
Open Source System Dynamics
with Simantics and OpenModelica

Teemu Lempinen

VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland

+358 40 571 0126
teemu.lempinen@vtt.fi

Sampsa Ruutu

VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland

+358 40 720 2883
sampsa.ruutu@vtt.fi

Tommi Karhela

VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland

+358 40 582 2274
tommi.karhela@vtt.fi

Peter Ylén

VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland

+358 40 507 7474
peter.ylen@vtt.fi

Abstract – We will introduce a new system dynamic modelling and simulation
environment based on open source components. The development was initiated by a
group of active system dynamics modellers who had needs and ideas for an open
toolset. The new needs for features like hierarchical modules, module libraries,
collaborative model development and efficient model communication in system
dynamics together with the development of open source modelling framework Simantics
and simulation environment OpenModelica have driven us to start developing an open
source modelling and simulation software for system dynamics. In this paper we discuss
how current open source components can be used to build a comprehensive tool for
system dynamics modelling and what impact open source could have on system
dynamics modelling. Even though the development is still on its early stages, the open
source components have enabled us to rapidly develop a tool capable of hierarchical
modelling, simulation and some basic result and model analysis. When using open
source, the modelling software becomes more affordable and distribution of models
becomes easier, modelling software can be adapted to individual needs and models can
be used and validated by all stakeholders.

Introduction
Using commercial system dynamics modelling software has been a necessity for
professional modellers and there is a wide range of different commercial products on
the market. Some of the modelling tools are specialized in system dynamics, while
others can even combine different types of modelling paradigms. Even though the
commercial products are widely used, we believe that there is demand for a
comprehensive open source tool for modelling and simulating system dynamics.

We have been working closely with a team of modellers, who have been successfully
using certain commercial system dynamics software for years. The commercial product
is working well, but is not responding to all the new needs of the modellers and end
users, such as hierarchical models and online user interfaces. Instead of finding a new
software, that would again be a closed system and hard to modify, the time was seen
right to see if it would be possible to develop an open source modelling tool that would
be comprehensive enough to use in real customer projects and easy to develop further.

Open source is not a new subject in the system dynamics modelling world. There are
few open source modelling tools available (e.g. Sphinx SD Tools, OpenSim), but they
lack advanced functionalities like multidimensional variables and are not intended to be
as comprehensive as commercial solutions.

We believe that open source system dynamics modelling tools have been lacking a good
framework to build on. Building everything from scratch is an expensive and time-
consuming task. The advent of the open source modelling and simulation framework
Simantics (Simantics) and the development of open source simulating environment
OpenModelica (OpenModelica) have enabled us to rapidly develop a tool that is already
capable of simulating large hierarchical models with multidimensional variables and
also display these models online.

In addition to the open source components, the field of software development could
offer even more to system dynamics. Like our tool, software is usually built from
separate and reusable components. The component approach has also been adopted in
other modelling and simulation methods (e.g. Modelica and Apros) that mainly focus on
physical modelling. Collaborative development, which is widely applied in software
industry, could also vastly improve the current system dynamics modelling methods.

There is ongoing research on how reusable components, modules, could be incorporated
into system dynamics modelling. The modellers we have been working with often face
situations where they would like to use some parts of models they have done in previous
projects as basis for new models or replicate model structure in ongoing projects. They
have for example been modelling complex and exceptionally detailed models with a lot
of repeating structures that have been used to model customers’ business processes in
product development (Pesonen et al. 2008). This kind of large and complex models
could probably benefit from reusable modules and module libraries and thus they are
one main focus on our tool.

In this paper, we will discuss the opportunities and challenges related to building open
source system dynamics software and reflect them upon our own development effort.

First, the motivation for our software and choosing open source are discussed followed
by a short introduction of the functionalities. Then we take a closer look on how the
open source community can aid in developing system dynamics software focusing on
the two main components: Simantics and OpenModelica. Finally, new concepts are
introduced on how the tool and system dynamics modelling could evolve in the future.

