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Abstract 
 
Human and social models are an important capability of system dynamics, and sensitivity 
analysis can be used to strengthen and better understand these models. To learn about 
which sensitivity analysis techniques are most suitable for models of human behavior, 
different promising methods were applied to an example system dynamics model, tested, 
and compared. The example model simulates cognitive, behavioral, and social processes 
and interactions, and involves substantial nonlinearity, uncertainty, and variability. 
Results showed that some sensitivity analysis methods create similar results, and can thus 
be considered redundant. However, other methods, such as global methods that consider 
interactions between inputs, can generate insight not gained from traditional methods.
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INTRODUCTION 
 
 
Human and social modeling has emerged as an important research due in part to its 
potential to improve decision-making in the presence of uncertainty. These models can be 
used to generate insight about human behavior, and can contribute to understanding of 
social systems, behavioral forecasting, and training, among other uses. These models can 
be built using various paradigms, including system dynamics, cognitive modeling, game 
theory, agent-based modeling, and others, or may use combinations of these techniques 
(NRC 2008). 
 
The purpose of this work was to study which sensitivity analysis techniques are most 
applicable to models that simulate human behavior. Sensitivity analysis determines which 
model inputs have the largest impact on model response, and is a component of rigorous, 
data-based model validation. The results of sensitivity analysis can be used to strengthen 
a model and to understand its implications. Sensitivity analysis can be used to identify 
where valuable data collection resources should be directed to most effectively improve 
the model. It can be used to find leverage points where intervention into the system can 
have a substantial and robust effect on the results. Sensitivity analysis can also be used to 
understand model robustness and to find areas where a model can be simplified with 
minimal effect on outcomes. 
 
System dynamics models of human behavior have inputs that are difficult to quantify and 
highly variable between people or groups. Furthermore, these models often simulate 
nonlinear, complex adaptive systems. This necessitates sensitivity analysis techniques 
that can deal with large variations in many model variables simultaneously, a challenge 
that has not yet been sufficiently explored (NRC 2008). The variability inherent in 
models of human behavior indicates that sensitivity analysis techniques designed to deal 
with the highly nonlinear nature of these models will be more effective than traditional 
techniques.  
 
Various methods of sensitivity analysis are available. System dynamics modelers 
sometimes use one-at-a-time, exploratory methods or correlation coefficients over time. 
Engineering applications often use sampling based and metamodeling methods, among 
others. To learn about which sensitivity analysis techniques are most suitable for models 
of human behavior, different promising methods were applied to an example system 
dynamics model, tested, and compared. The example model simulates cognitive, 
behavioral, and social processes and interactions, and involves substantial nonlinearity, 
uncertainty, and variability. The results of this analysis are given below. 
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FOOD SUBSIDY MODEL 
 
 
The example model used for this study is a system dynamics model that incorporates 
cognitive components. The model represents two cognitive, decision-making entities: the 
government, which makes policy decisions, and voters, whom the government aims to 
satisfy. This model, like many models of human behavior, involves substantial feedback 
and nonlinearity. Inputs to the model are highly uncertain (especially those involving 
cognitive processes) and highly variable (especially economic and social factors). 
 
An overview of the food subsidy model structure is shown in figure 1. The population of 
the simulated society grows steadily over time. Food demand is based on population and 
the price elasticity of food. If the price of food grows too quickly voter satisfaction will 
decline, causing voters’ support of the government to decline and protesting to increase. 
The government attempts to avoid this situation by implementing a food subsidy to 
artificially cap food prices. The government would like to use oil revenues to pay for the 
food subsidy. If these revenues are insufficient to cover the entire subsidy, the 
government must print money to pay for it. When the government prints money, inflation 
increases, which decreases voter satisfaction and thus further reduces voter support for 
the government and increases protests. 
 
 

 
 

Figure 1. Overview of the model structure. 
 
