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Abstract 

There are several indicators of abundant sub-optimal decisions in medicine. Two of the common 

ones are overuse of defensive medical practices such as medical tests (bias toward more tests), 

and variation of medical diagnoses and treatments for medically similar patients (practice 

variation). Besides patients’ characteristics and preferences, and the regional characteristics 

(such as culture), the most common explanations for practice variation and bias relate to 

physicians’ personality traits (e.g., the level of risk aversion) and their financial incentives. We 

develop a theory that offers a new explanation for variation and bias in practice. With the help of 

a simulation model, we show that practice variation and bias do not have to be caused by 

personality traits and financial incentives, but can endogenously emerge through daily practices 

and outcome learning even among physicians with similar training working in the same region. 

In other words, the characteristics of medical tasks themselves can result in practice variation 

and bias. Specifically, a physician’s exposure to outcome feedback, a physician’s ability to 

evaluate different forms of practice, and a physician’s accumulated experience with a given 

approach all contribute to practice variation and bias.  A preliminary validation of the results is 

achieved by comparing projected results with actual data from cesarean section surgery in the 

states of New York and Florida.  

Keywords: Experiential Learning, Medical Decision Making, Practice Variation, Outcome 

feedback, Conditional Feedback
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1. INTRODUCTION 

There are several indicators of abundant sub-optimal decisions in medicine. The Institute of 

Medicine (2000) estimates that 98,000 people die in the United States hospitals every year as a 

result of preventable mistakes, and the Dartmouth Atlas of Health Care argues that decision 

making factors are central in health disparities in the country (Fisher, Bynum, & Skinner, 2009). 

Sub-optimal medical decisions, in aggregate, contribute to an inefficient healthcare system, a 

major concern in the current US healthcare reform.  

Two of the most common indicators for sub–optimal practices in medicine are practice variation 

and over–utilization bias (Fisher et al., 2009; Institute Of Medicine, 2000, 2003; Wennberg, 

Fisher, & Skinner, 2002; Wennberg, Freeman, & Culp, 1987; Wennberg & Gittelsohn, 1973). 

First, it is shown that different doctors do not make similar decisions for medically similar 

patients and in many cases they disagree. For example, controlling for patients’ health risks, 

different obstetricians have different rates of c-section surgeries (Epstein & Nicholson, 2009). 

Similar patterns of disagreement across different physicians happen in prescribing cancer 

diagnostic tests and treatments (Bynum, Song, & Fisher, 2010), pediatric services (Sorum et al., 

2002), and psychiatric services (Way, Allen, Mumpower, Stewart, & Banks, 1998). Practice 

variation for medically similar patients has been argued to be an indicator of sub-optimal 

healthcare system (Fisher et al., 2009).  

Second, on average physicians prescribe more tests than needed, and they incorporate more 

surgeries than necessary (bias toward over utilization of resources). The current discussion 

around the optimal frequency of mammography is an example of when a standard of efficiency 

(as determined by an expert panel) may not be used in practice (Welch, 2010). Similar arguments 

have been made for the excessive frequency of other medical tests and the general over–

utilization of medical resources (Bynum et al., 2010).    

Regional characteristics have been argued to produce variation in medical expenditures (Fisher et 

al., 2009; Sutherland, Fisher, & Skinner, 2009). The Dartmouth atlas of healthcare offers a lot of 

evidence that in some regions there is more health expenditure than others. In these studies, they 

find that only 30% of the excess spending in the highest cost regions can be related to income 

and health and the rest are regional factors. In other words, some regions have a higher level of 

health expenditure due to the cultural, demographic and industrial factors. Such a higher level of 

expenditure does not necessarily result in a better outcome (quality of healthcare services), and 

therefore is an indicator for an inefficient healthcare system (Sutherland et al., 2009). Although 

they offer an explanation for across-region variation, they leave the question of why, in the same 

region, practice variation across physicians can exist, i.e. why doctors that are performing in the 

same region differ significantly (Epstein & Nicholson, 2009). 

Besides patients’ preferences and regional factors, two of the most common explanations that are 

offered for sub-optimal medical practices are physicians’ financial incentives and/or their risk 

avoiding behavior. Financial incentives have been argued to be a reason for over–utilizing 

resources. For example fee–for–service models are argued to create more incentives to perform 

more services in contrast to other financial systems (Bodenheimer & Grumbach, 2005). It is 

expected that the financial systems that give more incentives to physicians to overprescribe 
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medical tests and treatments lead to inefficiencies, and the difference in financial systems and 

physicians’ personal financial interests cause practice variation.  

