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Abstract 

 
Highly complex mathematical models have been used to simulate the stability of the 

electric power system. After years of development, however, even the best of these models can 
fail to simulate the conditions leading to major blackouts. The models are further challenged by 
changes in regulatory rules and increased wind generation. The industry needs improved 
mathematical methods, and the findings from system dynamics work on simulators might be 
useful in shaping the methodological research. 

 
The paper summarizes the use of system dynamics simulators for learning. It then 

describes differences between these simulators and the simulators used in power system training. 
Subjects in system dynamics studies have limited time for experimentation and reflection, 
especially when compared to the time for subjects in the power industry.  Another important 
difference involves time compression versus time dilation. Time is compressed in system 
dynamics simulators, but time unfolds in slow motion in power system simulators.  In other 
words, power system training is based on time dilation rather than time compression.  We 
explain how these and other differences limit the transferability of system dynamics findings to 
the power industry.  
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1. Introduction 
 

Our research is part of an investigation into mathematical methods in the electric power 
industry.  System dynamics has been used to great advantage in strategic planning in the power 
industry (Ford, 1997, 2008); we ask whether it would also be helpful in developing better 
methods to simulate short-term dynamics, including decision-making by power system operators.  
 

At the operations level, the industry faces unique challenges in meeting the demand for 
power in an instantaneous fashion across a complex grid. Complex models have been used to 
simulate the vulnerability of the system to loss of control.  But these models can fail to show the 
most dangerous instabilities that can lead to regional blackouts (Kosterev, 1999).  Some argue 
that the models are out of date due to major changes the regulatory rules.  Others stress the 
challenges of integrating increased generation from wind and solar, resources that cannot be 
scheduled in the same fashion as fossil-fueled power plants. We look to system dynamics 
simulation for insights on improved methods for power industry modeling.  
 

System dynamics simulators, board games and computer assisted games act to compress 
time. A familiar example is the product distribution board game. The inventory dynamics that 
unfold over 50 weeks in the real world are recreated in 50 minutes in the board game.  Time 
compression is valued since most investigators are interested in long-term dynamics.  Also, 
many investigators are limited by the time constraints of class meetings or executive workshops.   

 
Training simulators in the power industry are quite different (Smith 1985).  The trainees 

invest much more time in training, both in preparation and in simulation.  When they do interact 
with the simulator, dynamics that occur in seconds on the power grid may appear in minutes in 
the simulation.   Viewing the simulator is like viewing the slow motion replay on television. 
With slow motion, the viewer sees with clarity.  And with enough exposure to slow motion 
images, trainees learn to see with more clarity and react more effectively in real time.  In short, 
the power industry looks to simulations for time dilation rather than time compression. 

 
We turn now to the experience of system dynamics researchers in the development of 

methods to measure subjects’  learning with model-based simulators or in model-based board 
games.  Supporting information is provided in two appendices: 

 
 Appendix  A  describes  system  dynamics  learning  in  a  board‐game  simulation  of 
oscillations in a product distribution system.  The game (often called the beer game) 
is  widely  used  in  system  dynamics  education.    The  tendency  for  the  subjects’ 
ordering  behavior  to  create  and  amplify  the  oscillations  is  potentially  relevant  to 
our research on the power industry. 
 

 Appendix B describes a system dynamics model of pumped storage operation.  The 
pumps and generators are used to compensate for scheduling errors in wind generation in 
the Pacific Northwest. The model illustrates the potential of system dynamics to simulate 
short-term operations of a narrowly defined portion of the power system.   
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2.  Measuring L earning from System Dynamics Simulators 
 

Tables 1 and 2 provide comments on studies reviewed for their approach to measuring 
learning.  This is a small subset of the many papers on the measurement of learning. But we 
believe the sample is sufficient to support our conclusions on the transferability of key concepts 
from system dynamics to the challenges of operator training in the power industry.  The studies 
deal with widely varying systems, ranging from control of supply chains to control of wildlife 
populations. They differ widely in the protocols for student experimentation, scoring of behavior, 
debriefing and measurement of learning. Our review does not reveal a clear clustering, so we list 
the studies in alphabetical order.    

 
 

Alessi 2000 describes the need for user friendly/educational interfaces and a method to integrate 
the use of Stella and Authorware, a method to boost the interface capabilities.  

Anderson  
et al. 1997 

presents interesting insights into measured learning research design; methods include 
case studies, surveys and experiments; deals with both measurement problems and 
practical problems.  

Anderson & 
Morrice 2000 

describes using the Mortgage Service Game to enhance understanding of supply 
chains that operate without finished goods inventory; participants learned from their 
own results and the results of others.  

Bakken  
et al. 1992 

describes learning laboratories and the impacts of feedbacks on decisions; the labs 
provide opportunity for reflection and experimentation and they increase the ability of 
subjects to transfer ideas to other systems. 

Baaken  
et al. 2006 

describes changes in perception of success and effectiveness when a modeling 
intervention guided subjects to explore the network structure within a classical 
hierarchical organizational structure.  

Borštnar et al. 
2007 

discusses the influence of information feedback on decision processes; found that 
individual feedback via simulation results improved decision making;  group 
feedback contributes even more significantly to improved decision making.   

Cavaleri & 
Sterman 1997 

describes some of the challenges of collecting data about learning when in a real 
modeling intervention that strives to enable systems thinking. 

Christensen 
et al. 2000 

describes how to use causal loop diagramming as a way to assess learning through an 
analysis of the comprehension of complexity.  

Dogan & 
Sterman 2006 

provides a statistical explanation of seemingly extreme and irrational ordering 
patterns by some subjects in the beer game;  the behavior of these “outliers” is viewed 
as an attempt at early hoarding. 