Motivation for a new tool
System dynamics has great potential to support decision making in a wide range of
fields ranging from environmental and political policy formulation to business process
planning. The effective use of system dynamics requires a lot from the modelling
software. Our motivation to start developing modelling software arose from the needs of
modellers. Some of the concepts described in this chapter have already been
implemented in some of the commercial products, but the combination of open source
software and this set of features are novel. The goal is to support the whole modelling
process from the collaborative modelling process to model validation, documentation
and finally communicating the model and the results to the public.

Many system dynamics models are based on general and widely accepted model
structures, such as the rework cycle in project management (Lyneis & Ford 2007) and
the stock management structure in supply chain management (Sterman 2000), which are
modified to fit the individual needs of modellers. In software development, libraries are
used for such general components. Similar libraries could also be used in system
dynamics modelling - especially with detailed operative models such as project
management or supply network models. Module and model libraries would provide
tested and validated components to build new models on. Creating large models with
great detail could become easier and faster. These libraries will also require an effective
distribution and sharing system to mature and be used by many different modellers.

Version control system is an effective way of collaborating in software development.
For text-based models, like the .mdl-files produced by Vensim (Vensim), a normal
version control system can be used to enable collaboration in modelling system
dynamics (Helfrich and Schade 2008). Such a version control system needs to be
integrated to the modelling software to support collaboration. The same system could
also be used for distributing module and function libraries.

Models are made to be used. Easy distribution and good documentation are important
for the use of a model. Models created with open source software are easily distributed,
since the software is available for everyone. To make distribution even simpler, the
models should be usable through an ordinary web browser in every computer. The
complex system dynamic model is not probably the best way to convey the results of a
simulation to every audience. Instead, case and user specific user interfaces are needed
to show the content that is really important for different users. The documentation of the
model should also be as automated as possible and respond to changes.

There are many different mathematical methods that can be applied to optimizing and
analyzing a system dynamic model (Oliva 2003, Kaupmann & Oliva 2008). A number
of methods need to be built-in to the tool, but also interfaces to external systems are
required. External interfaces are essential for data from enterprise resource planning

systems, product configuration systems and other data sources. Open software could
enable integrating any software when needed.

Why open source?
Open source system dynamics software has advantages compared to more traditional
commercial software. First of all, open source software is free for the user. By providing
software free, more students and practitioners can get acquainted with system dynamics.
When more people have experience of system dynamics, it is more easily used also in
important real-life decision making.

System dynamics modelling is best done in a reflective way, “in which testing is
designed to uncover flaws and hidden assumption, challenge preconceptions, and
expose assumptions for critique and improvement” (Sterman 2000, p.858). Publishing
model files is useful, and free software such as Vensim Reader (Vensim Reader) and
iSee Player (iSee Player) are designed for people to run simulation models. There are
also free system dynamics simulators available, such as Vensim PLE, that allow users to
modify models, but their use is restricted to simple models without such features as
array variables and hierarchical models. We claim that the use of open source
simulation software is one step forward towards the desired reflective mode of
modelling. Open source software not only allows a wide community of people to run
the model and vary individual parameters, but also lets people to modify the structure
and boundary of the model.

The price of the software is a factor when new users try out system dynamics. With
professionals, the costs of the actual modelling process greatly overrun the cost of the
software. Even in large and expensive projects, there could still be need for open source
software. The customer can be more easily integrated to the modelling process, if they
also have some means to explore and modify the model. Purchasing software licenses
for many users for a single project may not be in their interests. With open source
software, purchasing the software and integrating customers to the process will not be a
problem. This boils down to a fact that the nature of modelling and simulation is more
service business than license business. Thus it is natural to use open source tools for it.

Open source software also enables the software to be modified for the individual needs
of the users. If a new feature is needed, it can be produced by anyone. New analysis
tools or interfaces to company-specific systems, such as Enterprise resource planning
systems, can be produced faster.

There are, however, a few drawbacks with small and young open source systems. The
user support relies heavily on other users and the developers of the software. At the
beginning, the community is small. The more users the system gets, the easier it is to get
help from others. Also, the quality of the software may suffer from a small audience.
Since money is not earned by creating the software, testing and other quality efforts
may not be at the level of commercial products. Again, a larger community of users can
provide more resources to quality assurance and testing of the software.