Non-financial reasons are also offered to explain the sources of sub-optimal behaviors. One of 

the common explanations for practice variation is the physician-specific factors such as risk 

aversion. These factors are known to persist over time, and have been argued to be difficult to 

measure outside of the laboratory (Epstein & Nicholson, 2009). For example, one way to avoid 

any risk of making a wrong decision is to prescribe medical tests for a larger population of 

patients. In such cases, physicians who are more risk averse would prescribe more tests. 

Furthermore, uncertainties have been argued to contribute to imperfect decisions and 

disagreements across doctors. Uncertainties can make it difficult to come up with a consistent 

decision, and it can result in more risk aversion. For example, in a high uncertain situation, 

higher risk aversion can lead to more defensive practices through abundant prescription of 

medical tests.   

The Current Study  

Physicians’ decision models can be affected by observing the result of their past decisions. In 

psychology, such a learning process is referred as experiential learning and exists in many 

natural settings (Cyert & March, 1963; Levitt & March, 1988; Nelson & Winter, 1982). 

Although outcome feedback in general can help people to learn, there is a lot of other evidence 

that unclear, asymmetric, and delayed feedback can lead to sub-optimal decisions rather than the 

best possible decisions (Denrell & March, 2001; Elwin, Juslin, Olsson, & Enkvist, 2007; Fischer 

& Budescu, 2005; Ghaffarzadegan & Stewart, 2011a, 2011b; Huber, 1991; Lant, 1992; Levinthal 

& March, 1993; Miner & Mezias, 1996; Rahmandad, 2008; Rahmandad, Repenning, & Sterman, 

2009; Stewart, Mumpower, & Holzworth, 2011). 

This study offers a new explanation for practice variation beyond the current arguments. 

Controlling for most of the already discussed factors in the literature, we argue that the 

suboptimal medical practices in the form of heterogeneity and bias can appear through daily 

practices due to the characteristics of medical tasks. We hypothesize that outcome feedback, the 

process of judging effectiveness of different styles of practice, and the process of experience 

accumulation when combined with environmental uncertainties lead to heterogeneity in medical 

practice and bias toward overutilization of defensive practices. Through a simulation experiment, 

we show that for (mathematically) similar physicians visiting a similar population of patients, 

bias and variation emerge as physicians practice, receive information, and gain experience. In 

such cases, it is not necessary to assume different doctors have different financial incentives and 

preferences, or different personality traits. Instead, our findings indicate that sub-optimal 

decisions in the form of bias and variation can emerge as a result of task characteristics and daily 

practices. A preliminary validation of the results is achieved by comparing them with the data 

from cesarean section surgery in the states of New York and Florida. In the next sections, we 

review the case, the model, and simulation runs. 
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2. SUB–OPTIMALITY ACORSS OBSTETRICIANS  

There are several reasons for obstetrics to be an important case of sub-optimal decisions in 

medicine. Obstetrics is prone to suboptimal decisions in the forms of bias and variation in 

practice. Cesarean section surgery has been argued to be over-performed (in 2007, 31.8% of 

birth cases in US (Hamilton, Martin, & Ventura, 2009)), and in many cases for nonmedical 

reasons (O'Callaghan, 2010). Patients get admitted to c-section surgery either through a pre-

scheduled process where their doctor suggests the surgery before the due date, or during the 

vaginal delivery when the doctor decides to switch to a c-section surgery as a result of a new 

diagnosis. In additions to the costs of surgery and longer stays in hospitals, cesarean section 

surgery can cause more risks for healthy mothers and babies (O'Callaghan, 2010). While it is 

difficult to find optimal c-section rate, the 31.8% rate in US is much higher than the rate 

suggested by the World Health Organizations for the developed countries, i.e., 10-15% (World 

Health Organization, 1985).  

In addition, it is found that physicians differ in their tendency to schedule a cesarean section 

surgery. The observation has been robust in many studies that control for patients’ health status 

with different indicators showing that variation is more a practice style issue. Epstein and 

Nicholson (2009) investigate variation in cesarean surgery rate in New York and Florida. 

Controlling for patients’ risk factors, they show that within and across regions there is a 

considerable variation in caesarean section surgeries and some physicians are more inclined to 

conduct surgery than others. They show that variation within a region is two times more than 

variation across regions. They estimate the standard deviation of the distribution to be 6.5 

percentage points. They also find that in 24 percent of the cases, the physicians’ risk adjusted c-

section rate is statistically different from the regional mean at the five percent level. This is in 

contrast to many other studies that claim regional differences are the main causes of variation in 

practice. Interestingly, the variation in the style of practice persists over time and they claim that 

physicians do not converge to a community standard.  

An obstetrician may perform more than 100 surgeries a year and one may expect that through 

these practices, she should learn about optimal decisions and make more accurate judgments 

about her patients. However, there are many complexities in the obstetric practices which make it 

difficult to learn.  

