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Abstract  

Research on learning via system-dynamics-based learning environments depends on 
accurate measurement of learning. Most such research considers at least two aspects of 
learning, the participants’ understanding of the models and problems, and the partici-
pants' performance in the environment, e.g., quality of decision making. The former, 
understanding, is much more difficult to measure than the latter, performance. Meas-
urement of understanding is often done by eliciting verbal protocols from participants 
about the problem situation (i.e., the underlying model) and their planned solution strat-
egy (i.e., decisions). Coding and analysis of participants’ verbal protocols is very sub-
jective and time-consuming. To facilitate measurement and analysis of understanding 
via verbal protocols, we investigate the utility of a software application which performs 
such analysis automatically. We assess this automated analysis methodology using data 
from two different system-dynamics-based learning environments and analyze how par-
ticipants’ understanding compares to experts, how it changes over time, and how it cor-
relates with performance. 
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1 Introduction 
Dynamic systems such as the economy of a country, production in companies, renew-
able resources or global warming are difficult to understand and manage successfully 
(Diehl & Sterman, 1995; Jensen & Brehmer, 2003; Jensen, 2005; Moxnes, 1998; 
Moxnes, 2004; Paich & Sterman, 1993; Sterman, 1989; Sterman, 2002 & 2007). One of 
the primary goals of system dynamics is to improve decision making and problem solv-
ing in complex dynamic systems. In order to know when we have improved decision 
making or problem solving, we must have valid and reliable methods to assess how well 
people do them. Such assessments usually focus on two measures of the people in-
volved (Rouwette, Größler, & Vennix, 2004): their performance, i.e., the results from 
decision making (such as, a score on a gaming variable); and their understanding, i.e., 
the rules and mental operations that lead people to their decisions. Especially when a 
strategy seems to yield promising results in terms of performance, it becomes essential 
to know whether improved performance is due to the person’s improved understanding 
of the system or due to other reasons such as trial and error.  

Our current work and this paper is part of the emerging literature in system dynamics 
that seeks to assess system understanding or elicit people’s mental models, respectively 
(Capelo & Dias, 2009; S. Cavaleri & Sterman, 1997, Doyle, 1997; Jensen & Brehmer, 
2003; Jensen, 2005; Huz, Andersen, Richardson, & Boothroyd, 1997; Spector, 
Christensen, Sioutine, & McCormack, 2001). 

A mental model is a representation of a thing, ideas or more generally an ideational 
framework. Representations are widely viewed as having a language-like syntax and a 
compositional semantic (see Carruthers, 2000; Fodor, 2003; Margolis & Laurence, 
1999; Pinker, 1994; Strasser, in press). Mental models, as types of representations, rely 
on language and use symbolic pieces and processes of knowledge to construct a heuris-
tic for a situation (see Johnson-Laird, 1983; Schnotz, 1994; Schnotz & Preuss, 1997; 
Seel, 1991). Their purpose is heuristic reasoning which leads to either intention, plan-
ning, behavior or to a reconstruction of cognitive processes (see Piaget, 1976). 

People construct mental models to match the behavior of both predictable and unpre-
dictable changes in the world in order to exercise better control and make the changes 
more predictable. This also is a key aspect of much problem solving, including the 
complex problem solving typical of most dynamic decision making tasks (Ceci & Ruiz, 
1992; Jonassen, 2000; Just & Carpenter, 1976; Spector, 2006).  

A re-representation is an external correlate to a representation. It may be constructed to 
support learning (see Hanke, 2006) and for assessment (see Pirnay-Dummer, 2006; 
Pirnay-Dummer, Ifenthaler, & Spector, 2010; Ifenthaler, 2006; Ifenthaler, Masduki, & 
Seel, 2009; Johnson, O'Connor, Spector, Ifenthaler, & Pirnay-Dummer, 2006; Johnson 
et al., 2009). We call those constructs re-representations to illustrate that they are repre-
sentations of representations. For example, cognitive models (such as a computer ani-
mation of a physical process) are re-representations of mental models (a person’s mental 
representation of the same physical process). 