Doyle et al. 
1998 

describes a methodology for using mental map coding for measuring subtle changes 
in mental models due to an intervention; researchers believe the method seems to be 
capturing a transitional state as subjects move from novices toward a level of 
somewhat more expertise. 

Dutt  & 
Gonzalez 
2007 

describes a model of decision making based on real data of subject's responses to a 
linear system that was either growing or declining; subjects were better at assessing 
and responding to a positive slope versus a negative slope; subjects took more time to 
assess positive slopes than negative slopes. (also, see Gonzalez & Dutt 2007) 

Table 1.  System dynamics papers with comments on measuring learning.   
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Grossler  
et al. 2000 

describes testing the influence of model transparency (access to feedback structure) 
in business simulation;  game results did not correlate with knowledge tests. The 
groups that received information about the system's structure by presentation 
performed significantly better in games; there was little transfer of knowledge from 
gaming exercise to post test; however, time was a limiting factor in learning and in 
this case was restricted due to the experimental design. 

Howie 
et al. 2000 

describes experiments with subjects operating Strategem-2, a management 
decision-making microworld;  the control group operated the original microworld, 
and a test group operated the same model with a new interface; comparison found 
that improved interface can reduce the subjects’ misperception of feedback 

Huz  
et al 1997 

describes an evaluation to capture shifts in thinking, while reminding us that  many 
projects are designed to measure short term learning, not long term learning  

Jensen  
2003 

noted that participants used an action sequence (rather that a mental model of the 
system); subjects’ discovery of a good action sequence  does not constitute genuine 
learning about the underlying cause of the problematical behavior 

Langley & 
Morecroft 1996 

describes the importance of learners to transfer concepts to other systems; explains 
that group feedback on simulations improves learning.  

Martin  
et al. 2004 

describes multiple iterations of the beer game in which subjects with  extended 
practice achieved better control of inventory oscillations.  

Plate 2010 describes Cognitive Mapping Assessment of Systems Thinking as a way to assess 
causal maps created by middle school students. 

Rahmandad 
 et al. 2009 

modeled learning through the design of a simulation model that tested four types of 
information integration to study the effect of delays; examined the assumption that 
learning could be measured by convergence to an optimum.  

Schaffernicht 
2009 

describes the use of causal mapping to explore learning; matrices and maps were 
used to evaluate all of the causal relationships brought up by the  subjects. 

Skaza & Stave 
2009 

examines  the  students’  ability  to  recognize  interconnections,  to  understand  the 
difference between stocks and flows and to understand the process of 
accumulation; builds from previous work by Hopper and Stave (2008) 

Spector  
et al 2001 

investigates black box learning environments and found marginal learning, as 
measured by causal mapping.  

Stave 
et al 2011 

describes the history of using system dynamics models in an environmental science 
curriculum; describes the process of assessment used to determine if students were 
better able to understand environmental science.  

Sterman  
2000 

 provides a careful explanation of subjects behavior in the production distribution 
game (the beer game); documents the subjects failure to account for around two-
thirds of the  product in the ‘supply line” when making ordering decisions 

Sterman & 
Sweeny 2002; 
Sweeney  
et al 2000 

describes subjects’ responses to integrate the effect of flows over time; their 
responses reveal inability to perceive how slowly some stocks adjust to changes in 
the flows; sheds light on the public’s misperception of the importance of public 
policies to start early to move stocks in a better direction (i.e. carbon policy) 

Tabacaru  
et al. 2009 

emphasized the need for learning through experience and extended practice and 
tested four aspects of recognition (i.e. cues and non-salient factors, causal relations, 
goals, and decisions).  

Table 2. More system dynamics papers with comments on measuring learning.  
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3. Measuring Learning 
 
 The studies reviewed here include a variety of methods to measure learning.  Many 
studies attest to increased learning, but there are a significant number which report that little 
learning took place. This is a surprising result given that most report an increased enthusiasm 
when subjects are allowed to experiment with system dynamics models and games.   
 

Conclusions about little learning beg the question of what we expect the subjects to learn.  
In some studies, investigators expect the subjects to arrive at deep insights about emergent 
behavior. This is an ambitious goal, but perhaps a natural goal since many papers attest to the 
power of system dynamics to help individuals and organizations arrive at deep insight. 
Unfortunately, many system dynamics interventions are limited by the academic environment 
where classroom time leaves subjects with limited time for preparation, analysis, participation 
and reflection.  Given the short time frame of many interventions, should we realistically expect 
subjects to acquire deep insights? 
 

The researchers face difficult challenges as well.  For example, just how does one 
measure the acquisition of deep insight?   Similarly, how do investigators measure a change in 
intuitive or reactive capacity that becomes expressed at a time and situation well beyond the 
original intervention? Perhaps the subjects’ capacity for deep insights about emergent behavior is 
similar to other learned behaviors --- it is a product of experience, application and reflection over 
time.  These thoughts lead us to be cautious about claims that computer-based games lack the 
ability to build deep insight about dynamic behavior.   

 
We view computer-based games as promising, but their application should be 

accompanied by continued research on measuring what the subjects are learning.  Rather than 
setting our sights on the measurement of deep insight, we may do better to measure learning that 
is more within the grasp of the students with limited exposure to our ideas and our interventions. 
Skaza and Stave (2009) give useful examples of what we might measure.  They examine 
environmental  science  students’  ability  to  recognize  interconnections,  to  understand  the 
difference between stocks and flows and to understand the process of accumulation.  

 
This paper focuses our attention on the measures of learning.  Our review reveals that system 

dynamics studies rely on one or more of the following measurement methods:  
 
1. simulation performance (scores in playing the game) 
2. surveys or written tests,  
3. comparison to expert performance,  
4. qualitative analysis and individual reflection, and 
5. transferability to other contexts. 
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3.1 Simulation Performance 

 An encouraging aspect of computer based games is frequent requests from students to play 
again.  We often hear the students asking to stay late and try again:  

Just give us one more chance to play the game. 
We can do better next time. 