One of the major sources of complexities is about the way that an obstetrician observes her 

decision outcome and the way the outcome is interpreted. In fact, in the context of obstetrics 

outcome feedback is asymmetric and contingent upon the decision, what is usually referred as 

conditional feedback in the literature of behavioral decision making. Let’s assume that patients 

can be categorized into two groups, the ones with higher health risks that should go under c-

section surgeries and the ones with lower risks that can deliver through vaginal birth. A doctor is 

not necessarily able to differentiate patients based on their true status, but she makes a judgment 

based on available data and she might make a wrong decision.  

Based on an obstetrician’s decision, which can be to conduct a vaginal birth or a c-section 

surgery, four decision outcomes as shown in Table 1 can happen which are true positive, false 

positive, true negative, and false negative. In addition, as shown in the table, outcome feedback 
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in these four conditions is not similar. In the case of vaginal birth when the decision is a false 

negative, a doctor can observe her decision result during the practice and may even change her 

decision and conduct a c-section surgery for a patient that is in labor. But under false positive 

decisions, when a surgery is scheduled, c-section surgery will be conducted any way, and there is 

little clear outcome feedback. In sum, an immediate and clearer feedback exists on vaginal birth, 

but in c-section surgery, a high portion of poor outcomes will not be observed and may be 

attributed to patients’ health risks. 

  Obstetrician’s initial decision 
  Vaginal birth 

(clearer feedback) 

C-section surgery 

(less feedback) 

 

Patients that 

should have 

c-section 

(High risk 

patients)   

 

False negative 

 

In most cases, the obstetrician 

will observe the decision outcome 

immediately and sometimes may 

change the decision to a c-section 

surgery 

 

True positive 

 

A correct decision. If the decision 

is performed well, it should have 

a proper outcome. 

 

 

 

 

True status 

of patient 

 

Patients that 

should have 

Vaginal birth 

(Low risk 

patients)   

  

True negative 

 

A correct decision. If the decision 

is performed well, it should have 

a proper outcome. 

 

False positive 

 

An unnecessary surgery with 

possible side effects. However, 

feedback is unclear, delayed and 

can be attributed to other factors 

than a wrong decision. 

Table 1: Four possible outcomes for an obstetrician’s decision about vaginal birth vs. c-section surgery 

for different patients 

Table 1 represents four different decision outcomes and conditionality of outcome feedback in 

the context of obstetrics. Feedback asymmetries exist in many other medical contexts. In the 

following, we focus on the cesarean section surgery as our case for modeling to make more sense 

of different concepts and variables in the model. We will later discuss how a general theory of 

practice variation can be developed based on the lessons from this modeling practice.  

4. MODELLING 

4.1. Conceptual model 

Our unit of analysis is a physician.
1
 An overview of the conceptual model is depicted in Figure 1.  

                                                 
1
 Although in many cases aggregation is encouraged, here, we are interested in the “distribution” of physicians to 

study practice variation, and prefer a disaggregated model of each physician. But the model belongs to the system 

dynamics modeling thread as it incorporates feedback-loops. For more information on the proper level of 

aggregation, see (Ghaffarzadegan, Lyneis, & Richardson, 2011; Rahmandad & Sterman, 2008) 
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The basic logic of the model is as follows. In each time period, a doctor visits a patient with a 

level of health risk and obtains information about the patient. Then the doctor compares the 

information with her decision threshold to perform a c-section. If the perceived risk is higher 

than the threshold, the doctor makes and performs a c-section decision, otherwise a vaginal 

delivery decision. The practice results in practice outcome. The outcome depends on how good 

the doctor’s decision was for this specific patient, and how well the surgery was performed. 

Then, through a specific form of outcome feedback that was explained in Table 1, the doctor 

interprets the result of her decision. Outcome feedback is more available on vaginal delivery 

than c-section. Once the result is interpreted, if the perceived result is not good enough, the 

doctor tries to learn and correct her threshold. Through the whole process, the doctor 

accumulates experience of vaginal birth and c-section surgery, which in turn affects her skill of 

performing deliveries.  

 

Figure 1: A simplified causal diagram of the medical practice model for obstetrics practice for a single 

obstetrician 

4.2. Model Formulation  

The depicted conceptual model in Figure 1 is formulated in three steps: decision making process 

(in the conceptual model, from decision threshold to decision), decision payoff (from decision to 

experience and practice outcome), and learning process (from practice outcome to decision 

threshold). 

4.2.1. Decision Making Process 

Environment (e.g., patient decision making and preferences, financial 

structures, culture, other doctors, organizational factors, uncertainties) 

A physician's cognition 

Decision 

Threshold 

Information 

about Patient 

Decision 

(C-section Vs. 