 
The complete structure of the food subsidy model is shown in figure 2. The model works 
as described above, but detail is included to specify how decisions are made and how 
non-cognitive variables are calculated. The model simulates behaviors based on utility 
functions and qualitative choice theory (Ben-Akiva and Lerman 1985; Train 1986). The 
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voters in this model have three decisions to make. Their demand for food is based on the 
price of food. Voter protest is determined by the price of food and a general price index 
of goods in the society. Voter support is also based on food and general price indices, but 
also takes protesting activity into account. The government has just one decision to make 
in this model: where they would like to set food price, using the food subsidy. This 
decision is based on voter support and voter protest, and is aimed at keeping voter 
satisfaction with the government high. 
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Figure 2. Complete structure of the food subsidy model.
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There are 12 inputs to the food subsidy model that were considered uncertain for this sensitivity 
analysis. These inputs, as well as the distributions used in the analysis, are shown in table 1. The 
expected voter protest and support indicate levels that the government considers desirable. Oil 
price is defined by a log-normal distribution. The price adjustment describes the fraction of the 
indicated change in price that will actually occur. The remaining uncertain inputs are coefficients 
on utility functions. These inputs indicate the magnitude of the effect that a particular societal 
event or trend will have on a decision. 
 
 

Table 1. Uncertain inputs to the food subsidy model. 
 

Variable Distribution Details 

Expected Voter Protest (EVP) Uniform [0.05,0.15] 

Expected Voter Support (EVS) Uniform [0.6,0.8] 

Oil Price (OP) Log-normal µ=4, !=0.55 

Price Adjustment (PA) 
- Fraction of indicated change in price 

Uniform [0.05,0.5] 

Food Demand ! (FD!) 
- How much food price affects demand 

Uniform [0,10] 

Government Food Subsidy ! (GFS!) 
- How much voter support affects GFS 

Uniform [0,5] 

Government Food Subsidy " (GFS") 
- How much voter protest affects GFS 

Uniform [0,10] 

Voter protest ! (VP!) 
- How much food price affects protests 

Uniform [-10,0] 

Voter protest " (VP") 
- How much general prices affect protests 

Uniform [-10,-1] 

Voter support ! (VS!) 
- How much food price affects support 

Uniform [0,10] 

Voter support # (VS#) 
- How much protests affect support 

Uniform [0,10] 

Voter support " (VS") 
- How much general prices affect support 

Uniform [0,10] 

 
 
Figure 3 shows the results of voter support for a 50-run Monte Carlo simulation of the food 
subsidy model. Each line in figure 3 represents a full time series for the output voter support for 
a simulation with random values for each of the 12 uncertain inputs in table 1. While each 
simulation exhibits a different pattern over time, there is a somewhat robust pattern that is shared 
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between the simulations. At the beginning of each simulation, the government tries to gain 
support from voters by subsidizing food. This causes voter support to increase. However, the 
government has to print money to pay for the subsidy, which, after a time lag, causes inflation to 
increase. Thus, after an initial rise, voter support declines below its initial level. 
 
 

 
 

Figure 3. Voter support for Monte Carlo simulation (N=50). 
 
 
 

3.  COMPARISON OF METHODS 
 
 
The goal of this project was to compare different sensitivity analysis techniques to gain insight 
into which methods are most appropriate for models of human behavior. Different promising 
methods were applied to the food subsidy model, tested, and compared. While different outputs 
are certainly of interest in this model, results presented here focus on one output: voter support. 
Each sensitivity analysis given here used a sample size of 1,000, except sensitivity indices for 
which N=10,000. Static and dynamic sensitivity were both considered. For the static analyses, 
the highest value of voter support over the time horizon was used as a metric.  The dynamic 
analyses were based on voter support at each point throughout the time horizon. 
 