The software
Our tool for system dynamics modelling is currently under development. It uses
Simantics as the user interface and database, Modelica as expression language and
OpenModelica for compiling and simulating models. Even though the software is
young, it is capable of modelling and simulating large hierarchical models with
multidimensional variables. The model structure and simulation results can be analyzed
with visual tools and basic operating interfaces can be created for using the models.

The models are created in a traditional way using a graphical user interface with stock
& flow diagrams and causal loop diagrams. Modules and interface variables have been
added to the basic modelling syntax to support hierarchical modelling (Fig 1). There has
been no need to radically change the syntax that modellers have already used to work
with.

Fig 1. Modelling syntax

The purpose of hierarchical modules is not just to encapsulate and hide some
functionality. Many module structures are general and can also be reused in different
models. They also provide a good starting point for more specialized modules. Module
libraries provide a convenient way for storing and sharing these modules. Reusing and
extending components is a key element in object-oriented programming. It enables fast
development using robust and tested components.

The models are stored in Simantics’ semantic database instead of more traditional text
files. The semantic structure contains a lot of information about the model. Based on
this information, a textual representation in Modelica language is created for
simulations. The text file is compiled and simulated with OpenModelica. The results are
then read back to the modelling software for analysis.

The user needs very little knowledge about Modelica and never needs to see the
generated Modelica code. The mathematical syntax used for defining equations is

universal and the equations are defined in an equation editor (Fig 2). The built-in
functions in Modelica may need some getting used to, but most of those are common in
all mathematical languages. Knowledge about Modelica helps when creating more
complex equations and structures especially with multidimensional variables.

Fig 2. Variable properties and equation editor

Open source components
The open source community has created many components that can be used without
having to implement everything from scratch. The two main components of the
modelling tool are the Simantics platform and the OpenModelica environment.
Simantics platform serves as the database and the user interface framework whereas
OpenModelica is used for simulating the models.

Simantics
Simantics is an open source modelling and simulation platform, which is currently
under development. By using this modelling platform, the system dynamics tool can
take advantage of the features common to most modelling environments. The basic user
interface components, such as the model structure tree and the diagram editor can be
easily modified to fit the needs of system dynamics modelling. Simantics platform
provides a semantic database, an Eclipse framework (Eclipse) based client software and
other data handling functionalities.

The use of the semantic database and common semantic structures enables the system
dynamics tool to use the features developed for other modelling environments, since the
data is structured the same way in all contexts. The semantic database does not show
directly to the user, but enables developers to use features initially created for other
applications, a user-friendly and efficient way to browse content and relations in the
database and easy integration to other systems.

The purpose of Simantics is to support all types of modelling and simulation needs as an
integrating platform. It does not contain any equation solvers itself, but the framework
has been created to support integration of any solver tool. Dynamic simulator (Apros),
steady state chemical process simulator (Balas) and a discrete event simulator are
examples of different simulation types for which tools are being developed on top of the
Simantics platform. Many of the products are not open source, even if the framework is.
They still contribute components to the overall framework developing it further.

OpenModelica
We are using the open source OpenModelica environment to simulate the system
dynamics models. The models are written in Modelica language and OpenModelica is
used to compile and simulate the Modelica code.

Modelica language
Modelica is an object-oriented, equation based modelling language that has originally
been created for modelling and simulating physical systems. Modelica syntax is similar
to other programming languages like Java.

A simple electrical circuit model (Table 1) serves as an example of the use of Modelica
language. With Modelica editors, a circuit can be defined visually using electrical
component libraries.

Table 1. Electrical circuit model (adapted from Fritzson 2003)
Visual Modelica model Modelica code

class Circuit
 Resistor R1(R=10); //Resistance=10
 VsourceAC AC(VA=220); //Amplitude=220
 Ground G;
equation
 connect(AC.p, R1.p);
 connect(R1.n, AC.n);
 connect(AC.n, G.p);
end Circuit;

Each component is defined as a separate class. An example component Resistor is
shown in Table 2.

