

 Units: Year 

  

MinIndivFactor = 0.2 

 Units: **undefined** 

  

RhoF = 9400 
 Units: kcal/kg 

  

RhoL = 1800 

 Units: kcal/kg 
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SwitchAge = 20 

 Units: Year 

  

Thermic Effect of Food = 0.1 

 Units: Dmnl 

 

******************************** 

Variables/Parameters estimated directly from the regression results. 

******************************** 

 

BetaWeight[RegDim] = 0, 0, -0.99024, -1.38012, -0.26398, -1.23871, 5.04669,  

      -0.08268, -0.00079, 2.96e-005, -1.89e-007, 4.11142, 0.057612, -0.00568 

      , 9.61e-005, -5.02e-007, 1.1844, -0.28625, 2.5016, 5.50454, 0, 0, 0,  

      0, 1.47752, 1.94486, 1.92287, -1.19836, 0.290778, -0.00499, -0.74844,  

      -0.63011, 0.334631, 1.38368 

 Units: Dmnl 

  
EIRegAlpha[RegDim] = 0.000470207, -8.347e-009, 0.130388, 0.0946955, 0.0418888 

      , -0.21005, 0.153314, -0.00653885, 0.000118584, -1.01442e-006, 3.27e-009 

      , 0.141181, -0.00305543, -1.0581e-006, 4.94118e-007, -3.323e-009, 0.0636715 

      , 0.147778, 0.197214, 0.234985, 0.00187009, 1.14759e-006, -2.60287e-006 

      , -0.000200152, 0.0297876, 0.0686771, 0.047488, -0.159513, -0.0878334 

      , 0.0167312, -0.0969955, -0.0959532, 0.039817, 10.777 

 Units: Dmnl 

  

EIRegBeta[RegDim] = -0.265904, 0, -49.4757, 22.971, 48.6868, 75.8632, 111.42 

      , -8.57332, 0.256955, -0.00327348, 1.48904e-005, 141.584, -9.98975, 0.292064 

      , -0.00370248, 1.68698e-005, 58.8631, 47.0249, 27.7222, -54.9654, -2.68104 
      , 0, 0.000471804, 0.262445, 145.455, 157.439, 224.007, 291.642, 127.043 

      , -85.1863, -27.2202, -89.4859, -91.3247, 3.4304 

 Units: Dmnl 

  

EIVarFactor = INITIAL( 1.533 ) 

 Units: Dmnl 

  

ePredict[Person] = sqrt ( exp ( sum ( EIRegAlpha[RegDim!] * IndivX[Person,RegDim! 

                          ] ) ) )  

 Units: Dmnl 

  

ExpectedEI[Person] = sum ( EIRegBeta[RegDim!] * IndivXdiv[Person,RegDim!] )  
 Units: kcal/year 

  

IndivX[Person,PA] = PAFac[Person]  

IndivX[Person,T] = TimeFactor[T]  

IndivX[Person,AF] = ( Age[Person] * IndSex[Person] ) ^ ( AF - 6)  

IndivX[Person,AM] = ( Age[Person] * ( 1 - IndSex[Person] ) ) ^ ( AM - 11)  

IndivX[Person,Et] = If then else ( Ethnicity Code[Person] = Et - 16, 1, 0)  

IndivX[Person,BW1] = Min ( BW[Person] , 200)  

IndivX[Person,BW2] = Min ( BW[Person] , 200) ^ 2 

IndivX[Person,BWPA] = Min ( BW[Person] , 200) * PAFac[Person]  

IndivX[Person,Et3PA] = If then else ( Ethnicity Code[Person] = 3, 1, 0) * PAFac[Person]  
IndivX[Person,Edu] = If then else ( Education[Person] = Edu - 23, 1, 0)  

IndivX[Person,Inc] = Income[Person]  

IndivX[Person,Edu4Inc] = IndivX[Person,Ed4] * Income[Person]  

IndivX[Person,Cons] = 1 
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IndivX[Person,PA2] = PAFac[Person] ^ 2 