The first sensitivity analysis technique considered for the food subsidy model was scatterplots. 
Scatterplots necessitate a static output metric, so the highest voter support metric was used as the 
output. Each uncertain input was plotted against this metric to look for patterns in the 
relationships between inputs and the output metric (figure 4). Scatterplots are especially useful in 
finding unusual or unanticipated patterns, such as thresholds and nonlinearities, in the data (Ford 
and Flynn 2005; Helton et al. 2006). Relationships to the output metric are apparent for some of 
the uncertain inputs to the food subsidy model, particularly EVS and GFSGamma (positive 
correlations), and VPBeta (negative correlation).  However, none of the inputs are obviously 
dominant in determining the highest voter support.  
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Figure 4. Scatterplots of different inputs compared to the highest voter support. 
 
 
The next method considered was correlation coefficients (Helton et al. 2006). These are used to 
measure the strength of the linear relationship between each uncertain input and the output of 
interest. Correlation coefficients can be used to rank inputs by importance. Variations of 
correlation coefficients are also available. Partial correlation coefficients correct for the linear 
effects of other inputs. Rank correlation coefficients consider monotonic, rather than linear 
relationships between inputs and outputs. Partial rank correlation coefficients combine these 
qualities. Correlation coefficients vary from -1 to 1, with a stronger correlation indicated when 
the coefficient is farther from 0. The p-value associated with a correlation coefficient describes 
the significance of the correlation, with a small p-value (for instance, p<0.05) indicating high 
significance. 
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Two different ways of using correlation coefficients were considered for this analysis. The first 
was a static analysis, which looked at how each uncertain input to the food subsidy model 
correlates with the output metric highest voter support (table 2). According to the p-values for 
each of the different types of correlation coefficients, most of the uncertain inputs have a 
significant non-zero correlation with the output metric. Furthermore, the different methods agree 
on most of the top (most highly correlated) inputs. 
 
 

Table 2. Correlation coefficients for highest voter support output metric. 
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EVP -0.012 0.716 -0.041 0.196 -0.019 0.541 -0.056 0.080 
EVS 0.211 0.000 0.363 0 0.213 0.000 0.375 0 
OP -0.086 0.007 -0.046 0.152 -0.078 0.013 -0.073 0.022 
PA 0.288 0 0.408 0 0.324 0 0.468 0 
FDBeta -0.022 0.496 -0.035 0.275 -0.014 0.649 -0.033 0.296 
GFSBeta -0.140 0.000 -0.161 0.000 -0.138 0.000 -0.165 0.000 
GFSGamma 0.383 0 0.548 0 0.365 0 0.556 0 
VPBeta -0.519 0 -0.646 0 -0.528 0 -0.676 0 
VPGamma 0.160 0.000 0.220 0.000 0.149 0.000 0.219 0.000 
VSBeta 0.103 0.001 0.158 0.000 0.158 0.000 0.248 0.000 
VSDelta 0.021 0.509 0.071 0.027 0.101 0.001 0.201 0.000 
VSGamma -0.009 0.789 -0.021 0.519 -0.021 0.500 -0.050 0.120 

 
 
The second correlation coefficient analysis calculated correlation over time (Ford and Flynn 
2005) for each uncertain input in relation to voter support. By plotting each type of correlation 
coefficient over time, the relative strength of correlations for different inputs during different 
times can be seen (figures 5-8). For most inputs, he different types of correlation coefficients 
were similar. In the beginning of the simulation, when voter support is increasing, a selection of 
inputs is apparently highly correlated with voter support. The collection of highly correlated 
inputs seems to change, however, when the behavior of voter support shifts to declining.  One 
input, VSDelta, is highly negatively correlated toward the end of the simulation only in the rank 
and partial rank analyses, indicating a monotonic but not linear relationship between VSDelta 
and voter support. 
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Figure 5. Correlation coefficients for voter support over time. 
 
 

 
 

Figure 6. Partial correlation coefficients for voter support over time. 
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Figure 7. Rank correlation coefficients for voter support over time. 
 
 

 
 

Figure 8. Partial rank correlation coefficients for voter support over time. 
 
