
SENSITIVITY ANALYSIS OF OSCILLATORY

SYSTEM DYNAMICS MODELS

Mustafa Hekimo§lu

Industrial Engineering Department

Bogazici University

34342 Bebek Istanbul Turkey

mustafa.hekimoglu@boun.edu.tr

Abstract

Sensitivity analysis of oscillatory models is very di�cult with standard

statistical methods, such as correlation-based screening. On the other hand,

behavior pattern sensitivity analysis, which focuses on the sensitivity of pat-

tern characteristics such as equilibrium level or oscillation amplitude, is ap-

propriate for oscillatory models. This approach also provides insights for

controlling the pattern characteristics of oscillations. In this article an anal-

ysis procedure is suggested for pattern sensitivity of system dynamics models

and this procedure is applied to the inventory workforce model described by

Sterman(2000), using regression method.

Key Words: Behavior pattern sensitivity, sensitivity analysis, oscillatory

models, regression

1 Introduction

In simulation studies, various types of model information cannot be estimated pre-
cisely because of impossibilities or insu�cient resources. Therefore, modelers make
assumptions that are subject to uncertainty (Sterman, 2000). E�ects of changes in
assumed information on simulation models can be explored by sensitivity analysis
which is necessary for reliability of results.

Input sensitivity of simulation results can be de�ned as the e�ect of pertur-
bation in model input on simulation output, other things being equal (Saltelli et
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al., 2000). This de�nition of sensitivity is mostly appropriate for uni-variate sen-
sitivity analysis applications in which input values are changed one-at-a time .
On the other hand, if simultaneous changes of parameters are important, input
sensitivity should be de�ned as variability in output that can "be apportioned to
the model inputs" (Saltelli et al., 2000). In other words, model parameters, which
are the most capable of explaining output variability, are the highest sensitivity
parameters.

Di�erent types of sensitivities can be de�ned according to the purpose of the
simulation model. Namely, numerical sensitivity, behavior mode sensitivity and
policy sensitivity are di�erent sensitivity types for simulation models. Particu-
larly, numerical sensitivity is relevant for models that deal with physical phenom-
ena and working with great numerical precision (Sterman, 2000). On the other
hand, behavior mode sensitivity focuses on behavior mode changes, while policy
sensitivity analyzes variations in optimal policy when some of the model assump-
tions are changed. Furthermore, one more sensitivity type, called behavior pattern
sensitivity (Hekimoglu, Barlas, 2010), should be added to this list to cover the
sensitivity of speci�c behavior patterns to model inputs. Especially for system dy-
namics models, the researcher should analyze the e�ect of parameter uncertainty
on behavior pattern measures, such as equilibrium level or oscillation period and
amplitude, in order to make comprehensive sensitivity analysis.

In system dynamics literature, several researchers consider the sensitivity anal-
ysis of simulation models in their studies. Powell et al. (2005) provide a generic
seven-step sensitivity analysis procedure and present the analysis of an infectious
disease model. Ford and Flynn (2005) suggest Pearson correlation coe�cients for
quick sensitivity analysis of system dynamics models, called screening . They cal-
culate correlation coe�cients between parameter and variable values at di�erent
time points. Nevertheless, the authors admit that screening method is useless for
oscillatory models because of di�culty of correlation analysis for oscillatory pat-
terns. Therefore, special characteristics of oscillations should be analyzed rather
than the variable values at time points. Moizer et al. (2001) and Ozbas et al.
(2008) both consider the pattern measures for sensitivity analysis of oscillatory
models. Moizer et al. (2001) suggest a uni-variate sensitivity analysis procedure
while Ozbas et al. (2008) present the sensitivity analysis of a real estate price
model using behavior pattern measures.

In this study, sensitivity analysis procedure of Powell et al. (2005) is modi�ed
for behavior pattern sensitivity of oscillatory models. Moreover, behavior measures
and their estimation procedures are discussed and multi-variate sensitivity analysis
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of an oscillatory system dynamics model is conducted. Behavior pattern sensitivity
procedure is discussed in section 2 and the application of the procedure to inventory
workforce model is given in section 3.