Table 2. Resistor component in Modelica library
Visual Modelica model Modelica code

class Resistor
 Pin p, n;
 Voltage v;
 Current i;
 parameter Real R(unit=”Ohm”);
equation
 v = r * i;
 0 = p.i + n.i;
 i = p.i;
end Resistor;

Modelica is well-suited for this kind of modelling. Using the Modelica language for
system dynamics is also quite natural. System dynamics models are basically just
differential equations that can easily be represented in the Modelica language. Since the
structure of the model is stored in the database, there is no need for each variable to be
an instance of a special class and connections to be made from one Pin to another.

p

n

R v

i

p

n n

p

AC=220

p

R1=10

G

In basic models, the mapping from the model structure in the database to Modelica
language is quite straightforward. All variables in the system dynamics model are
usually declared as real numbers. The equations of the variables are written in Modelica
language and used directly in the equations-section of the Modelica-model. The
mapping from system dynamics models to Modelica is explained in the following
section.

There are other projects based on the Simantics platform that are also using the
OpenModelica environment. Collaborating with those projects enables us all to use the
same components for simulation and reuse our work. The same reusability goal we seek
to achieve also in the system dynamics modelling. In addition to using the
OpenModelica components in many simulation environments, the Simantics platform
may enable the integration of other types of models with system dynamics.

Mapping system dynamics to Modelica
The next sections are focused on the technology under the hood of our system dynamics
tool: how system dynamics models are mapped to Modelica and how Modelica can be
used to enhance system dynamics modelling. In many of the example cases the new
simulator is compared to Vensim just for the sake of reference. Also, the models
presented in the examples are generic archetype model structures used by many authors
(e.g. Stermann 2000) in different contexts - the population model in fig. 4 and the work
model in fig. 8 to name but a few.

System dynamics library for Modelica
A system dynamics library has already been created for Modelica (Modelica System
Dynamics). The library can be used by any Modelica compliant Integrated Development
Environment (IDE). However, the library is restricted with the physical nature of the
traditional models created in Modelica. Every connection needs a dedicated port in a
variable and thus modelling with the library becomes overly complicated. Also, the
visual representation differs from the more classical stock and flow diagrams, which are
very efficient for communicating feedback loops. Our solution is to separate the visual
model configuration and the actual simulation code to achieve better user experience.
System dynamics modellers can work with familiar diagrams and do not have to worry
about the restrictions of using Modelica for both the visual presentation and the
simulation code. They do not have to worry about the Modelica code at all, since it is
generated automatically based on the models.

Modules
The object-oriented nature of the Modelica language provides a natural solution for the
implementation of hierarchical modules. Each module type is defined as a class.
Module instances are instances of those classes. In this section we will discuss how the
Modelica language relates to some concepts in system dynamics modelling.

Adopting this type of object oriented approach to system dynamics modelling can
significantly speed up the development of large and complex models. The modules
clearly and logically separate different functionalities in the model. Reusing the created
module is simply a matter of dragging another instance of the module to the diagram
and defining the input and output variables.

Below is an example of a small model with a simple module (Table 3). The Modelica
representation of the model is generated automatically when the model is simulated.
Users do not have to be familiar with (object oriented) programming. The equations for
variables are defined in the properties of each individual variable and automatically
added to the Modelica representation.

Table 3. An example hierarchical model and automatically generated Modelica code.
System dynamics model Automatically generated Modelica code

model Model
// Variable definitions
 parameter Real Auxiliary = 5;
 Real FromModule;
// Module definitions
 ModuleType1 ModuleInstance;
equation
// Inputs and outputs
 FromModule =
ModuleInstance.Stock;
 ModuleInstance.Input = Auxiliary;
end Model;

class ModuleType1
// Variable definitions
 Real Valve;
 Real Stock(
start=1.0,fixed=true);
// Input definitions
 Real Input; // Value defined in
Model
equation
// Equations
 Valve = Stock / Input;
 der(Stock) =
 + Valve;
end ModuleType1;

In a small model like this, it would probably be useful to display all the variables in a
single diagram. The modules can, however, hide even very large structures. Reusing
those large structures is just as simple as reusing the simple structures. Only the
interface variables need to be defined. When changes are made to the module type, all
the changes are effective also in the instances of the modules.

Functions
The benefits of using Modelica go beyond the use of classes to represent module types.
Similar to module libraries, function libraries can also be created easily. Creating
functions require more knowledge about Modelica than the basic graphical modelling,
but the benefits are similar as in reusable modules.