Vaginal) 

Practice 

Outcome 

Interpretation of 

Practice Outcome 

 Experience 

Feedback 

availability 
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Decisions to perform a surgery are assumed to be based on information obtained from a patient. 

A physician decides to perform a c-section surgery if she diagnoses the level of risk to be high 

enough. Equation 1 represents this decision making principle. For each doctor, the model 

considers a threshold for performing c-section, and if the doctor perceives her patient’s health 

risk to be higher than the threshold, she makes a c-section decision. In Equation 1, decision = 1 

represents a c-section decision and zero represents a vaginal delivery decision. 

 Threshold Risk Health  Observed if              0 Decision <=
 

 Threshold Risk Health  Observed if               1 Decision ≥=  

          Equation 1 

Observed Health Risk is a physician’s observation of a patient’s health risk. Equation 2 

represents the variable. We assume a normally distributed random error in diagnosis, ε , with the 

mean of 0, that is no systematic bias in observation, and the standard deviation of ErrStdev.  

ε+= RiskHealth RiskHealth  Observed      Equation 2 

Health risk represents patients’ health risk normally distributed between 0 and 1, with the mean 

of HRMean and the standard deviation of HRStdev. Health risk =1 represents the worst health 

risk condition. 

4.2.2. Decision payoff  

As stated, in our model there are two alternatives for a doctor on each case: to perform a c-

section or to perform a vaginal delivery. The outcome of the practice can depend on many 

factors, two of the most important ones are a) the decision match (i.e., how a decision for a 

patient matches that specific patient’s health risk), and b) how well the decision was performed 

by the physician (i.e., a physician’s skill in performing the decision).  

MatchDecision  ofEffect Experience sDoctor' ofEffect   Outcome Normal  Outcome Practice ××=
 

         Equation 3 

For the effect of Experience we use the learning curve idea and formulate it as shown in 

Equation 4. We consider two independent types of experience: experience of vaginal delivery 

(Experience0) and experience of c-section (Experience1). 

α)
Exp Normal

Experience
( Experience sDoctor' ofEffect i=

  
10 ≤≤ α .

  Equation 4 

where i is equal to 0 for vaginal delivery and is equal to 1 for c-section. α is the sensitivity of 

practice outcome to experience and is between 0 (no effect from experience on practice outcome) 

and 1. The effect of decision match is a function of both decision and the level of health as 

shown in Equation 5, 

)riskhealth  ,f(Decision  Match Decision  ofEffect =
     Equation 5 
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where f should be defined in a way that f(0, y) represents how proper a vaginal delivery decision 

is for a patient with the health risk of y, and f(1, y) represents how proper a c-section surgery is 

for a patient with the health risk of y. We expect that a vaginal delivery decision to be more 

appropriate for the lower levels of health risk, and a c-section surgery to be more appropriate for 

the higher level of health risk. In other words, for Decision=0 we have 0<
∂

∂

y

f
, and for Decision 

=1 we have 0>
∂

∂

y

f
. We assume β)1(),( yxyxf −−= , where  β is a parameter representing the 

sensitivity of practice outcome to decision match and is between 0 (no effect from decision 

match) and 1.  

Finally, physicians gain experience as they practice. We assume they accumulate experience as 

they perform the relevant decision, and they forget with the rate of (1/Time to forget). Equations 

6a and 6b represent experience and skill in our model. 

forget  toTime

Experience
 decision  Experience 1

1 −=∆
                 

 Equation 6a 

forget  toTime

Experience
 decision)-(1  Experience 0

0 −=∆
                 

 Equation 6b 

4.2.3. Learning Process 

We assume, when feedback is available, physicians respond to the results and try to correct their 

decision threshold. In our model, we assume under vaginal delivery, feedback is provided 

p(Feedback Availability=1)=1, but under c-section, only very few times feedback is provided. 

Mathematically, if a c-section surgery is performed we have p(Feedback Availability =1)=q < 1 , 

that is in q portion of c-section surgeries feedback is provided. 

When a physician receives feedback, she compares the result with her desired practice outcome. 

Higher deviation from the desired outcome results in higher threshold adjustment force (Adj 

Force). The change in threshold, therefore, will be in the direction of the observed risk: if she 

sees that her patient with a health risk lower than (resp. higher than) her threshold did not 

perform well under vaginal delivery (resp. c-section), the physician understands that her 

threshold was too high (resp. low), and for next patients she should decrease (resp. increase) her 

decision making threshold. Threshold adjustment force (Adj Force) also depends on Normal 

Adjustment Force (Normal Adj Force), representing one’s normal speed of changing threshold. 