Their enthusiasm and competitive spirit are admirable.  Many games include a score keeping 
calculation to encourage competition.  So it is natural that investigators turn to the students’ 
scores as a simple, clear indicator of learning. 

   Measuring student scores may reveal the ability of students to play the game many times 
and memorize the sequence of decisions that delivered the scores.  But such students are subject 
to the video game syndrome --- playing the game over and over with the goal of memorizing an 
action sequence.  It’s important for educators to guard against video game behavior by calling on 
students to explain their thinking (not just the action sequence).  In the parlance of system 
dynamics, we should ask students to explain their policy, not their decisions (Forrester 1961). It 
is also helpful for instructors to change the external conditions or the model’s internal structure 
before the students replay the game.  The changed conditions will help subjects appreciate the 
difference between memorizing a sequence of decisions and a general policy that will arrive at a 
good set of decisions.   
 

Our views on the video game syndrome are reinforced by the findings by Jensen and 
Brehmer (2003).  They used performance statistics on the regulation of a predator prey model 
that indicated that participants seemed to use an action sequence in decision making rather that 
referring to a [mental] model of the system.  Somewhat similar findings were obtained by Martin 
et al. (2004).  They found that, after playing the beer game 20 times, subjects were able to 
dampen oscillations typically found in net inventory. However, the investigators felt that some of 
the change in behavior was due to the subjects storing information about past experience and 
using that experience to predict future situations (Martin et al. 2004, p. 6). 

3.2 Surveys or written tests  
 
 Surveys or written test are commonly used to access both knowledge and learning. Stave et 
al (2011) assessed the understanding of accumulation and flow in an introductory environmental 
science class using assignments and exams.  Their work has progressed over five semesters, with 
revisions to both assignments and assessments. Initial findings indicate that “all students seem to 
understand the relationship between stocks and flows when flows are the same, but when flows 
are different, we found that students in the control group used the same erroneous pattern 
matching explanations that Sterman and Sweeney  (2007)  describe  in  their  work” while those 
with previous training in accumulation showed better performance ( Stave et al. 2011, p. 6).  
 
 In combination with causal loop exercises, Doyle et al. (1998) codified surveys to measure 
the number of causal and dynamic relationships before and after intervention. Their results 
indicate that an increased understanding about feedback was achieved.  But they also report that 
subjects showed little change in the understanding of system complexity.   
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3.3 Comparison to Experts   
 
 Several interventions utilize causal loop exercises to measure the number of causal 
connections as compared to the number derived by an expert (Plate, 2010; Spector et al. 2001, 
Trabacaru et al. 2009). Trabacaru et al. (2009) tested four aspects of recognition including cues 
and non-salient factors, causal relations, goals, and decisions. They found that of the four  
aspects, “understanding seems to move towards more expert like understanding especially in the 
case of causal relations while the number of identified cues and non-salient factors remains 
largely constant” (Trabacaru et al. p. 14).  They were unable to draw conclusions about changes 
in the quality of decisions. 

3.4 Qualitative analysis and individual reflection  
 
 Huz et al. (1997) recommend domains for measurement. They used meeting minutes, 
archival analysis and informal reflections to capture systematically the modeling teams’ 
reflections of the process. Their paper describes the evaluation design to capture shifts in 
thinking. They raised the question "what identifiable component of the intervention mattered 
most?" They discuss the issue of their measurement time frame and  conclude that in “the short 
run, while the intervention  is  active,  some changes  in participants’  thinking about  the problem 
and some systemic changes do occur” (1997 p. 166). However they also note that their tests do 
not capture long-term impacts of system dynamics interventions. They then remind us to think 
about about the “regression away from systems thinking” over time (1997 p. 166).    
 
 Cavaleri and Sterman (1997) evaluated the change over time in business procedures at 
Hanover Insurance.  Their evaluation made use of interviews, questionnaires, and evaluation of 
policies implemented after the initial intervention to measure both change in mental models and 
improvement in business. They found that managers who spent more time in intervention 
exhibited more systems thinking integration.  

3.5 Transferability of Conclusions  
 
 Bakken et al. (1992) used a series of flight simulators then tested transferability of 
conceptualization and application of understanding of feedback/delay. They conclude that  “to 
transfer successfully, people need to possess a generic framework as well as experience in its 
use”  (p.  22). Spector et al. (2001) evaluated learning using questionnaires as well as causal 
mapping.  Some subjects experienced a black box simulator with added information about 
structure while other subjects worked with examples of natural systems (deer population, growth 
and decline of yeast and spread of infection). The study concluded people learn best when they 
are actively involved in model building.1 “Learners should be encouraged to engage in model 
alteration, model construction, and policy and strategy design in a collaborative context if one 
expects lessons to transfer from the learning environment to real-world settings” (Spector et al. 
2001, 539).  
 
                                                        
1 This finding will come as no surprise to teachers and consultants in the system dynamics community.  Most would 
agree that model building and simulation is the ultimate path toward greater understanding.  But this finding is not 
likely to be useful in power system training since trainees are not in a position to contribute to the construction of the 
underlying model.   
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3.6 Implications for System Dynamics Research 
 

Many of the case studies described in the literature indicate limited learning but as noted 
earlier one should ask if this is a product of the design of the interventions or measurement tools. 
Many researchers have stated that their interventions were in fact limited by time and often 
reflect upon improvements for potential future interventions. Stave et al. (2011), in collaboration 
with Skaza and Trabacaru at the University of Nevada at Las Vegas are working to improve both 
teaching tools and evaluations through iterative development over multiple semesters (a common 
practice in other teaching and learning methodologies).  