Verbal protocols play an important role in the process of exploring people’s reasoning 
processes (e.g., Sterman, 2009). Verbal protocols are particularly suitable for character-
izing mental models as they closely approximate the way people naturally go about rep-
resenting their knowledge (Doyle, Radzicki, & Trees, 2008). Unfortunately, coding and 



 

_____________________________________________________________________________________________________________________________________________ 

3 

rating verbal protocols for the purpose of representing mental models is extremely chal-
lenging as the persons doing the rating require a good understanding of the phenomenon 
under study. This makes it difficult to find more than one suitable rater (Jensen, 2005), 
especially when the phenomenon is one depicted by a complex system-dynamics model. 
Furthermore, coding and rating of verbal protocols are subject to interpretation by the 
raters (e.g., Sterman & Booth Sweeney, 2007) and are time consuming tasks. In short, 
human coding and rating of verbal protocols is very difficult for large datasets, such as 
when many research participants produce them as a measure of understanding in a deci-
sion-making or problem-solving activity. Thus, automated or semi-automated coding 
and analysis of verbal protocols would be a valuable research tool for assessing people’s 
understanding in dynamic decision making tasks.  

In this paper we investigate such an automated analysis of textual understanding data 
(verbal protocols) and whether it can improve assessment in complex dynamic systems. 
The particular automated analysis of textual understanding data is based on T-
MITOCAR (Pirnay-Dummer & Spector, 2008; Pirnay-Dummer & Ifenthaler, 2010), 
which stands for Text – Model Inspection Trace of Concepts and Relations. The soft-
ware is based on mental model theory (Seel, 1991) and uses syntactic and semantic heu-
ristics to track associations of terms within written language. As will be discussed more 
in the methods section, there are several advantages implicit in the design of T-
MITOCAR. The texts that are used as input need not be coded prior to analysis. Also, 
T-MITOCAR does not require any domain dependent linguistic or structural corpus to 
analyze the texts. T-MITOCAR has shown to be stable across domains and in many 
different settings of learning (see Pirnay-Dummer, 2006, 2007, 2008; Pirnay-Dummer 
& Ifenthaler, 2010). Moreover, first studies indicate that the T-MITOCAR models can 
also be used to predict learning progression over time with surprisingly high correla-
tions (e.g., r=.99, see Schlomske & Pirnay-Dummer, 2009). Also, considerable correla-
tions where found when the methodology was compared to other language oriented as-
sessment strategies like Latent Semantic Analysis (see Pirnay-Dummer & Walter, 
2009).  

The main purpose of the work reported here is therefore to test whether the automated 
analysis is also valid for assessing understanding of complex dynamic problems. The 
focus of understanding assessment in the system dynamics literature is mainly on the 
evaluation of systems thinking skills (S. A. Cavaleri & Thompson, 1996; Hopper & 
Stave, 2008; Maani & Maharaj, 2001; Richmond, 1997; Skaza & Stave, 2009, Skaza & 
Stave, 2010). In this paper we concentrate on evaluating the ability of learners to appro-
priately describe the problem situation and to explain a solution strategy for a dynamic 
decision making task. The interpretation of such descriptions applies systems thinking 
characteristics. The first step, thus, is to automate the analysis of verbal protocols and 
test how valid such analysis is for complex dynamic problems. Ultimately, a second 
step would then further develop the automated analysis such that it can interpret a text 
in systems thinking terms. In other words, the goal in the long run would be to correlate 
task specific descriptions with the specific systems thinking characteristics represented 
by them.  

To investigate the validity of the automated analysis we use textual understanding data 
from two experimental dynamic decision making tasks and compare the results of the 
automated analysis to results generated by a manual analysis of understanding data. We 
also analyze how participants’ understanding compares to experts, how it changes over 
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time, and how it correlates with performance. We conclude with a theoretical and meth-
odological discussion of how an automated analysis of verbal protocols can help to 
identify more clearly the misperceptions that lead to suboptimal decisions.  