IndivX[Person,Edu2Inc] = IndivX[Person,Ed2] * Income[Person]  

IndivX[Person,Edu3Inc] = IndivX[Person,Ed3] * Income[Person]  

IndivX[Person,Edu5Inc] = IndivX[Person,Ed5] * Income[Person]  

IndivX[Person,Female] = IndSex[Person]  

 Units: **undefined** 
  

IndivXBegin[Person,PA] = INITIAL( 0 ) 

IndivXBegin[Person,T] = INITIAL( TimeFactor[T] ) 

IndivXBegin[Person,AF] = INITIAL( ( Age[Person] * IndSex[Person] ) ^ ( AF - 6) ) 

IndivXBegin[Person,AM] = INITIAL( ( Age[Person] * ( 1 - IndSex[Person] ) ) ^ ( AM - 11) ) 

IndivXBegin[Person,Et] = INITIAL( If then else ( Ethnicity Code[Person] = Et - 16, 1, 0) ) 

IndivXBegin[Person,BW1] = 0 

IndivXBegin[Person,BW2] = 0 

IndivXBegin[Person,BWPA] = 0 

IndivXBegin[Person,Et3PA] = 0 

IndivXBegin[Person,Edu] = INITIAL( If then else ( Education[Person] = Edu - 23, 1, 0) ) 

IndivXBegin[Person,Inc] = INITIAL( Income[Person] ) 
IndivXBegin[Person,Edu4Inc] = INITIAL( IndivXBegin[Person,Ed4] * Income[Person] ) 

IndivXBegin[Person,Cons] = 1 

IndivXBegin[Person,PA2] = 0 

IndivXBegin[Person,Edu2Inc] = INITIAL( IndivXBegin[Person,Ed2] * Income[Person] ) 

IndivXBegin[Person,Edu3Inc] = INITIAL( IndivXBegin[Person,Ed3] * Income[Person] ) 

IndivXBegin[Person,Edu5Inc] = INITIAL( IndivXBegin[Person,Ed5] * Income[Person] ) 

IndivXBegin[Person,Female] = INITIAL( IndSex[Person] ) 

 Units: **undefined** 

  

IndivXdiv[Person,RegDim] = If then else ( RegDim = 34, 1, IndivX[Person,RegDim] / ePredict[Person] )  

 Units: **undefined** 
  

MeanBWFac = ( 1 - LN ( 0.5 / exp ( 1) + 1) ) / 2 

 Units: Dmnl 

  

StdBWFac = INITIAL( sqrt ( LN ( StdBWInit / exp ( 1) + 1) ) ) 

 Units: Dmnl 

 

******************************** 

The rest of the model, including Adult and Child Body Weight modules 

******************************** 

 

Age[Person] = Max ( 0, Time - BirthTime[Person] )  
 Units: Year 

  

basal energy need of FFM kff[Person] = ( Initkff - ( Initkff - Finalkff ) * exp ( ESlope * ( Age[Person] - SlpStr ) ) / ( 

1 + exp ( ESlope* ( Age[Person] - SlpStr ) ) ) ) * 365 

 Units: kcal/(kg*Year) 

  

Basal Methabolic Rate BMR[Person] = ( FM[Person] * basal energy need of FM kf+ FFM[Person] * basal energy 

need of FFM kff[Person] )  

 Units: kcal/Year 

  

BirthTime[Person] = INITIAL( BirthTimeData[Person] - RANDOM UNIFORM ( 0, 1, NoiseSeed ) ) 
 Units: Year 

  

BW[Person] = FFM[Person] + FM[Person]  

 Units: kg 
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BWfactor[Person] = BW[Person] * Delta[Person]  

 Units: kcal/Year 

  

Conversion Energy CE[Person] = Indicated Weight Change dBM[Person] * ( Total Energy Coefficient for Tissue 

Deposition c[Person] - Energy Deposition Coefficient in Tissue[Person] )  
 Units: kcal/Year 