2 Pattern Sensitivity of Oscillatory Models

Analysis of oscillatory system dynamics models requires special approaches because
of nonlinear cyclic behavior patterns. Particularly, sensitivity analysis using values
of variables at time points is impossible for oscillations (Ford and Flynn, 2005).
So, analysts should consider pattern sensitivity analysis for which we modify the
sensitivity analysis procedure of Powell et al.(2005). This modi�ed procedure is
given in Figure 1.

Figure 1: Sensitivity Analysis Algorithm for Behavior Pattern Sensitivity

Pattern sensitivity analysis procedure starts with the selection of model pa-
rameters that are subject to uncertainty. In small or medium size models, all
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parameters may be included into the analysis easily. On the other hand in large
models, sensitivity analysis with all parameters may be cumbersome so, analysts
may seek to choose a sub set of parameters. After parameter selection, the fol-
lowing step is identi�cation of parameter distribution functions and ranges for
generating input sample.

Sampling from parameter ranges can be performed by using various strategies,
such as random sampling, strati�ed sampling, latin hypercube sampling (LHS) or
Taguchi methods. Among di�erent sampling strategies, LHS is the most appro-
priate one for the sensitivity analysis of simulation models (McKay et al., 1976).
Furthermore, Clemson et al. (1995) conclude that LHS is e�cient for the cases in
which Taguchi method is "impractical". In this study, LHS is utilized for gener-
ating input sample for sensitivity simulations.

Once sensitivity simulation data is obtained, di�erent types of oscillation pat-
terns should be separated from each other. In literature, there are four oscillation
types, named stable (damping), unstable (growing), limit-cycle and chaotic (Ster-
man, 2000). Behavior pattern measures of each oscillation mode are discussed in
this article except chaos of which the analysis is beyond the scope. The behavior
pattern measures of the damping oscillation, which is the most common oscillatory
pattern (Sterman, 2000), can be listed as follows:

1. Period

2. Maximum Amplitude

3. Amplitude Slope

Period can be de�ned as the distance between two peak points of successive
oscillations (Figure 2). The estimation of this pattern measure can be done either
autocorrelation or spectral density functions. Both estimation procedures are dis-
cussed in great detail in Barlas (1997). Periods of simulation runs are estimated by
using autocorrelation function in Behavior Validity Test Software (BTS)(Barlas,
1997) in this study.

Furthermore, maximum amplitude of damping oscillation pattern is another
important measure of oscillatory behavior. Once a random shock arrives to the
system, a corrective action emerges from the negative feedback loops and system
overshoots (undershoots) its equilibrium because of time delays. So, maximum
amplitude is the initial response of the stable oscillatory system (Figure 2).
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Figure 2: Pattern Measures for Damping Oscillation

Amplitude slope is the last pattern measure that is analyzed in this article. For
damping oscillations, the stability character of oscillations can be represented with
amplitude slope which is the slope of a straight line �t to successive amplitudes
(Figure 2). In particular, high values of amplitude slope indicate more stable sys-
tems while low amplitude slopes imply unstable ones which tend to oscillate longer.
On the other hand in many applications, amplitudes of stable oscillations do not
follow a straight line (See Figure 2). In such cases, the natural logarithm of am-
plitudes should be taken before the calculation of amplitude slope. Log-amplitude
slopes of two di�erent stable oscillations are given in Figure 3.

For growing oscillations, on the other hand, minimum amplitude should be
used instead of maximum amplitude. Speci�cally, maximum amplitude is a func-
tion of simulation time for growing oscillations since these behavior patterns tend
to depart from equilibrium point as time proceeds (Sterman, 2000). Therefore,
minimum amplitude is more appropriate for the analysis of the �rst response of
unstable oscillations. Period and log-amplitude slope measures are useful for the
analysis growing oscillations.