 
This long-term commitment to improving both teaching tool and assessment is an 

important contribution to the system dynamics community. In addition it is important that 
researchers recognize the impact of individual reflection and the delay in conceptual 
understanding when learning a new concept. Perhaps there was learning in the short, one-time 
interventions that did not manifest until days, weeks or months later when after reflection a 
similar situation inspired an ah-ha moment. Discussion and group reflection also aids learning. 
Designing more interventions that involve group exercises, a prominent and successful aspect of 
group model building, should also be explored as an aid to learning.  
 
4.  Implications for Research on Power System T raining Methods 
 

Although the system dynamics community is engaged in serious research to measure 
learning from model-based simulations and games, the insights from this research are not easily 
used to shape the mathematical methods on the role of power system operators.  Four major 
differences limit the transferability of the methods and findings from the system dynamics 
community.  

 
The first difference is stressed in the subtitle of the paper – the system dynamics 

interventions deal with time compression; the power system training relies on time dilation.  
Power system dynamics of interest in our research unfold in only a few seconds, and the 
mathematical models may simulate the dynamics with time constants measured in milliseconds.  
Control of these fast-paced dynamics is often dominated by automatic controls triggered by 
changes in deviations of power, frequency or voltage from the target values. The operators’ role 
and the operators’ opportunity for training are fundamentally different than the human subjects 
that are exposed to model-based games in the system dynamics community.  

 
A second, major difference involves the time spent in training of power system operators.  

These individuals have assigned duties that require extensive training and opportunities for 
updated training as the control systems change.  These individuals spend considerable time in 
preparation before participating in experiments with model-based simulators (Smith 1985).   
Their time commitment stands in sharp contrast with the limited time devoted to most system 
dynamics interventions.2  The time limitations in system dynamics research is the result of 
university classroom scheduling and the limited time in executive workshops.   
                                                        
2 In some extreme examples, system dynamics tests of the subjects‘ knowledge are executed in only a few 
minutes.  Such tests are usually designed to reveal the subjects’ misperceptions about accumulation, delays 
and feedback effects.   
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A third difference involves the patterns of dynamic behavior under study.  System 

dynamics can be put to good use to study a wide variety of dynamic patterns.  A short list 
includes exponential growth, exponential decay, S-shaped growth, overshoot, and a variety of 
oscillatory patterns such as damped and growing oscillations (Ford 2009).  A longer list would 
include the complex oscillation with period doublings and with infinitely long periods (ie, 
deterministic chaos).   The most relevant dynamics in the power systems stability research are 
the common forms of oscillations.  System dynamics models can help us understand if 
oscillations are growing (out of control) or if they are damped (and perhaps over-damped).   
System dynamics models can also shed light on more complex patterns like deterministic chaos 
(Sterman 1988, Mosekilde and Larsen 1988).    Tables 1 and 2 list studies dealing with a variety 
of dynamic patterns, but oscillatory behavior is not the dominant pattern under study.  Aside 
from the predator-prey example by Jensen and Brehmer (2003), the oscillatory examples are 
confined to measurement of learning by subjects that played the beer game. 

 
Appendix A explains that the beer game research holds the most promise for insights and 

experiences that may be transferable to training of power system operators.  The dominant 
pattern of behavior is damped oscillations, but the system can exhibit a wide variety of 
oscillatory patterns (i.e., growing oscillations, limit cycles and even deterministic chaos). The 
beer game research is also promising because of its widespread use in system dynamics 
education, the careful explanation of the average subject’s behavior (Sterman 2000) and 
“hoarding” explanation of extreme subjects’ behavior (Dogan and Sterman 2006).  The 
oscillations in the beer game are induced by the students’ ordering behavior, a pattern analogous 
to “pilot induced oscillations” when rookies begin training as aircraft pilots.  There are some 
situations when “operator induced oscillations” appear in the power industry, but the situations 
that we are aware of do not involve serious threats to the stability of the regional system.  

 
In our view, however, the potential for transferable insights is limited by the time issues 

mentioned previously.  The beer game acts to compress time, whereas power training simulators 
act to dilate or stretch time.  Also beer game subjects conduct their experiments and achieve their 
learning in a very brief time interval compared to the time available for training subject in the 
power industry.  Finally, and perhaps most importantly, electricity is fundamentally different 
from a storable products (like beer held in inventory).  The physical properties of the power 
system require the demand for electric power to be satisfied simultaneously across a complex 
grid.  The physical properties also demand sophisticated control procedures to limit the loss of 
service when the system is unable to satisfy demand.  Simulating these physical properties is at 
the core of the mathematical models used in power system simulators.  
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Conclusion 

 
New methods are needed to represent human decision making along side of complex 

power system models of the physics of a large interconnected time-variant grid system. The 
system dynamics community has a long history of simulating human decision making within a 
model of the ‘physics’ of the larger system.  The community has also been working seriously to 
measure the learning from subjects that use model-based simulators.  However, our review 
indicates that the findings from the system dynamics work are not easily transferred to the 
development of improved mathematical methods to simulate short-term grid operations in the 
power industry. 