  

Delta[Person] = deltaBase + deltaPA[Person]  

 Units: kcal/(kg*Year) 

  

deltaPA[Person] = IndivAvePA[Person] * 365 * IndividualPAFactor[Person]  

 Units: kcal/(kg*Year) 

  

DEnergyIntake[Person] = EnergyIntake EI[Person] - Base Energy Intake  

 Units: kcal/Year 

  

dFFM B[Person] = Indicated Weight Change dBM[Person] * ( 1 - Fat Deposit Fraction fr[Person] ) * 
IsBorn[Person]  

 Units: kg/Year 

  

dFFM H[Person] = ( EnergyPFunction[Person] * ( EnergyIntake EI[Person] - EnergyExpenditure[Person] ) ) / RhoL  

 Units: kg/Year 

  

dFM[Person] = Max ( ( 1 - SWModel[Person] ) * dFM B[Person] + SWModel[Person] * dFM H[Person] , - 

FM[Person] / MinDieTime )  

 Units: kg/Year 

  

dFM B[Person] = Fat Deposit Fraction fr[Person] * Indicated Weight Change dBM[Person] * IsBorn[Person]  
 Units: kg/Year 

  

dFM H[Person] = ( ( 1 - EnergyPFunction[Person] ) * ( EnergyIntake EI[Person] - EnergyExpenditure[Person] ) ) / 

RhoF  

 Units: kg/Year 

  

dFMM[Person] = Max ( ( 1 - SWModel[Person] ) * dFFM B[Person] + SWModel[Person] * dFFM H[Person] , - 

FFM[Person] / MinDieTime )  

 Units: kg/Year 

  

Diet Induced EE DIEE[Person] = EnergyIntake EI[Person] * Thermic Effect of Food  

 Units: kcal/Year 
  

dIfactor[Person] = beta * DEnergyIntake[Person]  

 Units: kcal/Year 

  

EIRandomFactorGenerator[People] = RANDOM NORMAL ( -10, 10, 0, EIVarFactor , NoiseSeed ) + 1 

 Units: Dmnl 

  

Energy Deposition Coefficient in Tissue[Person] = ( Fat Deposit Fraction fr[Person] * Fat Energy Content cf + ( 1 - 

Fat Deposit Fraction fr[Person] ) * Lean Energy Content cff )  

 Units: kcal/kg 

  
Energy Expenditure Minus CE[Person] = Basal Methabolic Rate BMR[Person] * Physical Activity PAL[Person] + 

Diet Induced EE DIEE[Person]  

 Units: kcal/Year 
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EnergyExpenditure[Person] = KConstant[Person] / ( 1 + IFactor[Person] ) + EnergyExpenditure without K[Person]  

 Units: kcal/Year 

  

EnergyExpenditure without K[Person] = ( FFMfactor[Person] + FMfactor[Person] + BWfactor[Person] + 

dIfactor[Person] + Iterm[Person] ) / ( 1 + IFactor[Person] )  

 Units: kcal/Year 
  

EnergyIntake EI[Person] = Min ( MaxEI , ( Max ( ExpectedEI[Person] / 5, ExpectedEI[Person] + 

PersonalEnergyIntakeFactor[Person] ) * ePredict[Person] ) * 365)  

 Units: kcal/Year 

  

EnergyPFunction[Person] = CConstant[Person] / ( CConstant[Person] + FM[Person] )  

 Units: Dmnl 

  

Fat Deposit Fraction fr[Person] = fr Table boy ( Age[Person] ) * ( 1 - IndSex[Person] ) + IndSex[Person] * fr Table 

girl ( Age[Person] )  

 Units: Dmnl 

  
FFM[Person] = INTEG( dFMM[Person] , Initial FFM[Person] )  

 Units: kg 

  

FFMfactor[Person] = FFM[Person] * GammaL  

 Units: kcal/Year 

  

FM[Person] = INTEG( dFM[Person] , Initial FM[Person] )  