Limit cycle is a special type of unstable oscillation pattern which "the system
follows a speci�c trajectory in state space" (Sterman, 2000). In other words, the
system tends to oscillate with the same amplitude forever. Thus, the height of an
amplitude and period can be used as behavior measure for limit cycles.
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Figure 3: Slopes of Two Di�erent Stable Oscillations

The completion of behavior measure estimation should be followed by statisti-
cal analysis such as regression or correlation. Each analysis technique has pros and
cons at the same time so, the researcher should evaluate all possible procedures
and select the appropriate one for analysis of sensitivity data. Speci�cally, anal-
ysis methods can be classi�ed according to their assumptions on the functional
relationship among dependent and independent variables. For instance, Pearson
correlation coe�cients, given in Equation 1, measure the strength of linear rela-
tionship between dependent (y) and independent (x) variable (Saltelli et al., 2000).

ρ̂xjy =

∑N
i=1(xij − xj)(yi − y)[∑N

i=1 (xij − xj)2
]1/2[∑N

i=1 (yi − y)2
]1/2 (1)

Correlation coe�cients do not provide any information about the functional
relationship between dependent and independent variables. Particularly, zero cor-
relation implies that there is no linear relationship between variables but does not
indicate whether these variables are statistically independent or there is nonlin-
ear relationship. In regression methodology, on the other hand, it is possible to
have information about the appropriateness of linear statistical model with di�er-
ent procedures. Regression model is a mathematical approximation to functional
relationship between dependent and independent variables. For sensitivity analy-
sis purposes, standardized regression coe�cients (Equation 3) point out the most
important independent variable (Saltelli et al., 2000). Furthermore, coe�cient of
determination (Equation 4) of a linear regression model indicates the amount of
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dependent variation explained by the whole regression model.

yi = β0 + β1x1 + β2x2 + . . .+ βkxk + ei (2)

bi =
βiσ̂x
σ̂y

(3)

R2 =

∑m
i (ŷi − y)2∑m
i (yi − y)2

(4)

In these formulations, βi, bi and e represent regression coe�cient, standard-
ized regression coe�cient and residual term respectively. Furthermore, there are
three critical assumptions of regression methodology which are zero expectation,
constant variance and normality of residual terms (Draper and Smith, 1998). Di-
agnoses of these assumptions are usually performed with residual plots and his-
tograms. Speci�cally, the residual terms should be randomly distributed in scatter
plot and their histogram should be bell-shaped. If both of these hold, the linear re-
gression model is accepted as an appropriate approximation to the true functional
relationship. Otherwise, one should suspect about nonlinear relationship among
dependent and independent variables. In this study, the scatter plots of regression
analysis are included after each regression model.

If there is no prior knowledge about the relationship between the dependent
and independent variables, analysts should start with methods assuming linearity
since these methods are simpler and more intuitive. If the violation of linearity
assumption is detected, such as in Figure 8, the analysis can be extended with
more general methods that cover the nonlinear functional relationship (Kleijnen
and Helton, 1999b).

Nonlinear relationship between dependent and independent variable can be an-
alyzed in many di�erent ways. Adding interaction terms to the regression model,
rank transformation or transformation on regression variables are only some exam-
ples of possible approaches. Kleijnen and Helton (1999a) provide some statistical
analysis methods that can be used for sensitivity analysis of simulation models.
In this study, on the other hand, Box-Cox transformation on dependent variable
(Draper and Smith, 1998) and rank transformation (Saltelli et al., 2000) are uti-
lized. Rank transformation is concluded to be ine�ective for dealing with nonlinear
relationship while Box-Cox transformation gives promising results. Only results
of Box-Cox method are presented in this article due to the space constraints.

To sum up, the sensitivity analysis procedure by Powell et al. (2005) is mod-
i�ed for behavior pattern sensitivity analysis. Speci�cally, separation of di�erent
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modes and estimation of pattern measures are added to sensitivity analysis pro-
cedure before the data analysis process. Moreover, the ful�llment of regression
assumptions must be checked before the evaluation of analysis results. If any
nonlinear relationship is detected, one must extend the statistical analysis using
various approaches. In the following section, the application of sensitivity analy-
sis procedure to a medium size oscillatory model, called the inventory-workforce
model, is presented.