 
The next sensitivity analysis technique implemented was a stepwise regression (Helton et al. 
2006) based on the highest voter support output metric. Stepwise regression creates a linear 
regression model by repeatedly adding the most important variable to the model. The process 
begins by determining for which input, by itself, would lead to the highest R2 value. R2 measures 
the fraction of output variance that is explained by the model. After the first, most important, 
input is found, the next most significant input is searched for and added to the model. This 
process goes on until the regression model would not be significantly improved by adding any of 
the remaining inputs. 
 
Results for the stepwise regression of the food subsidy model and the output metric highest voter 
support are shown in table 3. Nine of the uncertain inputs were useful in the regression model, 
with only three considered insignificant. Even with all nine of the useful inputs included, the R2 
value is still only 0.6134. 
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Table 3. Stepwise regression for highest voter support output metric. 
 

Step Variable Regression 
Coefficient 

R squared 

1 GFSGamma 0.0254 0.1998 
2 EVS 0.6017 0.2605 
3 VPBeta -0.0289 0.5314 
4 PA 0.2663 0.5743 
5 VPGamma 0.0074 0.5907 
6 GFSBeta -0.0103 0.6001 
7 VSBeta 0.0050 0.6080 
8 VSDelta 0.0032 0.6113 
9 EVP  -0.2453 0.6134 

 
 
The next sensitivity analysis method implemented for the food subsidy model was the 
elementary effects method (Saltelli et al. 2008). This method looks at the average difference in 
output when one input is perturbed. This is similar to a derivative. The process involves 
perturbing one input repeatedly in different locations within its domain, each time measuring the 
associated change in the output. Elementary effects results for the highest voter support output 
metric are shown in table 4. ! is the average of the changes in output after perturbing the input. 
!"#is the average of the absolute value of these changes. $2 is the variance. Since derivatives will 
necessarily be larger during times when the output is exhibiting larger changes, elementary 
effects over time are not comparable for this model, and therefore not included here. 
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Table 4. Elementary effects results for highest voter support output metric. 
 

 ! !"# $2 
EVP 0.0091    0.0915     0.0002     
EVS -0.0077    0.0855     0.0006     
OP -0.0038    0.0809     0.0001     
PA -0.0003     0.0987     0.0014     
FDBeta 0.0005    0.0916     0.0001     
GFSBeta -0.0031    0.0865     0.0002     
GFSGamma -0.0003     0.1127     0.0006     
VPBeta 0.0071     0.1028     0.0006     
VPGamma 0.0073    0.0915     0.0012     
VSBeta -0.0030     0.0870     0.0009     
VSDelta 0.0080 0.1008 0.0003 
VSGamma -0.0054 0.0927 0.0006 

 
 
The final method considered in this study was sensitivity indices (Saltelli et al. 2008; Weirs et al. 
2010). Two measures result from this type of analysis. The first is the main effect, Si, which 
describes the proportion of the variance in the output of interest that can be attributed to variation 
in a particular input. The second measure is the total effects index, STi. This describes the 
proportion of the variance of the output of interest that can be attributed not only to one 
particular input, but also to all of the interactions that input has with other inputs. These 
measures can be used to indicate where reduced uncertainty in inputs would allow the output 
variance to be reduced. 
 
The sensitivity indices for the static metric, highest voter support, are shown in table 5. 
Sensitivity indices over time in relation to voter support are shown in figures 9 and 10. The main 
effects plot shows that a few inputs emerge as very important in determining output variance. 
The total effects results show that interactions between inputs are very important in this model. 
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Table 5. Sensitivity indices for output metric highest voter support. 
  