)0 Outcome, Practice Outcome Practice (DesiredMax Force Adj Noraml Force Adj −⋅=   

           Equation 7 

Force AdjThreshold)RiskHealth  (Observed  Threshold ⋅−=∆    Equation 8 
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Desired Practice Outcome can be set in different ways. We assume Desired Practice Outcome to 

represent the maximum of one’s average practice outcome and some acceptable norm (Minimum 

Acceptable Outcome).  

Desired Practice Outcome= Max(Average Outcome, Minimum Acceptable Outcome)  

         Equation 9 

Average Outcome is the Moving Average of last two months practices.  

5. SIMULATIONS  

5.1. Base Run 

First, we present the base run of the model. Our time horizon is 30 years, each year 250 

workdays, and our time unit is a workday, and we assume one baby delivery is performed per 

workday (about 5 baby deliveries per week, close to the real average number in the field). The 

model parameterization is reported in Table 2. In short, the parameters are set in a scale that the 

optimal threshold to conduct c-section is on health risk of 0.5, and the distribution of health risk 

among patients is in a way that the optimal c-section rate is 20%. Scaling the parameters is 

hypothetical, qualitatively set to represent a case close to the distribution of c-section surgery in 

the states of New York and Florida in section 2. We will discuss the sensitivity of the results to 

the parameters. 

Parameters Values 

α, sensitivity of practice outcome to experience  0.5 

β, sensitivity of practice outcome to decision match 0.25 

Time to forget 50      workday 

Normal Adj Force 0.01   1/workday 

Minimum Acceptable Outcome 0.5 

Normal Exp 1  

Normal Outcome 1 

q, portion of c-section surgeries where feedback is available 0.05 

HRMean, mean of patients’ health risk 0.3 

HRStdev, standard deviation of patients’ health risk 0.2 

ErrStdev, standard deviation of error in a physicians’ observation 0.1 

 

Table 2: Parameters and functions for the base case simulation 

Figure (2) shows the results for 25 randomly selected doctors, each graph representing one 

doctor. The x-axis is the time horizon, i.e., days of practice, and the y-axis is the threshold to 

make a c-section decision (how much health risk should be perceived to perform a c-section). 

Lower threshold would mean higher percentage of c-section deliveries, of which some would not 

be justified based on true risk. Therefore, each graph on Figure (2) shows how the threshold of a 

doctor changes during her practice. As we mentioned the model is parameterized in a way that 

5/10 is the optimal threshold (a patient whose health risk is below 0.5 is in general better off with 
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vaginal birth, vice versa). All physicians are assumed to start from an identical condition with the 

initial threshold of 5/10.  

As we see the thresholds of the doctors go below the optimal threshold meaning that they 

perform c-sections more frequently than what is set in the model to be optimal. Further, as we 

see in the Figure, threshold to perform a c-section is different across different physicians, and 

they diverge as they practice. In other words there is a variation of c-section threshold.  

 

Figure (2): Threshold dynamics in the base run for 25 random doctors over 30 years of practice (250 

workdays per year) 

We can also look at the cross sectional synthetic data, output of the simulation model. In the real 

world, not all doctors start practicing together. For example, in the year 2011, some doctors are 

at their first year of practice, some at the second, and so on. Figure (3) shows the distribution of 

c-section surgery for 30,000 doctors, and compares that with the optimal threshold.  

25 Doctors

"threshold for c-section"

6

4.5

3

1.5

0
0 1875 3750 5625 7500

Time (Day)

Each line represents one physician – 

All lines together shown disagreement 

(divergence) and bias from optimal 

threshold (i.e. 5/10) 
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0

2.5

5

7.5

10

0 1 2 3 4 5 6 7 8 9 10

optimal threshold

 

Figure (3): distribution of practice threshold and the optimal threshold. 

As we see in Figure (3), the average of the distribution of threshold is smaller than the optimal 

threshold, showing that there is a bias in c-section rate toward performing more c-sections. In 

addition, the figure shows that there is a considerable variation across physicians. While there are 

physicians who set their thresholds below 3 (they perform c-section for patients with the health 

risk of 3/10), some set their thresholds around 5. It is important to mention that all of these 

physicians started from a similar initial condition including medial trainings and visited the same 

population of patients, and what was different across them was just a random seed that was 

influencing their errors and the order of the patients they visited. The distribution has also a 

relatively small peak around 5, as we start the initial condition from threshold = 5/10 and we 

sample from the whole population of the doctors including inexperienced doctors with the initial 

threshold of 5/10.  

Next we report the results from simulating the model for a wider range of parameters. Figures 4a 

to 4f show the results. We test the base run simulation by changing the magnitude of four main 

parameters. First in figures 4a and 4b we change the variation in the society health risk 

(HRSdev) by ±50%. As we see increasing the variation in health risk results in more variation 

and more bias in c-section threshold across doctors. This result is not intuitive as all doctors are 

seeing the same population of patients, but in different order. Therefore, we see variation in 

patients’ health results in variation in practice, even if physicians visit the same population of 

patients with the same average of health risk.  