3 Sensitivity Analysis of InventoryWorkforce Model

Manufacturing process is a typical example for supply line structures. Supply
line is simply a material �ow (Yasarcan, 2003), which includes negative feedback
loops and time delays. Sterman (2000) models two interacting supply lines of a
manufacturing �rm, which are production and labor management. Production
subsystem gives the required number of employee in order to satisfy incoming
demand while amount of workforce determines production rate. Both of these
subsystems include supply line structures that consist of negative feedback loops
and time delays.

Figure 4: Production Sector of Inventory Workforce Model (Sterman, 2000)

Production sector (Figure 4) of the model consists of inventory,work in pro-
cess inventory (WIP),expected order rate stocks. Finished goods are shipped from
inventory once demand arrives to the manufacturing �rm then, new production
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order is opened according to the demand expectation which is represented with
another stock, called expected order rate, in this model. Furthermore,desired pro-
duction rate a�ects not only production start rate, but also desired labor in labor
sector of the model.

Figure 5: Labor Sector of Inventory Workforce Model (Sterman, 2000)

Labor sector (Figure 5) consists of two stocks, named labor and vacancies , and
feedback loops that aim to keep these stocks at their desired levels. Once new labor
requirement emerges, its position, responsibilities and duties are de�ned. Then a
new vacancy is created and announced for this employment. All of these processes
cause time lags in hiring process so, they represented with vacancies stock. Further
explanation about the structure of this model is given in Sterman (2000). In this
article, sensitivity analysis of inventory workforce model will be discussed using
behavior pattern measures.

Inventory workforce model includes two interacting supply lines so, model vari-
ables are prone to oscillate even with small perturbations. In order to analyze the
sensitivity of oscillations in inventory variable, customer order rate (Figure 4), is
perturbed arti�cially with STEP function in Vensim (Figure 6). Sensitivity simu-
lations are run with 14 parameters of which distribution ragnes and functions are
given in Table 1.

200 simulation runs, including 193 damping oscillations and 7 limit cycles, are
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Figure 6: Inventory Stock Behavior After External Perturbation

exported to an Excel spreadsheet. Due to degrees of freedom constraint, analysis
of limit cycles are omitted and only stable oscillations are subject to sensitivity
analysis using regression method.

As discussed above, linear regression is a useful tool for apportioning the output
variability to model parameters. Moreover, linearity assumption of this method
can be checked with residual scatter plots easily. If this assumption is not satis�ed,
Box-Cox transformation is applied on dependent variable. Behavior pattern sensi-
tivity of inventory workforce model is analyzed with this approach in the following
sections.

3.1 Period of Damping Oscillations

Oscillatory systems overshoots (undershoots) the equilibrium level repeatedly and
the duration between two successive peaks (troughs) is de�ned as period. Sensi-
tivity of periods to the model parameters indicates potential leverage points for
controlling oscillatory behavior. As stated above, sensitivity analysis is conducted
with regression of which the summary statistics are given in Table 2.

Regression analysis indicates that �rst order model manage to explain %90 of
the variability in oscillation period (See R2 at Table 2). In other words, most of
output variability is explained by the model parameters. Moreover, the residu-
als of regression model (Figure 7) do not follow any non-random pattern. Both
of these indicators point out that �rst order model is appropriate for oscillation
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Table 1: Parameters of Inventory Workforce Model