 
The ultimate goal of our current research project is improved models for the simulation of 

power system stability, including situations with a significant role for the human decision 
making.   A possible avenue for further research may build from recent system dynamics 
simulation of the challenges of integrating more wind generation into the Pacific Northwest 
power system.  A system dynamics model was used to explore increased use of pumped storage 
facilities at Lake Roosevelt.  Appendix B describes this application as a promising use of system 
dynamics simulation of minute-by-minute operations of a narrowly defined piece of the power 
system.  Although the model delivered useful findings for the operation of the pumped storage, it 
is not a useful point of departure for further research on advanced mathematical methods for the 
study of large interconnected power systems. 
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Appendix A .  L essons from the Beer Game 
 

The beer game is widely known within the system dynamics community, especially 
in business education.   The first version of the game was created in the 1960's to 
demonstrate principles of supply chain management.  Players aim to meet customer 
demand by ordering product in the multi‐stage supply chain depicted in Figure A‐1.   Their 
goal is to minimize inventory costs but to maintain sufficient inventory to fill incoming 
orders.  The game has been played by teams of undergraduate students, graduate students, 
teachers and business executives.  The intriguing result is that all teams exhibiting volatile 
oscillations in orders and inventory.  The oscillations would be a serious problem in a real 
distribution system, especially as their magnitude is amplified as we move from wholesale 
to distribution and from distribution to the factory.   The oscillations come as quite a 
surprise to the players since there are no disruptions of supply (i.e., due to strikes or 
factory problems).  Also, the factory can deliver any amount of beer, no matter how large 
the orders.  But there are delays for the beer to travel through the supply chain.  The game 
reveals that dealing with these delays is quite a challenge, even for seasoned business 
leaders participating in executive education programs.   
 

 
Fig. A-1. Initial conditions of the beer game. 
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Fig. A-2. Stocks and flows in a system dynamics model of the beer game (Ford 2009, p. 253) 
       

Figure A-2 shows a system dynamics model designed to represent typical decision 
making by subjects that played the game.  This diagram concentrates on the stocks and flows – 
the physical aspects of the system.  Adding the human decision making observed in the game 
leads to a model that reproduces the oscillations that appear in the game. The key to capturing 
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the players’ behavior is to represent their failure to account for the effect of previous orders that 
have not led to product received in inventory.  This missing product is sometimes called product 
“in the supply line” (Sterman 2000, p. 695). Statistical analysis of subjects’ ordering decisions 
revealed that they appear to count only around a third of the product in the supply line.3   This 
tendency to ignore the supply line creates boom/bust patterns in a wide range of industries, 
especially in industries like real-estate and electric power where planners face long delays for the 
construction of new capacity (Sterman 2000, Ford 2002, 2009)  

 
The beer game oscillations are also instructive in thinking about oscillatory behavior that 

unfolds in just a few minutes of time.  For example, one student found the beer game oscillations 
to be similar to pilot induced oscillations in an aircraft. The student was a pilot, so he knew first-
hand that trainees often over-steer the aircraft, creating growing oscillations.  Aircraft flight 
simulators are part of the training to help pilots develop instincts for flying a real aircraft.  These 
flight simulators are an excellent analogy to power system training simulators. In both cases, the 
goal is help to help humans avoid contributing to growing oscillations   

 
Growing oscillations are certainly a serious problem in the electric power industry, as 

indicated by the August 1996 blackout on the west coast.4   In this major event, oscillations in 
power (MW) at the California-Oregon Intertie appeared with a 4-second period and grew out of 
control within around 80 seconds.  This major event was notable for the disruption in homes and 
businesses affecting 4 million people.  It was also notable for the fact that industry models were 
unable to simulate the growing oscillations (Kosterev 1999).  

 
Although this major system failure was difficult to understand, investigators have not 

characterized the problem as similar to pilot induced oscillations in an aircraft.   On the other 
hand, some narrowly defined power systems have experienced oscillations that were made more 
difficult by the human decision making.  These examples might be described as “operator 
induced oscillations,” oscillations analogous to those that appear in the beer game.  However, 
these examples do not involve major outages, and the oscillations were not perceived as a serious 
problem.   

 
For these reasons, and for the reasons stated previously, we conclude that lessons drawn 

from the beer game are not likely to be useful in our effort to develop improved mathematical 
methods to simulate short-term grid operations in the power industry. 
                                                        
3 A surprisingly similar result was found in analysis of the boom/bust pattern of construction during the 
California electricity crisis of 2000‐2001.  A system dynamics simulation of investor’s behavior was able to 
reproduce the size of the construction boom (Ford 2002).  But the historical fit required that the simulated 
investors count only a third of power plants under construction as likely to contribute to future estimates of 
reserve margins and likely wholesale market prices.  
 
4 The 1996 west coast blackout is described at websites maintained by the Northwest Power and 
Conservation Council and by Wikipedia.  Wikipedia also provides information on wide‐scale blackouts. 
 http://www.nwcouncil.org/history/Blackout.asp 
http://en.wikipedia.org/wiki/1996_Western_North‐America_summer_blackouts 
http://en.wikipedia.org/wiki/List_of_power_outages 
 
 
 

http://en.wikipedia.org/wiki/List_of_power_outages
http://www.nwcouncil.org/history/Blackout.asp
http://en.wikipedia.org/wiki/1996_Western_North-America_summer_blackouts
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Appendix B .  Simulating Wind Integration from Pumped Storage  
 

This appendix will show an example of how system dynamics can improve understanding 
of short-term operations of the power system with increased wind generation.  A system 
dynamics model was constructed by Tyler Llewellyn (2011), a WSU graduate student, to 
simulate water flows between Lake Roosevelt and the Banks Lake impoundment at higher 
elevation.  The facility, known as the Banks Lake and the John W. Keys III Pump-Generating 
Plant (BLK), is operated by the Bonneville Power Administration (BPA).    Llewellyn worked 
closely with WSU faculty and with BPA staff to design a system dynamics model for realistic 
simulations of BLK operations .  The model simulates time in minutes, with a simulation running 
for 10,080 minutes to cover a typical week of operations.  The model examines different ways to 
operate the pumps and turbines at the BLK to provide incremental reserves and decremental 
reserves for wind integration.   His simulations indicate that  

 the BLK could provide most of the balancing reserves demanded by current wind power 
development, 

 irrigation withdrawal requirements are not adversely impacted by wind integration 
operations, and   

 changes to current irrigation operations could enhance BLK’s ability to supply balancing 
reserves for wind integration without impacting its ability to meet irrigation withdrawal 
requirements. 