2 Dynamic decision making tasks 
The first task, the reindeer rangeland management task (Moxnes, 2004) is based on a 
relatively simple one-stock model. The system dynamics model underlying the second 
task, the national development planning task (Kopainsky, Alessi, Pedercini, & 
Davidsen, 2009), contains five stocks and is thus more complex. It should be empha-
sized, however, that even though the first task has only one stock and is comparatively 
quite simple, learners usually fail to solve the task, even learners with experience in 
system-dynamics modeling or natural resource management (Moxnes, 1998, Moxnes, 
2004).  

2.1 Reindeer rangeland management task 
The reindeer rangeland management task was developed by Moxnes, (2004). In this 
task, participants play the role of sole owners of a reindeer herd. They take over the herd 
and overgrazed rangeland from a previous owner, and are responsible for setting the 
reindeer herd size for each of 15 simulated years. Participants’ goal is to restore the 
maximum sustainable herd size as quickly as possible. The instructions they receive (cf. 
appendix 1) provide information about the grazing rate of the reindeer and a description 
of lichen growth dynamics. Lichen is the source of food to support reindeer through the 
winter and is therefore a limiting factor for the size of a herd. The instructions contain a 15-
year long historical record on lichen density and reindeer herd sizes. The simulation model 
underlying the task contains one stock (lichen density) which increases with lichen growth 
and decreases with grazing (Figure 1). Lichen growth is a convex and thus non linear func-
tion of lichen density.  

Figure 1: Stock-flow model of the reindeer rangeland management task 
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Densitylichen growth grazing
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Data for the reindeer rangeland management task was collected with 129 environmental 
science undergraduate students at the University of Nevada in Las Vegas in the fall 
2009. Students studied the instructions shown in appendix 1 and were asked to explain 
the problem they were faced with in this task and to propose a strategy to solve the task. 
They then had three decision making trials (attempts) in which they implemented their 
strategy in a simulation. After the first trial they were given the opportunity to modify 
their explanations. They were given the same opportunity once again after completing 
all three decision making trials. The resulting dataset used for the analysis in this paper 
therefore consists of the participants’ textual descriptions (verbal protocols) for three 
measurement time points (after instructions but before interacting with the simulation 
game, after trial 1, after interacting with the simulation game) and the participants’ per-
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formance data for decision making trials 1, 2, and 3. Performance was measured by sub-
tracting actual lichen density from optimal lichen density for the decision making period 
of 15 years. In other words, the closer the lichen density was to the optimal density, the 
better their performance. 

2.2 National development planning task 
In the national development planning task (Kopainsky, et al., 2009) participants play the 
role of the prime minister in Blendia, a virtual sub-Saharan African Nation which, at the 
outset, is one of the poorest nations in the world (per capita income of $300 per person 
per year). Their task is to achieve and maintain the highest possible per capita income 
over the relatively long period of 50 years (cf. appendix 2 for the complete instructions). 
The prime minister has far reaching financial responsibilities and the absolute power to 
make the following decisions: 

• Investment in education (an explicit decision) 

• Investment in health (an explicit decision) 

• Investment in roads (an explicit decision) 

• Borrowing to finance such investments (an implicit decision resulting from the 
three previous ones and the nation’s available budget).  