Parameter Name Actual Value Min Value Max Value Distribution

1 Productivity 0.25 0.2 0.3 Uniform

2 WIP Adjustment Time 6 4.8 7.2 Uniform

3 Manufacturing Cycle Time 8 6.4 9.6 Uniform

4 Inventory Adjustment Time 12 9.6 14.4 Uniform

5 Minimum Order Processing Time 2 1.6 2.4 Uniform

6 Safety Stock Coverage 2 1.6 2.4 Uniform

7 Time to Average Order Rate 8 6.4 9.6 Uniform

8 Vacancy Cancellation Time 2 1.6 2.4 Uniform

9 Average Layo� Time 8 6.4 9.6 Uniform

10 Standard Workweek 40 32 48 Uniform

11 Average Duration of Employment 100 80 120 Uniform

12 Average Time to Fill Vacancies 8 6.4 9.6 Uniform

13 Labor Adjustment Time 13 10.4 15.6 Uniform

14 Vacancy Adjustment Time 4 3.2 4.8 Uniform

Table 2: Summary of Regression Model for Oscillation Period

Model Summary
R Square Adjusted R Square

0.901 0.894

period. So, parameter sensitivity of oscillation period can be evaluated using this
regression model of which the coe�cients are given in Table 3.

Like other regression results in this article, regressors are ordered according to
the magnitude of standardized regression coe�cients in Table 3. Eight variables
are concluded insigni�cant and they are removed from the regression equation by
stepwise regression algorithm of SPSS which use 0.05 and 0.10 as threshold values
for regressor entry and removal.

According to the results of regression analysis; standard workweek, which rep-
resents the work day expectation of production managers, is the most e�cient pa-
rameter for oscillation period. (Figure 5), Furthermore, negative sign of regression
coe�cient of this parameter implies that higher values of workweek expectations
create shorter period oscillations which probably have more devastating e�ect on
manufacturing �rms.

Furthermore, labor adjustment time (Figure 5) is the second important param-
eter for oscillation period. This parameter indicates the responsiveness of labor
manager to the changes in required workforce level of the �rm. Additionally,work
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Figure 7: Residual Plot of Regression Model for Oscillation Period

Table 3: Coe�cients of Regression Model for Oscillation Period

Coe�cients

Regression Coe�cients
t value Sig.

Model beta Std. Error Std. Coef (b)

StandardWorkweek -.855 .038 -.531 -22.576 .000

LaborAdjstTime 1.616 .073 .522 22.192 .000

WIPAdjst 2.877 .158 .429 18.176 .000

SafetyStockCoverage 3.656 .486 .182 7.524 .000

MinimumOrderProcssing -1.444 .468 -.072 -3.087 .002

VacancyAdjstTime .588 .238 .058 2.465 .015

in process adjustment time and safety stock coverage parameters (Figure 4) are the
other important factors for oscillation period.

Oscillation period is the pattern measure that indicates the pace of cyclic be-
havior. Longer period oscillations overshoot its equilibrium less frequently while
shorter period ones rapidly repeat overshooting (undershooting). In fact, for many
biological and socio-economic systems longer period oscillations are more prefer-
able since it is easier to tolerate the e�ects of such kind of behavior (Hekimoglu and
Barlas, 2010). The sensitivity analysis of period indicates that standard workweek
and labor adjustment time are e�cient points for this measure of oscillatory inven-
tory behavior. The second measure of damping oscillation is maximum amplitude
which is analyzed in section 3.2.
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3.2 Maximum Amplitude of Damping Oscillations

Maximum amplitude is the �rst response to the incoming shock for stable oscilla-
tory systems. In other words, it is the amount of �rst overshoot after the arrival
of a perturbation. This behavior measure is an important characteristic of real life
systems in which "noises never disappear" (Sterman, 2000). The summary statis-
tics and residual plots of �rst order regression model used for sensitivity analysis
of maximum amplitude are given in Table 4 and Figure 8. Although R square
statistic is very good, there is an obvious curvature which indicates possible non-
linear relationship between maximum amplitude and model parameters.

Table 4: Summary of Regression Model for Maximum Amplitude

Model Summary

R Square Adjusted R Square

0.939 0.934

Figure 8: Problematic Residual Plot of Regression Model for Maximum Amplitude

Also, linear regression model, which is obtained by stepwise algorithm in SPSS,
is given in Table 5. Stepwise algorithm removes �ve variables since they are in-
signi�cant in regression equation. Like oscillation period,standard workweek and
inventory adjustment time parameters are important for maximum amplitude mea-
sure. Nevertheless, one should treat the results of this model with caution because
of nonlinearity between parameters and maximum amplitude. In order to deal
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with this problem, Box-Cox transformation on dependent variable is utilized using
software R.