Sometimes complex equations are written over and over again for different variables.
By creating a function that implements the same equation, the function can be used

instead of the whole equation. In addition to saving time typing or copying the
equations, functions can be given representative names that explain the behaviour better
than the complex equation.

An example of such function could be a function frequently used by Vensim modellers:
ZIDZ (zero if divided by zero). ZIDZ provides a convenient way to avoid dividing by
zero.

Modelica even enables the use of external functions written in C programming
language. External functions are especially useful for complex functions that can be
created in mathematical software or already exist in public libraries.

Multidimensional variables
One very popular way of replicating model structure is to use array variables. Modelica
supports array types, so implementing multidimensional variables is not difficult.
Modelica even includes many built-in functions that can be used to handle the
multidimensional variables.

Multidimensional variables are a challenge when using modules. The creator of the
module may want to support multidimensional variables, but does not necessary know
how large variables the user of the module wants to have. Since modules can be used in
different models, a global enumeration for indexing cannot be used. Instead,
enumerations are defined separately for each module.

Fig 3. Different dimensionalities in different module instances

Users can override the enumerations for each instance of a module. This way the
modeller can have multiple instances of the same module, but inside those modules are
array variables with different dimensionalities. It is the responsibility of the module
creator that equations inside the module are applicable for array variables of different
sizes. Individual array indexes cannot be used in equations. An example of two module
instances with different dimensionalities is presented in Fig 3.

In the upper chain, an enumeration with three indexes is used.
Auxiliary1[3] = {10,11,12};

In the lower chain, variables are assigned an enumeration with two indexes.
Auxiliary2[2] = {1,2};

The original enumeration in the modules is replaced separately for each instance. There
can be multiple different enumerations used in a module and they can all be replaced
depending on the case where the module is used. This enables great reusability of the
module.

Validating simulation results
To make sure that OpenModelica will produce correct results for system dynamic
simulations, a number of validation tests have been made. An example test is the basic
population model for growth & overshoot (Sterman 2000, p.121). The model consists of
a growing Population, Carrying capacity and a delay in the feedback loop that indicates
if the capacity has been reached (Fig. 4).

Fig 4. Growth & overshoot model (adapted from Sterman 2000)

Fig 5. Results of the simulation of growth & overshoot model

The results of the simulation show the oscillation caused by the delay (Fig 5). When the
same model is simulated in Vensim, the results are a close, but not exact, match due to
different solvers (Fig 6). Models with delays and complex structures usually produce
similar results with Vensim and OpenModelica.

OpenModelica provides the possibility to use different types of solvers. Included
solvers are DASSL, Euler and Runge Kutta 4. This comparison was conducted using
Euler in both simulators. Euler is not the best method to use in this type of oscillating
models and using it may cause unwanted behaviour in the model. However, our
experience is that Euler is used as a default solver in spite of its characteristics and thus
we are using it also in our comparison. It has not been the scope of our research and
work to evaluate the accuracies of different solvers, but even with large models, the
results are close enough to say that OpenModelica can be used to simulate system
dynamic models.

Fig 6. Results of the simulation of growth & overshoot model in Vensim

Other components
Simantics and OpenModelica are the largest and most important components for the
functionality of the system dynamics tool. Other open source components have also
been used for smaller tasks. Visualization of simulation results has been implemented
using JFreeChart library (JFreeChart). Currently only time series are supported (Fig 7),
but JFreeChart consists of a variety of different highly modifiable charts. Other diagram
types will be supported in the future, but since the tool is open source, users can even
create their own charts for special needs.

Fig 7. Result visualization using JFreeChart

Graphviz (Graphviz) is an open source graph visualization software that is used to
display dependencies between variables. Like JFreeChart, Graphviz is a widely used
and highly matured component. Graphviz is especially suitable for displaying structural
information (Fig 8). For other visualization needs, the world is full of different tools that
can easily be integrated to the modelling software.

Fig 8. Dependencies visualization using Graphviz.

(Model adapted from Vensim Modeling Guide: Project dynamics, distributed with Vensim
software)

Future development
Using an open source modelling platform has advantages in the early stages of product
development, but also in the future. New functionalities are developed all the time for
different modelling needs and in different projects. Many of those are created to be
general tools for all modelling environments. In this chapter we will take a look at some
of the things to come.