 Units: kg 

  

FMfactor[Person] = FM[Person] * GammaF  

 Units: kcal/Year 
  

fr Table boy ( [(0,0)-(20,1)],(8,0.45),(11,0.26),(12.5,0.06),(14,0.35),(17,0.47),(20,0.67) ) 

 Units: Dmnl 

  

fr Table girl ( [(0,0)-(20,1)],(8,0.42),(11,0.41),(12.5,0.5),(14,0.58),(17,0.67),(20,0.76) ) 

 Units: Dmnl 

  

FracFM[Person] = FM[Person] / BW[Person]  

 Units: Dmnl 

  

IFactor[Person] = EtaF * ( 1 - EnergyPFunction[Person] ) / RhoF + EtaL * EnergyPFunction[Person] / RhoL  

 Units: Dmnl 
  

IndEthn[Ethnicity,Person] = INITIAL( If then else ( Ethnicity Code[Person] = Ethnicity, 1, 0) ) 

 Units: **undefined** 

  

Indicated Weight Change dBM[Person] = ( EnergyIntake EI[Person] - Energy Expenditure Minus CE[Person] ) / ( 2 

* Total Energy Coefficient for Tissue Deposition c[Person] - Energy Deposition Coefficient in Tissue[Person] )  

 Units: kg/Year 

  

indiv factor[Person] = INITIAL( sum ( Indiv Sex[Person,Sex!] * Female Indiv Factor[Sex!] ) + sum ( 

EthIndivFac[Ethnicity!] * IndEthn[Ethnicity!,Person] ) * RANDOM NORMAL ( 0, 2, 1, IndivSTDev, NoiseSeed ) ) 

 Units: Dmnl 
  

Indiv Sex[Person,Sex] = INITIAL( If then else ( IndSex[Person] = Sex - 1, 1, 0) ) 

 Units: **undefined** 
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IndivAgeGroup[Person,AgeGroup] = INITIAL( If then else ( ( FINAL TIME - BirthTime[Person] ) < 

AgeUpperLimit[AgeGroup] :AND: ( FINAL TIME- BirthTime[Person] ) >= AgeLowerLimit[AgeGroup] , 1, 0) ) 

 Units: **undefined** 

  

IndivAvePA[Person] = If then else ( IndSex[Person] = 0 :AND: Ethnicity Code[Person] = 1, IndivPATable[l1] ( 

Age[Person] ) , If then else (IndSex[Person] = 0 :AND: Ethnicity Code[Person] = 2, IndivPATable[l2] ( 
Age[Person] ) , If then else ( IndSex[Person] = 0 :AND: Ethnicity Code[Person] = 3, IndivPATable[l3] ( 

Age[Person] ) , If then else ( IndSex[Person] = 0 :AND: Ethnicity Code[Person] = 4, IndivPATable[l4] ( 

Age[Person] ) , If then else ( IndSex[Person] = 0 :AND: Ethnicity Code[Person] = 5, IndivPATable[l5] ( 

Age[Person] ) , If then else ( IndSex[Person] = 1 :AND: Ethnicity Code[Person] = 1, IndivPATable[l6] ( 

Age[Person] ) , If then else ( IndSex[Person] = 1 :AND: Ethnicity Code[Person] = 2, IndivPATable[l7] 

(Age[Person] ) , If then else (IndSex[Person] = 1 :AND: Ethnicity Code[Person] = 3, IndivPATable[l8] ( 

Age[Person] ) , If then else (IndSex[Person] = 1 :AND: Ethnicity Code[Person] = 4, IndivPATable[l9] ( 

Age[Person] ) , IndivPATable[l10] ( Age[Person] ) ) )) ) ) ) ) ) )  

 Units: kcal/(kg*day) 

  

IndivFactor[Person] = Max ( 0, indiv factor[Person] )  