Table 5: Coe�cients of First Order Regression Model for Maximum Amplitude

Coe�cients

Regression Coe�cients
t value Sig.

Model beta Std. Error Std. Coef (b)

(Constant) 69911.450 4078.200 17.143 .000

StandardWorkweek -1615.606 45.318 -.658 -35.650 .000

InvntAdjstTime -2227.668 93.923 -.436 -23.718 .000

MnfctrngCycleTime 2302.679 144.653 .300 15.919 .000

SafetyStockCoverage 8693.608 585.886 .283 14.838 .000

Time2AvgOrderRate -1306.676 141.937 -.170 -9.206 .000

LaborAdjstTime 633.702 88.921 .134 7.127 .000

VacancyAdjstTime 1436.954 287.291 .094 5.002 .000

Time2FillVacancy 526.501 140.268 .069 3.754 .000

AvgDuratnEmploy -35.012 11.238 -.057 -3.116 .002

Box Cox method is a transformation algorithm that utilize maximum likelihood
principle in order to calculate a power value once it is assumed that the power
transformation family is appropriate for the data set at hand. The transformed
dependent variable (W ) can be formulated as follows:

W =

{
(yλ − 1)/λ for λ 6= 0
ln(y) for λ = 0

(5)

The value of transformation exponent (λ) is calculated using maximum like-
lihood principle under the assumption that the residual terms are normally dis-
tributed (e ∼ N(0, σ2)). This procedure is described in greater detail in Draper
and Smith (1998). In this study, the Box Cox transformation algorithm in sta-
tistical package R is utilized. The search algorithm of this software gives the λ
value that maximizes log-likelihood function of regression model. Sensitivity of
maximum amplitude is analyzed with the regression model including dependent
variable transformed with this λ value.

Table 6: Summary of Regression Model for Transformed (Box-Cox) Maximum
Amplitude

Model Summary

R Square Adjusted R Square

0.975 0.973

The transformation exponent, which box-cox search algorithm concludes, is
0.3838 for maximum amplitude. Summary of regression analysis summary with
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transformed dependent variable is given in Table 6. The R square value of this
model indicates a better �t to data set at hand. Moreover, there is no obvious
pattern in the residual plot of regression given in Figure 9. In other words, this
regression model is more appropriate for sensitivity of maximum amplitude vari-
able to the model parameters.

Figure 9: Residual Plot of Regression Model for Transformed (Box-Cox) Maximum
Amplitude

Coe�cients of regression model for transformed dependent variable are given
in Table 7. Firstly, I should note that stepwise regression algorithm is not used
for this data set since the transformation exponent is computed for 14 parameter-
regression model. In this regression model, standard workweek and inventory
adjustment time are the most important parameters. Inventory adjustment time
directly represents the response of production manager to the incoming demand
changes while standard workweek is the work hour expectation of production plan-
ners. Manufacturing cycle time and safety stock coverage are also other important
parameters a�ecting the maximum amplitude of damping oscillation.

Box-cox transformation solves the nonlinearity problem and does not create any
alteration on the importance rank of model parameters. Parameter orders from
two regression analyses are given in Table 8. Obviously, box-cox transformation
does not create any alteration in the parameter ranking for maximum amplitude.
Therefore, it can be concluded that linear regression may be used for sensitivity
analysis even if the regression assumptions are not ful�lled. The last pattern mea-
sure of damping oscillation is log-amplitude slope of which sensitivity analysis is
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Table 7: Coe�cients of Regression Model for Transformed (Box-Cox) Maximum
Amplitude

Coe�cients

Regression Coe�cients
t value Sig.