Visualization of model structure and simulation results
System dynamics models contain vital information about the structure of the systems
and their behaviour over time. For communicating this information, system dynamics

tools need extensive visualization options for both model structure and simulation
results.

Currently our tool contains only the basic model editor, a dependency view for structure
visualization and table and time series views for result visualization. So far the
development has focused on creating models that can be simulated. A master’s thesis
project has recently been started that purely concentrates on visualizing the simulation
results in various ways. The outcomes of the project include visualization options and
profiles for the diagram editor and also different types of modifiable charts for
visualizing simulation results.

Mathematical analysis
Simantics aims at providing an efficient integration platform for simulation and analysis
tools. Tools like sensitivity analysis and optimization have been planned for this system
dynamics tool. OpenModelica compiles the model to an executable, which has easily
modifiable parameters, but the model itself is simulated quickly enabling different types
of analysis methods. The same mathematical analysis tools can be applied to all
applications using Simantics and OpenModelica.

Team features
Software has long been developed in groups using version control systems. Version
control systems enable distributed development and serve as a reliable centralized
backup. Traditional version control systems operate with text files, so they are not
applicable for the semantic database in Simantics. There are plans to create similar team
features also for the Simantics platform. Once they are implemented, the system
dynamics tool can also take full advantage of these features.

In addition to managing your own projects, these repositories of models can also serve
as a distribution channel for the function and module libraries. Libraries can directly be
synchronized with the modelling software and updates to the libraries are easy to make.

Online models and user interfaces
System dynamics models can be used to educate people and convey information. What
better way to distribute information than the internet? A commercial product called
Simupedia is being developed for distributing models created with products based on
the Simantics platform. There is functionality in the Simantics platform that enables
users to create user interfaces for their models. The user interfaces can be used with the
modelling products or published in the Simupedia communities.

Connectivity
In all kinds of modelling, there is a need to use accurate and up-to-date data in
simulations. The data can be found and created in various databases, files, sensors and
software. In addition to the more traditional connections such as an interface to excel
sheets, there is also an on-going research project on how to combine data from a product
configurator to system dynamics modelling tool. The aim of the semantic database in
Simantics is to provide a way to represent data related to a model semantically and
independent of simulators. Many external connections are created for other purposes

than system dynamics modelling, but the use of semantic data representation enables the
system dynamics tool to use the same interfaces as well.

Model documentation and spreadsheets
Documenting models and results is crucial for all simulation. A wiki documentation tool
is currently being developed for Simantics that would enable documenting model
structure and creating templates for simulation reports. The documentation tool will
contain blocks that are automatically updated when the simulation results, graphical
representation or some parameters are changed.

Spreadsheets are a convenient way of receiving data from simulations but also
providing model parameters. A spreadsheet tool is also being created to the Simantics
platform. With the spreadsheet tool, model parameters can easily be configured in a
single place. The spreadsheets can be embedded to editors, model diagrams and other
views in the Simantics environment.

Discussion
Developing open source modelling tool based on other open source components has
been relatively fast and rewarding. Using Simantics and the Eclipse framework has
provided a lot of opportunities in the user interface. Many components are already
provided by the frameworks and also the user interface style and interaction guidelines
are set. What has been left to do is to adapt these to correspond to the needs of system
dynamics modellers.

Using OpenModelica provided an easy way to simulate system dynamic models.
Instead of building a completely new simulation engine, only a mapping from system
dynamic models to a representation in Modelica language was needed. The object-
oriented nature of Modelica language has supported the needs for both reusable modules
and multidimensional variables.

Even though reusable modules can be created, they should not be seen as solutions to all
possible situations. System dynamics is about understanding the problem by modelling
it. The problem should not be forced to fit any ready-made moulds. However, many
situations are similar to each other. Modules in module libraries could be seen as
suggestions on how to handle certain types of modelling problems. If they do not
describe the problem completely, they should be extended or modified. The libraries
could even contain different versions of the same module to better describe various
situations. Modules may also be intended to be reused only in one model, when the
modeller realizes that the model will contain repeating structures.