Figures 4c and 4d show the results for ±50% change in the standard deviation of ε in equation 2 

(ErrStdev). The changes represent different levels of accuracy in physicians’ observation of 

information about their patients (for ErrStdev=0, doctors are accurately observing patients’ 

health risk).  As we see in these figures, more errors result in a larger variation in practice and a 

larger bias. In both conditions, we still observe practice variation and bias. 

In figures 4e and 4f, we change Time to forget by ±50%. As we see, a higher Time to forget 

results in less bias, but more variation. In fact, increasing Time to forget increases the steady 

state value of experience, and increases the effect of skill on practice performance, making the 
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model more sensitive to experience in contrast to decision match. That means performance of a 

decision is relatively more important than a good match between the decision and the patient. In 

both conditions, still we see both practice variation and bias. 

Finally, Figures 4g and 4h test changes in Normal Adjustment Force (NormalAdjForce) by 

±50%. A lower Normal Adjustment Force represents a slower rate of change in threshold, and 

therefore, as we expect less bias and less variation at the end. As we expect, a quicker respond to 

feedback results in more changes in thresholds, and more bias and variation in practice.  

These figures, overall, demonstrate that the base run results are not qualitatively sensitive to the 

parameters, and for a wide range of values for parameters we will still get both bias and variation 

in medical practice as results of experiential learning.  However, the magnitude of bias and 

variation can be different under different scenarios. Therefore, the model demonstrates that bias 

and variation can arise solely from experiential learning and in the absence of financial 

incentives or personality traits. Next we compare the results of the model with the data reported 

in Epstein and Nicholson (2009). 
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HRStdev(-50%)

"threshold for c-section"

6

4.5

3
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(a) HRStdev -50% 

HRStdev(+50%)

"threshold for c-section"

6

4.5

3

1.5

0
0 1875 3750 5625 7500

Time (Day)

 
(b) HRStdev +50% 

ErrStdev(-50%)

"threshold for c-section"

6

5

4

3

2
0 1875 3750 5625 7500

Time (Day)

 
(c) ErrStdev -50% 

ErrStdev(+50%)

"threshold for c-section"

6

4.5

3

1.5

0
0 1875 3750 5625 7500

Time (Day)

 
(c) ErrStdev +50% 

TimeToForget(-50%)

"threshold for c-section"

6

4.5

3

1.5

0
0 1875 3750 5625 7500

Time (Day)

 
(e) Time to forget -50% 

TimeToForget(+50%)

"threshold for c-section"

6

4.5

3

1.5

0
0 1875 3750 5625 7500

Time (Day)

 
(f) Time to forget +50% 

NormalAdjForce(-50%)

"threshold for c-section"

6

5

4

3

2
0 1875 3750 5625 7500

Time (Day)

 
(g) Normal Adj Force -50% 

NormalAdjForce(+50%)

"threshold for c-section"

6

4.5

3

1.5

0
0 1875 3750 5625 7500

Time (Day)

 
(h) Normal Adj Force +50% 

 

Figure 4: Testing the base run simulation for a range of change in parameters: HRSdev±50%, 

ErrStdev ±50%, TimeToForget±50%, and NormalAdjForce ±50%. 
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5.2. A Comparison of the Model Results with the Data 

As discussed in section 2, Epstein and Nicholson (2009) find a considerable level of practice 

variation in the states of New York and Florida. A comparison of our synthetic data from 

simulation with their data, although a weak test, can be interesting. We calculate the c-section 

rate for each data point and find the deviation from the mean for each data point, in a same way 

that is done in Epstein and Nicholson (2009). The results are shown in Figure 5. The resulted 

distribution is similar to their result (Figure 3a, in Epstein and Nicholson (2009, p. 1134)), and 

has a 10.5 percentage point standard deviation fairly higher than Epstein and Nicholson’s 

observation (6.5 percentage point).  

0

2

4

6

8

10

-3.0 -2.0 -1.1 -0.1 0.8 1.8 2.7

Deviation from Mean

D
e

n
s

it
y

 

Figure (5): Distribution of deviation of c-section rate from mean as an effort to replicate 

Epstein and Nicholson’s (2009) empirical finding. The standard deviation is 10.5 percentage 

points. 

We believe although this practice is a weak test, but still the results are promising, and further 

detailed investigations can prove useful. There are a few parameters that need to be calibrated, 

and in such a case we can get a better fit. For example, the physicians’ confidence on their 

negative decisions was unknown for us, and we used estimations from Elwin et al. (2007). 

Access to the detailed data on practice performance can be helpful. 