 Units: Dmnl 
  

IndividualPAFactor[Person] = INITIAL( exp ( RANDOM NORMAL ( -10, 10, ( 1 - LN ( 0.5 / exp ( 1) + 1) ) / 2, 

sqrt ( LN ( IndivPASTDev/ exp ( 1) + 1) ) , NoiseSeed ) ) ) 

 Units: Dmnl 

  

IndivPATable[Lkdim] ( GET XLS LOOKUPS('MedianOverTime.xls', 'Data', 'A', 'AF4' ) ) 

 Units: **undefined** 

  

InitFFMFix = 0.3 

 Units: kg 

  
Initial FFM[Person] = InitialBW[Person] - Initial FM[Person]  

 Units: kg 

  

Initial FM[Person] = INITIAL( Max ( InitialBW[Person] * InitFMMult , InitFFMFix) ) 

 Units: kg 

  

InitialBW[Person] = INITIAL( If then else ( Age[Person] = 0, Max ( 0, 3.6 - 0.18 * IndivXBegin[Person,Female] + 

RANDOM NORMAL (-10, 10, 0, 0.4, NoiseSeed ) ) , sum ( IndivXBegin[Person,RegDim!] * 

BetaWeight[RegDim!] ) * exp ( RANDOM NORMAL (-10, 10, MeanBWFac , StdBWFac , NoiseSeed )) ) ) 

 Units: kg 

  

IsBorn[Person] = If then else ( BirthTime[Person] < Time , 1, 0)  
 Units: Dmnl 

  

Iterm[Person] = EnergyIntake EI[Person] * IFactor[Person]  

 Units: kcal/Year 

  

KConstant[Person] = Max ( 0, KConstantMax[Person] - ( KConstantMax[Person] - KMin ) * exp ( KSlope * ( 

Age[Person] - KDecT ) ) / ( 1 + exp ( KSlope * ( Age[Person] - KDecT ) ) ) )  

 Units: kcal/Year 

  

KConstantMax[Person] = SAMPLE IF TRUE( Age[Person] > SwitchAge - TIME STEP:AND: Age[Person] <= 

SwitchAge , IndivFactor[Person] * IndivFactorScale, IndivFactor[Person] * IndivFactorScale )  
 Units: kcal/Year 

  

NoiseSeed = 1 

 Units: **undefined** 
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PAFac[Person] = deltaPA[Person] / 365 

 Units: kcal/day 

  

PersonalEnergyIntakeFactor[People] = INTEG( ( ( ( wNew * EIRandomFactorGenerator[People] + ( 1 - wNew ) * 

PersonalEnergyIntakeFactor[People]) / sqrt ( wNew ^ 2 + ( 1 - wNew ) ^ 2) ) - PersonalEnergyIntakeFactor[People] 
) / TIME STEP , EIRandomFactorGenerator[People] )  

 Units: Dmnl 

  

Physical Activity PAL[Person] = ChildhoodFactor + IndivFactor[Person] + deltaPA[Person] * BW[Person] / Basal 

Methabolic Rate BMR[Person]  

 Units: Dmnl 

  

StdBWInit = 0.1 

 Units: Dmnl 

  

SWModel[Person] = If then else ( Age[Person] < SwitchAge , 0, 1)  

 Units: Dmnl 
  

SWTablefr = 0 

 Units: Dmnl 

  

SWTablekff = 0 

 Units: Dmnl 

  

TIME STEP = 0.125 

 Units: Year 

  

Total Energy Coefficient for Tissue Deposition c[Person] = ( Fat Deposit Fraction fr[Person] * Fat Energy Content 
cf / efficiency in conversion of energy to FM ef+ ( 1 - Fat Deposit Fraction fr[Person] ) * Lean Energy Content cff/ 

efficiency in conversion of energy to FFM eff )  

 Units: kcal/kg 

  

Total Energy Expenditure TEE[Person] = Energy Expenditure Minus CE[Person] + Conversion Energy CE[Person]  

 Units: kcal/Year 

  

wNew = INITIAL( TIME STEP / EIRankHalfLife ) 

 Units: Dmnl 
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