Both Simantics and OpenModelica are still under development and subjects to change.
This has lead to some challenges in the development. Simantics platform is young, so
even large parts of the platform can change and they need to be updated. On the other
hand, since the platform is being developed all the time, the outcome can be influenced.
The system dynamics tool has influenced a lot of the features, since previously the
platform has concentrated on modelling physical models. System dynamics models are
more abstract and for example connections do not necessarily have properties and they
do not need dedicated ports.

The current version of OpenModelica supports almost everything essential for system
dynamics, even though there have been some issues with for example using
enumerations as array indexes. This is very lucky for us, since we do not develop
OpenModelica and the development is mainly driven by different kinds of simulation
needs. One big issue in development has been the solvers in OpenModelica. It is not
that they wouldn’t work, but the solvers are very sensitive about discontinuities. The
group of modellers that has participated in the development of our system dynamics tool
has worked mainly with Vensim. The default solver in Vensim handles discontinuities
and other difficult situations differently than OpenModelica. Some models that we have
used for validating the functionality of our software have contained situations that
OpenModelica just cannot handle. It is not that hard to change the models, changing the
way you model is more difficult.

The main development has focused around Simantics and OpenModelica, but as
discussed earlier, other components have also been used. Components like JFreeChart
and Graphviz are mature and have been easy to integrate to the software.

An important thing to point out with these components and the whole software is that
the system dynamics tool can be developed further by programmers that are not
professionals or experts. Quality components and the support of the community can
enable almost anyone with some programming skills to create new features.

Conclusion
There are many factors that favour the use of open source software for modelling
system dynamics. Models created with open source software can more easily be
distributed, validated and criticized, and customers are more easily integrated to the
modelling process. Modellers can participate in the development of their own tool and
new features are easily created.

The development of open source software depends on an active community and quality
components. Previously there has not been a platform that would provide such a good
starting point for the development of an open source system dynamics modelling tool.
Simantics and OpenModelica have enabled a rapid development of modelling software
that is capable of basic graphical modelling and simulation. In the future the software
will evolve with new features of the Simantics platform and also with new open source
components that can be used for example in visualizing simulation results.

References
Apros, www.apros.fi, accessed March 15, 2011

Balas, http://balas.vtt.fi, accessed March 15, 2011
Eclipse, www.eclipse.org/, accessed March 15, 2011

Fritzson, P. 2003. Principles of Object-Oriented Modeling and Simulation with
Modelica 2.1. Wiley-IEEE Computer Society Pr.

Graphviz, www.graphviz.org, accessed March 15, 2011

Helfrich, N. and Schade, W. 2008. Bringing distributed software development to SD
modelling with Vensim. International Conference of the System Dynamics Society.
Online conference proceedings : July 20-24, 2008, Athens, Greece

iSee Player, http://www.iseesystems.com/softwares/player/iseeplayer.aspx, accessed
March 15, 2011

JFreeChart, www.jfree.org/jfreechart, accessed March 15, 2011
Kampmann, C. E., and R. Oliva. 2008. Structural Dominance Analysis and Theory

Building in System Dynamics. Systems Research and Behavioral Science 25, no.
4: 505-519.

Lyneis, J. M., and D. N. Ford. 2007. System dynamics applied to project management: a
survey, assessment, and directions for future research. System Dynamics Review
23, no. 2-3: 157-189.

Modelica System Dynamics, www.modelica.org/libraries/SystemDynamics, accessed
March 15, 2011

Oliva, R. 2003. Model calibration as a testing strategy for system dynamics models.
European Journal Of Operational Research 151, no. 151: 552-568.

OpenModelica, www.openmodelica.org, accessed March 15, 2011

OpenSim, www.opensimproject.org, accessed May 25, 2011
Pesonen, L. Salminen, S. Ylén, J-P. Riihimäki, P. 2008. Dynamic simulation of product

process. Simulation Modelling Practice and Theory. Volume 16, Issue 8,
EUROSIM 2007, September 2008, Pages 1091-1102

Simantics, www.simantics.org, accessed March 15, 2011
Sphinx SD Tools, www.sphinxes.org, accessed May 23, 2011

Sterman, J. D. 2000. Business dynamics: Systems thinking and modeling for a complex
world. Boston: Irwin McGraw-Hill.

Vensim, www.vensim.com, accessed March 15, 2011
Vensim Reader, www.vensim.com/reader.html, accessed March 15, 2011