Model beta Std. Error Std. Coef (b)

(Constant) 98.507 3.538 27.846 .000

StandardWorkweek -1.805 .032 -.687 -57.223 .000

InvntAdjstTime -2.430 .066 -.444 -36.946 .000

MnfctrngCycleTime 2.615 .101 .319 25.878 .000

SafetyStockCoverage 8.938 .412 .272 21.706 .000

Time2AvgOrderRate -1.403 .099 -.171 -14.220 .000

LaborAdjstTime .569 .063 .113 9.008 .000

VacancyAdjstTime 1.785 .202 .109 8.855 .000

Time2FillVacancy .541 .101 .066 5.349 .000

AvgDuratnEmploy -.025 .008 -.038 -3.131 .002

AvgLayo�Time .131 .101 .016 1.294 .197

WIPAdjst -.125 .132 -.011 -.948 .345

Productivity 2.179 3.208 .008 .679 .498

VacancyCancelTime .257 .397 .008 .648 .518

MinimumOrderProcssing .255 .390 .008 .654 .514

presented in the next section.

3.3 Log-Amplitude Slope of Damping Oscillations

Amplitude slope is the third behavior pattern measure that is analyzed in this
study. Slopes of successive amplitudes indicate the stability character of the oscil-
lations. However, except rare cases, amplitudes of an oscillation follow a nonlinear
curve (Figure 2). Therefore, taking the natural logarithm of amplitudes before
�tting a linear line gives more reliable amplitude slopes. The amplitudes and log-
amplitudes of oscillations obtained from sensitivity runs of inventory workforce
model are plotted in Figure 10. Obviously, taking natural logarithm of amplitudes
(right hand side in Figure 10) linearize the pattern of successive amplitudes of a
stable oscillation.

Estimated log-amplitude slopes are subject to regression analysis of which the
summary statistics are given in Table 9. This regression model is obtained by
using stepwise algorithm. R square statistic indicates that %96 of variability in
log amplitude slopes is explained by the regression model. In addition to this high
coe�cient of determination, there is no obvious pattern in residual plots (Figure
11). Therefore, this regression model can be accepted as an sensitivity analysis
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Table 8: Comparison of Di�erent Methods For Maximum Amplitude

RANK STEPWISE REGRESS BOXCOX TRANSFORM

1 StandardWorkweek StandardWorkweek

2 InvntAdjstTime InvntAdjstTime

3 MnfctrngCycleTime MnfctrngCycleTime

4 SafetyStockCoverage SafetyStockCoverage

5 Time2AvgOrderRate Time2AvgOrderRate

6 LaborAdjstTime LaborAdjstTime

7 VacancyAdjstTime VacancyAdjstTime

8 Time2FillVacancy Time2FillVacancy

9 AvgDuratnEmploy AvgDuratnEmploy

10 AvgLayo�Time

11 WIPAdjst

12 Productivity

13 VacancyCancelTime

14 MinimumOrderProcssing

Figure 10: Amplitude Diagrams of Inventory Workforce Model

tool for this behavior measure. The coe�cients of regression equation are given in
Table 10.

Inventory adjustment time and standard workweek are the most e�ective pa-
rameters for log-amplitude slope. Then, manufacturing cycle time and vacancy
adjustment time parameters take third and fourth places in ranking. Further-
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Figure 11: Residual Plot of Regression Model for Log-Amplitude Slope

Table 9: Summary of Regression Model for Log-Amplitude Slope

Model Summary

R Square Adjusted R Square

.967 .936

Table 10: Coe�cients of Regression Model for Log-Amplitude Slope

Coe�cients

Regression Coe�cients
t value Sig.

Model beta Std. Error Std. Coef (b)

(Constant) -2.172 .216 -10.068 .000

InvntAdjstTime .205 .006 .664 35.291 .000

StandardWorkweek .076 .003 .510 26.742 .000

MnfctrngCycleTime -.216 .009 -.466 -24.221 .000

VacancyAdjstTime -.166 .018 -.179 -9.347 .000

WIPAdjst .084 .012 .136 7.104 .000

SafetyStockCoverage -.194 .037 -.105 -5.284 .000

Time2FillVacancy -.046 .009 -.099 -5.230 .000
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Table 11: Summary Table for Results of Sensitivity Analysis of Inventory Work-
force Model