 SI STI 

EVP -0.0001 0.0005 
EVS 0.0621 0.1210 
OP 0.0000 0.0000 
PA 0.0633 0.1247 
FDBeta 0.0013 0.0013 
GFSBeta 0.0112 0.1110 
GFSGamma 0.2255 0.3628 
VPBeta 0.3773 0.5154 
VPGamma 0.0097 0.0381 
VSBeta 0.0146 0.0577 
VSDelta 0.0154 0.1142 
VSGamma 0.0008 0.0107 

 

 
Figure 9. Main effects over time for voter support output. 
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Figure 10. Total effects over time for voter support output. 

 
 
 

CONCLUSIONS 
 
 
Table 6 shows how each of the above methods of sensitivity analysis ranks the uncertain 
variables in the food subsidy system dynamics model in order of importance. The different types 
of static correlation coefficients give similar results, at least for the most important inputs. 
However, the dynamic analysis of different types of correlation coefficients (figures 5-8) 
indicates that one of the inputs, VSDelta, has a strong monotonic but nonlinear correlation with 
voter support in the second half of the time horizon. Stepwise regression gives similar results to 
the static correlation coefficient methods. The elementary effects and sensitivity index rankings 
differ from the others somewhat. 
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Table 6. Comparison of importance rankings of uncertain variables. 
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EVS        1-4 1-7 1-4 1-8 2 11 4 4 
PA         1-4 1-7 1-4 1-8 4 4 3 3 
GFSGamma   1-4 1-7 1-4 1-8 1 1 2 2 
VPBeta    1-4 1-7 1-4 1-8 3 2 1 1 
VPGamma   5 1-7 7 1-8 5 8 8 8 
VSBeta    6 1-7 5 1-8 7 9 6 7 
GFSBeta  7 1-7 8 1-8 6 10 7 6 
EVP       8 11 9 12 9 7 12 11 
FDBeta   9 8 11 9 X 6 9 10 
OP        10 10 12 11 X 12 11 12 
VSGamma  11 12 10 10 X 5 10 9 
VSDelta  12 9 6 1-8 8 3 5 5 

 
 
Table 7 gives an overview of the different methods of sensitivity analysis described here, as well 
as some of the main differences and conclusions found in the sensitivity analysis of the food 
subsidy model. Scatterplots showed apparent correlations for only a few of the uncertain inputs, 
and no unusual relationships were obvious. Correlation coefficients showed that many of the 
uncertain inputs were significantly correlated with the static output metric.  The different 
methods of calculation did not result in very different coefficients for the static analysis, but 
understanding of one uncertain input benefited from calculation of rank correlation coefficients 
in the dynamic analysis. The stepwise regression analysis gave similar results to the correlation 
coefficient analysis, and thus was probably an unnecessary calculation for the food subsidy 
model. The elementary effects analysis showed that many of the inputs were similar in 
importance. The sensitivity indices showed that interactions between inputs were significant, 
especially during the beginning of the simulation.  
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Table 7. Comparison and implications for different methods of sensitivity analysis. 

 
Method What is measured Comparison and implications 

Scatterplots 
 

Subjective relationship 
between inputs and outputs 

•Good first method for identifying 
patterns 
•No very obvious patterns 

Correlation Coefficients 
 

Strength of linear (or 
monotonic) relationship 
 

•Useful in ranking inputs 
•Static results similar for different 
types of CC, dynamic results 
differed for one input 

Stepwise Regression 
 

Coefficients for linear model 
that best predicts output 
 

•Most inputs were significant 
•Results similar to correlation 
coefficients 

Elementary Effects 
 

Average derivative when one 
input is perturbed over 
different points in its domain 

•Little variation in µ* between 
inputs 

Sensitivity Indices Proportion of output variance 
attributed to input variance 

•Interactions were significant 
•Especially important at the 
beginning of the simulation 

 
 
No one, or few, inputs dominated the results of the food subsidy model. Interactions between 
inputs, however, did play a large role, particularly at the beginning of the simulation. It is 
important to note that the results above apply to only the food subsidy model. More 
investigation, into different models, different output metrics, and different techniques of 
sensitivity analysis, is needed to determine if these results apply more generally to models of 
human behavior. 
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