This appendix provides a brief description of the model structure and simulation results.  The 
appendix concludes with the potential contribution of this type of modeling toward our research 
on advanced mathematical methods for large, interconnected power systems.  
 
B.1  Model Structure 
 
   The hydrologic stocks and flows are depicted in Figure B-1.  This diagram is drawn with 
the Vensim software, one of the common stock-and-flow programs for implementing system 
dynamics models.  Llewellyn implemented his model in Stella (another popular stock-and-flow, 
icon based program) taking full advantage of Stella’s many interface features to facilitate easy 
simulation with multiple scenarios and policies.   

 
Wate r in Banks Lake

Wate r in Lake  Roose ve lt

inflow to Lake Roosevelt outflow from Lake Roosevelt

water pumped uphill
to Banks Lake

water flow
to

generators

water flow to
irrigation canals

 
Figure B-1. Water flows and storage at the pumped storage facility.   
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As with all system dynamics models, the pumped storage simulator is a collection of coupled, 
nonlinear, first order differential equations.  The equations are simulated through numeric  
Methods. (The model uses the Euler method 
with a time step of 1 second.) Figure B-2 helps 
one envision the underlying differential 
equations.   The long variable names from the 
previous diagram are converted to single letters 
to allow for easier display of the differential 
equations:  
    dW1/dt = f1 – f2 – f3 
   dW2/dt = f2 + f4 – f5  
 

W 1

W2
f 4

f 5

f 1
f 2

f 3

 
Figure B-2. Recreation of the 

 previous diagram with short variable names 

These diagrams provide a glimpse of the model structure.  Additional stocks and flows are used 
for posting of MW of wind capacity to an hourly schedule.  Other stocks and flows keep track of 
the electric energy implicitly stored by the water in Banks Lake.   
 
B.2 Illustrative Results 
 
 Figure B-3 shows BPA wind fleet generation and hourly wind schedules over one week 
Nameplate wind capacity was assumed to the approximate the 3,000 MW of capacity in 2010.  
Wind generation capacity factors reflect actual BPA wind fleet five-minute capacity factors 
recorded during June 7 through June 13, 2010, a week known as  a  “high-water  event” on  the 
Columbia River system.  Thus, the base case simulation shows the flexibility provided by BLK-
supplied balancing reserves during a week when additional flexibility is highly valuable.   
 

 
Figure B-3. Actual wind generation (in green) and scheduled wind generation (in black)  

during a week of high water flows and hourly scheduling in a 30-minute persistence scenario. 
(Results are displayed with the vertical axis scaled from 0 to 3,000 MW.) 
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Wind generation is shown by the green line in Figure B-3. It fluctuates dramatically from 
a minimum of zero to a maximum of approximately 2,700 MW during the week simulated.  The 
time period also includes two very large up ramps and down ramps in wind generation. The wind 
schedules (black line) reflect 30-minute persistence forecasting accuracy. Thirty-minute 
persistence wind schedules are consistent with BPA 2010 Resource Program and 2012 BPA 
Initial Rate Proposal Generation Inputs Study analyses. Thirty-minute persistence wind 
schedules are utilized in BPA analyses as they are approximately equivalent to current wind 
schedule forecasting accuracy.  The difference between wind generation and wind scheduled at 
any time is the wind station control error, and thus determines the demand for incremental and 
decremental reserves from the BLK. 

 

 
Figure B-4. Pump flows (in red) and generator flows (in blue) during a week of high water flows 

and hourly scheduling in a 30-minute persistence scenario. 
(The flows are displayed with the vertical axis scaled from 0 to 21 KCFS.) 

 
Figure B-4 shows the BLK switching rapidly between pumping and generating to provide 

the reserves needed for wind integration: 
 Decremental Reserves: The pumps are run to pump water uphill to Banks Lake (see the 

red line in Figure B-4.)  The electricity consumed by running the pumps provides the 
decremental reserves needed when wind generation exceeds its schedule.   

 Incremental Reserves:   The generators are run when water is released from Banks Lake 
to flow downhill to Lake Roosevelt (see blue line in Figure B-4). The electricity 
generated by the turbines provides the incremental reserves needed when wind generation 
is less than the scheduled amount.   

Both the maximum pumping and generating capacities were reached in this base case simulation.  
The maximum pumping capacity is 20.72 KCFS, equivalent to 600 MW.  The maximum pump 
flow was reached four times in this simulation. The maximum generating capacity is 14 KCFS, 
equivalent to 314 MW.  The maximum generator flow was reached approximately 10 times in 
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this simulation The maximum pumping and generating capacities are generally reached during 
the large up and down ramps in wind generation. 
 

This base case simulation demonstrated that a high percentage of incremental and 
decremental reserves can be supplied through operating BLK for wind integration.  Indeed, the 
BLK could provide approximately 90% of incremental reserves and 99% of the decremental 
reserves needed for wind integration during the simulated week.  
 
B.3. Simulation Scenarios 
 

The pumped storage model is notable for the easy selection of different scenarios and 
policies for simulation.   For example, the user can select from different scenarios for errors in 
wind scheduling.  

  
 Perfect Schedule: For clarity of interpretation, the easiest scenario is the perfect schedule, 

a one-hour schedule that equals average generation over the hour.  The energy generated 
over an hour equals the energy scheduled over that same hour. This simulation 
demonstrates that BLK would be heavily used even under “perfect” conditions.  

 
 Thirty-Minute Persistence Schedule: This scenario was used to get the results in Figures 

B-3 and B-4.  This is a one-hour schedule based on the actual wind fleet generation thirty 
minutes prior to the beginning of the hour.  (Thirty minute persistence scheduling 
accuracy is the wind forecasting accuracy assumed in BPA Rate Case and Resource 
Program modeling.)  