5.3. Behavioral Analysis 

We would like to further analyze the results in Figure (2) and find what parts of the structure 

result in practice variation and what parts are contributing to bias. We divide the model into two 

major sub-structures. The first sub-structure, which we call the skill sub-structure consists the 

model excluding the conditionality of feedback (providing full feedback after any decision 

whether it is vaginal or c-section surgery, i.e. q=1). The second sub-structure, which we call the 
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conditional feedback sub-structure, is the entire model excluding the effects of skill (α=0). These 

experiments can give us a clearer explanation about “why” we have the results shown in Figures 

(2-5) (bias and variation), and what are the effects of each sub-structure on the final behavior.  

Effects of Skill 

First, we focus on the effects of skill, and assume a full feedback condition. To conduct this 

experiment, we provide feedback to physicians, after any kind of practice, whether it is a c-

section or a vaginal birth.
2
 Figure (6) shows different simulation runs for different random seeds. 

Each line represents one doctor’s decision threshold for performing c-section. The deviation 

shows that physicians are diverging as they gain more experience and some are more likely to 

perform c-section surgery than others. The graph shows that the stated rules are adequate to 

generate disagreements across doctors, even if they have similar financial incentives and similar 

initial training and even if clear feedback is provided after practice.  

25 doctors

"threshold for c-section"

10

7.5

5

2.5

0
0 1875 3750 5625 7500

Time (Day)

 

Figure (6): Dynamics of decision threshold for performing c-section for different doctors when feedback 

is complete, but performance depends on experience and skill. 

The simulated doctors’ disagreement on what is the best decision for a single patient is due to the 

effect of past decisions on experience, and the causal connections between experience, 

perception and next decisions. As doctors perform their practice, they gain more experience, 

however in an unbalanced way where some have more experience in c-section and some have 

more experience in vaginal delivery. The unbalanced experience affects their performance, their 

perception of how effective each style can be, and their next decisions.   

                                                 

2
 All parameters are the same as base run, but q=1 (full feedback), and HRMean=0.5. The latter change provides 

equal rate of experience accumulation when threshold is equal to 5/10. 
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It is also important to mention that the skill substructure does not create bias in practice. As we 

see in Figure 6 the average of the distribution (the thicker line close to threshold = 5) is roughly 

around the optimal threshold.  

Effects of Conditionality of Feedback 

Now we focus on the second substructure and investigate the effect of conditionality in feedback 

on the final results.
3
 As it is shown in Figure 7, when skill has no effect on the physicians’ 

performance, their threshold do not diverge but decreases as they perform more practices, 

creating bias toward more c-section surgeries (i.e., lower threshold for c-section surgery). 
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Figure (7): Dynamics of decision threshold for performing c-section for different doctors under 

the conditional feedback situation, controlled for the effects of experience and skill.  

In summery, the analysis shows that the skill sub-structure results in practice variation and the 

conditional feedback sub-structure results in bias in practice. Next we examine the model for a 

more generic case.  

5. 4. Simulation for a Generic Case 

C-section is an illustrative example of bias and variation in medical decision making because like 

in many other domains, decisions are repetitive (frequent cases of patients), skill and experience 

are important on how medical decisions are performed, and there is an unbalanced outcome 

feedback.  Many other medical domains have similar characteristics. However, in some domains 

there can be more (or less) elasticity to skill and some domains may provide more (or less) 

balanced outcome feedback. Having the mathematical model, we can generalize the arguments 

by changing the parameters and investigating the magnitude of bias and variation in different 

domains. 

                                                 
3
 All parameters are the same as base run, but α=0 (no effect from experience on decision outcome). 
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We define 6 ( 23× ) different hypothetical medical domains: 3 conditions on the sensitivity of 

practice outcome to experience (α= 0, 0.5, 1) times 2 feedback conditions (full feedback (FF), 

and conditional feedback (CF)). Although we have set these conditions hypothetically, they can 

represent different domains of medicine. For example, the condition of α=0 and CF can represent 

anti-biotic perception for otitis media in pediatric services. While a doctor should make a proper 

diagnosis and decision in prescribing anti-biotic, after the decision is made (the pills are 

prescribed) the doctor’s skill has no effect on how anti-biotic pills affect the patient. In contrast, 

in a c-section surgery a doctor should make a good decision, but also should perform it well 

where her skill to perform a c-section surgery comes to play. Another example, can be in dental 

health and the practice of root channel, where a doctor’s skill in performing a root channel is 

important (larger α), and feedback is conditional (usually a teeth with a removed nerve will not 

ache, even if the decision to remove the nerve was unnecessary). Practices that require frequent 

follow-ups and can control for the effects of decision can present a full feedback condition. For 

example a heart surgery can be considered as a case of a large α but a full feedback condition 

(FF), usually a physician will know if the surgery was performed well or not due to several next 

check-ups.  