RANK PERIOD MAXIMUM AMPLITUDE LOG-AMPLITUDE SLOPE

1 StandardWorkweek (−) StandardWorkweek (−) InvntAdjstTime (+)
2 LaborAdjstTime (+) InvntAdjstTime (−) StandardWorkweek (+)
3 WIPAdjst (+) MnfctrngCycleTime (+) MnfctrngCycleTime (−)
4 SafetyStockCoverage (+) SafetyStockCoverage (+) VacancyAdjstTime (−)
5 MinimumOrderProcssing (−) Time2AvgOrderRate (−) WIPAdjst (+)
6 VacancyAdjstTime (+) LaborAdjstTime (+) SafetyStockCoverage (−)
7 VacancyAdjstTime (+) Time2FillVacancy (−)
8 Time2FillVacancy (+)
9 AvgDuratnEmploy (−)

more, stepwise algorithm removes seven regressors since they are insigni�cant in
individual t-tests.

To sum up, standard workweek and inventory adjustment time parameters are
the two possible leverage points for many pattern measures of oscillatory behaviors.
In fact, the importance of standard workweek parameter in these simulation runs
is very counter-intuitive and possibly indicates the necessity of deeper analysis on
model structure. Moreover, manufacturing cycle time is appeared as another im-
portant parameter especially for the stability character of the oscillations. On the
other hand, labor productivity of a manufacturing �rm is concluded as ine�ective
parameter for di�erent oscillation pattern measures. This parameter is always ap-
peared as insigni�cant in regression equations. The summary of sensitivity analysis
results of inventory workforce model is given in Table 11. In this table, the positive
and negative sings near the parameter names indicate the direction of correlation
between the pattern measure and model parameter. Namely, increasing inventory
adjustment time creates smaller maximum amplitude and greater amplitude slope
which points out more stable oscillation pattern.

4 Conclusions

Parameters and functions of system dynamics models involve uncertainty so, ana-
lysts must make assumptions. In order to analyze the e�ects of these assumptions
on the model, sensitivity analysis should be conducted after the model building
phase. But standard statistical sensitivity tools, such as correlation coe�cients,
are not applicable to oscillatory models.
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Behavior pattern measures are used in the problem articulation, dynamic hy-
pothesis and policy analysis phases of system dynamics studies. Moreover, behav-
ior pattern sensitivity is a very suitable approach to statistical sensitivity analysis
of oscillatory models. In this article, an analysis procedure is proposed for pat-
tern sensitivity of oscillatory models to the parameters. In the application of
this procedure, regression method is suggested as a formal analysis method with
its convenience and rich tools indicating model �t to data. Speci�cally, if addi-
tive functional relationship is not appropriate for sensitivity simulations, several
approaches can be used for nonlinear relationships. In this study, Box-Cox trans-
formations and rank transformation procedures are applied two pattern measures
of inventory workforce model. In these analyses, rank transformation is found to
be ine�ective in dealing with nonlinearity while Box-Cox transformation provides
promising results.

Pattern sensitivity of inventory workforce model is analyzed using three pattern
measures of damping oscillations. Analysis results indicate that the workday ex-
pectation of production manager (standard workweek) and his/her responsiveness
to the immediate changes in demand (inventory adjustment time) are the most
important factors for oscillatory patterns. Furthermore in two sensitivity exper-
iments, Box-Cox transformation is applied to the dependent variable. In these
experiments, Box-Cox transformation does not create major changes on the im-
portance ranking of model parameters while dealing with nonlinearity.

In short, behavior pattern measures are useful and appropriate tools for formal
sensitivity analysis of system dynamics models. They provide information on po-
tential leverage points of the system and guide the additional modeling e�ort for
further analysis. Moreover, regression analysis is found to be an e�cient sensitivity
tool for system dynamics models. This method is not only a convenient analysis
tool, but also it includes e�cient capabilities that deal with lack of �t situations.
Parameter sensitivity is one step for comprehensive analysis of a system dynamics
models. Other sensitivity types described in the literature should be analyzed in
order to fully understand the relations between the model structure and its dy-
namics.
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