 
 Actual Schedule:  The user can also select the actual schedule from the week of June 7-

13, 2010.  This scenario gives the one-hour schedule that represented the actual hourly 
forecast for the BPA wind fleet over the hour.   

 
The model also allows for easy selection of different scenarios for the irrigation operations.  
 

 Replacement Pumping:   The replacement scenario calls for the pumping schedule intends 
to pump water into Banks Lake at the same rate at which is it being released to the 
Columbia Basin Project. 

 
 Minimal Cost Pumping:  A scenario to minimize pumping costs aims to pump water into 

Banks Lake during times of lower electricity prices, which occur during light load hours 
at night from 10 pm to 7 am and all day Sunday.   

 
 Maximize Reserves Pumping:  The model may also be operated which the pumping 

schedule aims to pump water into Banks Lake during heavy load hours, which occur 
from 6 am to 10 pm Monday through Saturday.  Simulations with this scenario revealed 
that pumping during the middle of the day maximizes the total amount of incremental 
reserves that can be provided by Banks Lake during heavy load hours.  Further, this 
irrigation pumping schedule maximizes the total decremental reserves provided by Banks 
Lake during light load hours. 
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B.4. Conclusions from the Wind Integration-Pumped Storage Model 
 
Llewellyn’s  simulation  analysis  led  to  important  findings for the operation of the BLK 

pumped storage facility.  For example, simulates indicated that a modernized and upgraded BLK 
could provide significant incremental and decremental reserves for wind integration without 
impacting the ability to meet irrigation withdrawal requirements. And if the irrigation operations 
so incremental and decremental reserves are held over all hours improves the ability of BLK to 
provide balancing reserves for wind integration and reduces switching between pumping and 
generating modes.  However, if the reserves for wind integration are provided entirely from 
solely from the BLK, operators should expect to see continual rapid dispatch of pumping and 
generation.  The model also showed that supplying reserves for wind integration could slowly 
draft Banks Lake in simulations without additional pumping to maintain Banks Lake storage.5   
 
B.5. Implications for Research on Advanced Methods  

 
The pumped storage model is a promising application of system dynamics to deal with 

operational dynamics that unfold on a minute by minute basis.  Indeed, the model is the best 
example of a system dynamics modeling with relevance to the challenge of maintaining stable 
operations in the electric power system.  The model delivers pragmatic and useful results, but it 
is not directly relevant to our interest in the role of human decision making.  The current model 
represents the schedules posted by humans, but it does not involve an explicit simulation of their 
decision making. An interesting avenue for further research is expansion of the pumped storage 
model represent different decision making strategies by the wind company officials for posting 
the generation schedules.   

 
However, for the overall purposes of our research project, the pumped storage model is not a 

useful point of departure for further research on advanced mathematical methods for the study of 
large interconnected power systems. The model is limited by its treatment of a single facility and 
it does not deal with the complex mathematical challenges of representing multiple generations, 
multiple loads, and multiple transmission lines.  The model does not deal with control center 
operations, nor does it simulate variable such as bus voltages and line power flows.  And finally, 
the model does not simulate rapidly changing dynamics (ie, changes that would be displayed in 
seconds rather than minutes).     

 
 

                                                        
5 The net removal of water from Banks Lake is caused by the round-trip efficiency loss associated with pumped 
storage.  (The energy to pump water uphill is larger than the energy generated when the water flows downhill.)  The 
drafting of Banks Lake would occur during a time period when the demand for incremental reserves matches the 
demand for decremental reserves.  



18 
 

References:  
 

Alessi, S. 2000. Designing educational support in system-dynamics-based interactive learning 
environments. Simulation and Gaming Vol 31, No.2 178-196 

 
Anderson, E., and Morrice, D.J. A simulation game for teaching service-oriented supply chain 

management: Does information sharing help managers with service capacity decisions? 
Production and Operations management. 2000, 9, 1 p. 40 

 
Bakken, B.; Gould, J.; Kim, D. Experimentation in learning organizations: A management flight 

simulator approach. Eur. J of Op. Res. 1992, 59, 1, 167-182.  
 
Bakken, B.; Haerem, T., Ruud, M. Hierarchy or Network in Military Command Organizations? 

Preliminary Results from Experiments with the NCW Learning Lab Proceedings of the 24th 
International Conference of the System Dynamics Society. 2006. 

 
Booth Sweeney, L. and Sterman, J. Bathtub dynamics: Initial results of a systems thinking 

inventory. System Dynamic. Review. 2000, 16, 4 
 
Borštnar, M. K., Kljajic. M., Škraba, A., and Kofjac, D. A Model of Group Learning Supported 

by Simulation Experiment. Proceedings of the 25th International Conference of the System 
Dynamics Society. 2007. 

 
Christensen, D.L. Spector, J.M., Sioutine, A.V. and Mc Cormack, D. Evaluating the impact of 

System Dynamics Based Learning Environments: Preliminary Study. Proceedings of the 
18th International Conference of the System Dynamics Society. 2000. 

 
Cavaleri, S.; Sterman, J. Towards evaluation of systems thinking interventions: a case study. 

System Dynamics Review, 1997, 13, 2. 
 
Diehl, E.; Sterman, J. Effects of feedback complexity on dynamic decision making,      

Organizational Behavior and Human Decision Processes, 62(2), 198-215, 1995.  
 
Doyle, J.K.; Radzicki, M.J.; Trees, W. S. Measuring Change in Mental Models of Dynamic 

Systems: An Exploratory Study. Proceedings of the 16th International Conference of the 
System Dynamics Society. 1998. 

 
Dutt, V. and Gonzalez, C. Slope of Inflow Impacts Dynamic Decision Making. In Proceedings 

of the 25th International Conference of the System Dynamics Society. 2007.  
 