We simulated the model under the described 6 conditions (3 values of α times 2 feedback 

conditions). In each condition we have 1000 agents (physicians). We then calculate the 

magnitude of bias and variation in each of those conditions. Figure 8 compares the magnitude of 

bias and variation across those 6 conditions.   
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Figure (8): Bias and variation under 6 different conditions of medical practices: 3 different 

values for sensitivity of practice outcome to experience (α) times 2 feedback conditions (CF: 

conditional feedback, FF: full feedback). 

Note: As we see, some conditions have more variation than others and some have more bias. For 

example the bias in practice is greater for (α=0.5, CF) than for (α=0.5, FF), while the latter has 

more practice variation.  
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Figure 8 shows that the magnitude of bias and variation under these conditions vary. In this 

figure, the x-axis is the magnitude of variation and the y-axis is magnitude of bias, and each 

point represents one of the 6 hypothetical domains of medicine. So, if a domain is closer to the 

origin of the graph (0,0), then there is less bias and variation there. For example the bias in 

practice is greater for (α=0.5, conditional feedback) than for (α=0.5, full feedback), while the 

latter shows more practice variation. The graph shows that under the full feedback conditions, 

larger elasticity to experience (α) results in larger practice variation. Interestingly, in a constant 

level of α, providing full feedback decreases bias but, in general, results in more variation 

(compare α=1 and CF with α=1 and FF).  An empirical investigation of the findings can be 

interesting.  

6. CONCLUSION 

We develop a model of medical practice specifically tailored for obstetrics to study bias and 

variation in the practice of baby delivery when physicians should make a decision between a 

vaginal delivery and a c-section surgery for each of their patients. While the most common 

explanations for practice variation and bias are linked to patients’ characteristics, regional 

characteristics, physicians’ personality traits (e.g., the level of risk aversion) or their financial 

incentives, we offer a new theory of how medical task characteristics especially outcome 

feedback characteristics and the elasticity of the results to physicians’ skills can result in practice 

variation and bias.  

Our simulation model controlled for all of the common previous explanations offered in the 

literature and still created practice variation and bias. In our model, we do not impose any 

regional variation to our agents, and the personality characteristics and financial incentives of the 

agents are the same. In addition, doctors are visiting similar populations of patients with the 

same level of health risk. Therefore, the simulation results show that practice variation and bias 

does not have to be caused by patients’ characteristics, regional characteristics, and physicians’ 

personality traits and financial incentives, but can endogenously emerge through daily practices 

even across physicians with totally similar characteristics. In other words, the structure of 

medical tasks, and specifically physician’s exposure to outcome feedback, and the experience 

accumulation processes through repetitive medical decisions can contribute to practice variation 

and bias.   

We also analyzed the final results of the model through controlling different sub-structure of the 

model. The experiments revealed that accumulation of experience and skill can result in variation 

if one’s performance is highly depended on one’s skill. We also showed that the conditional 

feedback sub-structure drives bias in practice through forcing physicians to perform a kind of 

practice for which they receive less negative feedback. Further analyses revealed that the 

interactions of skill and conditionality of feedback exacerbate the bias, leading people to 

accumulate more experience on the kind of practice for which there is less negative feedback.  

A preliminary validation of the results is achieved by comparing projected results with the actual 

data from cesarean section surgery in the states of New York and Florida. More empirical 

investigation is needed to test this dynamic theory. 
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The study contributes to the literatures of decision and policy sciences and medical decision 

making on different levels. First the study develops a new explanation for practice variation and 

bias in medicine. The new explanation is structurally different from the previous theories of 

practice variation and, therefore, has different policy implications. It is important to mention that 

this study does not reject any previous explanations offered for practice variation and bias in 

medicine, but it develops a new coherent theory of sub-optimal decisions in medicine. In other 

words, the theory is a new layer to existing understandings of the factors that contribute to bias 

and variation in medicine. This new theory needs to be empirically investigated. Second, our 

study is one of the first ones to apply the concepts of experiential learning into the studies of 

medical decision making. We believe such an approach is important as doctors perform 

repetitive tasks where for some portion of them they receive incomplete feedback. Third, the 

study has methodological contributions as it is the only study which has modeled physicians’ 

decision making processes in a feedback-loop based approach. The model can be applied to a 

wide range of medical practices and can be used as a platform for further empirical 

investigations.  

In short, we argue that practice variation and bias can dynamically emerge as physicians perform 

practices due to the learning characteristics of medical tasks. Such a structure can result in sub-

optimal practices even if the financial incentives, the personality characteristics of the doctors, 

the regional characteristics, and the population of patients are totally similar.  
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