Ford, A., System Dynamics and the Electric Power Industry. 1996 Jay Wright Forrester Prize 

Lecture, System Dynamics Review. 1997, 13, 1.  
 
Ford, A., Boom & Bust in Power Plant Construction: Lessons from the California Electricity 

Crisis, Journal of Industry, Competition and Trade, June 2002, Vol 2, Nu 1-2.  
 



19 
 

Ford, A.  Simulation scenarios for rapid reduction in carbon dioxide emissions in the  
western electricity system, Energy Policy, 2008, vol. 3, 443-455. 

 
Ford, A. Modeling the environment: 2nd edition. Washington, DC: Island Press. 2009. 
 
Forrester, J. Industrial Dynamics. Pegasus Communications. 1961. 
 
Gonzalez, C.; Dutt, V. Learning to Control a Dynamic Task: A System Dynamics Cognitive 

Model of the Slope Effect. In Proceedings of ICCM - 2007- Eighth International Conference 
on Cognitive Modeling. Oxford, UK: Taylor & Francis/Psychology Press. 2007, 61 - 66.  

 
Grossler, A.; Maier, F.H.; Milling, P. Enhancing learning capabilities by providing transparency 

in business simulators. Simulation and Gaming. 2000, 31, 2, 257-278. 
 
Hopper, M. & Stave, K. Assessing the Effectiveness of Systems Thinking Interventions in the 

 Classroom. International Conference of the System Dynamics Society, July 2008.  
 
Howie, E. Sharleen, S. Ford, L. and Vicente, K. Human-computer interface design can reduce 

misperception of feedback, System Dynamics Review, 16, 3, 161-171, 2000. 
 
Huz S.; Andersen, D. F.; Richardson, G.P.; Boothroyd, R. A framework for evaluating systems 

thinking interventions. System Dynamics Review. 1997, 13, 2.  
 
Jensen, E.; Brehmer, B. Understanding and control of a simple dynamic system. System Dyamics 

Review 2003, 19, 2.  
 
Kosterevn, D.; Taylor, C.; Mittelstadt, W. Model Validation for the August 10, 1996 WSCC 

System Outage, IEEE Trans. Power Syst., vol. 14, no. 3, pp. 967-979, August 1999.  
 
Langley, P. A. and Morecroft, J.D.W. 1996 Learning from Microworld Environments: A 

summary or research issues. In Proceedings of the 14th International Conference of the 
System Dynamics Society. 1996.  

 
Llewellyn, T. System Dynamics Simulation of Banks Lake and John W. Keys III Pump  
 Generating Plant Pumped Storage Operations for Wind Integration, MS Thesis,  
 Washington State University, May 2011. 
 
Martin, M. Gonzales, C. and Lebiere, C. Learning to Make Decisions in Dynamic Environments:   

Proceedings of the sixth International Conference on Cognitive Modeling. Pittsburgh, PA: 
Carnegie Mellon University. 2004. 178-183.  

 
Mosekilde, E. and Larsen, E. Deterministic chaos in the beer production-distribution model,  
 System Dynamics Review, 4, 1-2, 131-147, 1988. 
 
Plate, R. Assessing individual's understanding of non linear causal structures in complex 

systems. System Dynamics Review, 2010, 26, 1.  



20 
 

 
Rahmandad, H., Reppenning, N.  Sterman, J. 2009. Effects of feedback delay on learning. 

System Dynamics Review, 2009, 25, 4.  
 
Salge, M. and Milling, P. M. 2006. Who is to blame, the operator or the designer? Two stages of 

human failure in the Chernobyl accident. System Dynamics Review, 22, 89-112. 
 
Schaffernicht, M. Towards the use of model structure analysis for designing flexible learning 

itineraries . In Proceedings of the 27th International Conference of the System Dynamics 
Society. 2009. 

 
Skaza, H., and  Stave, K. A test of the relative effectiveness of using systems simulations to 

increase student understanding of environmental issues. Proceedings of the 27th 
International Conference of the System Dynamics Society. 2009. 

 
Smith, J., Bose, A. and Burton, E. Development of operator training curricula using the 

instructional systems development approach, IEEE transactions on power apparatus and 
systems, Vol. PAS-104, 12, December 1985. 

 
Spector, J.M., Christensen, D.L., Sioutine, A.V., and McCormack, D.  Models and simulations 

for learning in complex domains: using causal loop diagrams for assessment and evaluation. 
Comp in Hum Beh. 2001, 17, 517-545. 

 
Stave, K., Skaza, H. and Jurand, B. Using Simulations for Discovery Learning about 

Environmental Accumulations. Submitted to the 29th International Conference of the System 
Dynamics Society.  Washington, DC, July 24-28, 2011.     

 
Sterman, J. "Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic 

Decision Making Experiment", Mgt Sci., 1989, 35(3), 321-339. 
 
Sterman, J. D. Business dynamics – Systems thinking and modeling for a complex world. Boston: 

McGraw-Hill. 2000. 
 
Sterman, J.D.  Risk Communication on Climate: Mental Models and Mass Balance.  Sci. 2008, 
322: 532­533.  

  
Sterman, J. D. and Sweeney, L.B. Cloudy skies: assessing public understanding of global 
warming. System Dynamics Review. 2002, 18, 2, 207-240. 

 
Sterman, J.D. and Sweeney, L.B.  Understanding public complacency about climate  
  change: adults’ mental models of climate change violate conservation of matter.   Climate 
Change. 2007, 80, 213­238.  

 
Trabacaru, M.; Kopainsky, B.; Sawicka, A.; Stave, K.; Skaza, H. How can we assess whether our 

simulation models improve the system understanding for the ones interacting with them? 
Proceedings of the 27th International Conference of the System Dynamics Society. 2009. 