The simulation model used for the task (Figure 2) depicts the development of per capita 
income over time as a consequence of reinforcing economic growth processes between 
capital accumulation resulting from private sector development, infrastructure (roads) 
and human development (education and health). The money available for investments in 
roads, education and health is generated through taxes and borrowing. Borrowing cre-
ates a deficit which accumulates debt over time. Interest payments on debt are deducted 
from tax revenue so that the reinforcing debt accumulation loop can counteract the rein-
forcing economic growth loops.  
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Figure 2: Stock-flow model of the national development planning task 
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Data for the national development planning task was collected with 34 introductory 
level system dynamics students in the fall semester of 2009. Students studied the in-
structions shown in appendix 2 and were asked to explain the problem they were faced 
with in this task and to explain the strategy they planned to use to solve the task. They 
had two decision making trials in which they implemented their strategy using a system-
dynamics based simulation game. After the second trial they were given the opportunity 
to modify their explanations. The resulting dataset used for the analysis in this paper 
therefore consists of the participants’ textual descriptions for two measurement time 
points (before and after interacting with the simulation game) and of performance data 
for decision making trials 1 and 2. Performance was measured by subtracting per capita 
interest payments from per capita income for the decision making period of 50 years. In 
other words, better performance was represented by higher per-capita income not due to 
borrowing, but due to true economic growth. 

3 Method 
The analysis of a participant’s textual description involves a comparison of the partici-
pant’s text with an expert text. This holds true both for the automated and the by-hand 
analysis. Experts categorize problems more precisely, managing to find the important 
aspects that are relevant to a situation. Klein’s (1997) recognition primed decision mak-
ing model posits that experts do not chose among alternatives, but rather assess the na-
ture of the situation and, based on this assessment, select an action appropriate to it. The 
first step in Klein’s recognition model is to classify the situation as typical or novel. To 
recognize the situation, the decision maker identifies critical cues that mark the type of 
situation and causal factors that explain what is happening and what is going to happen. 
Based on this, the expert sets plausible goals and proceeds to selecting an appropriate 
course of action.  
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An important first step in the analysis and comparison of participants’ mental models is 
therefore to elicit experts’ understanding of the dynamic decision making tasks used in 
this paper. Eliciting expert understanding is closely related to the idea analysis applied 
in Jensen & Sawicka, 2006; and Booth Sweeney & Sterman, 2000, to the task analysis 
step applied e.g., in Jensen & Brehmer, 2003 and Jensen, 2005, and to eliciting expert 
conceptualizations of the problem space (Spector, 2006). For both decision making 
tasks a panel of experts wrote their own descriptions of the problem situation and the 
strategy to solve the problem. The expert texts are listed in appendix 3. 

3.1 Automated analysis with T-MITOCAR 
T-MITOCAR is a software tool that uses natural language expressions (instead of 
graphical drawings by subjects) as input data for the re-representation, analysis and 
comparison of mental models (Pirnay-Dummer & Spector, 2008; Pirnay-Dummer & 
Ifenthaler, 2010). Such natural language expressions are texts written by research par-
ticipants (subjects) as a result of some writing task, e.g., the task of describing the prob-
lem situation underlying a decision making task and the proposed strategy to solve the 
decision making task. 

Any text of sufficient length can be graphically visualized by the T-MITOCAR soft-
ware. T-MITOCAR tracks the association of concepts from a text directly to a graph, 
using a heuristic to do so. Closer relations tend to be presented more closely within a 
text. This does not necessarily work within single sentences, since syntax is more ex-
pressive and complex. But texts which contain 350 or more words can be used to gener-
ate associative networks as graphs from text and to calculate structural and semantic 
measures for the analysis and comparison of mental models. The re-representation proc-
ess is carried out automatically in multiple computer linguistic stages. The two basic 
features of T-MITOCAR are:  

• Re-representation of mental models through association nets of concepts and rela-
tionships found in and generated from a written text. The association net is the re-
sult of the re-representation process described in detail in section 3.1.1. 

• Analysis and comparison of mental models in terms of their structural and semantic 
characteristics. A subject’s text may be compared to any expert text, teacher text, or 
any standard or model solutions for a task. It is also possible to track change over 
time (if subjects write texts at several measurement time points) or to measure se-
mantic and structural differences within or between groups or subjects. The struc-
tural, semantic and combined indices used for the comparison of mental models are 
described in section 3.1.2. 

3.1.1 Re-representation process and association nets 
The re-representation of a mental model in the form of an association net is carried out 
in different stages (Table 1). All of the stages are automated. Thus, the only data needed 
is a text written by a subject such as an expert, a learner, or a teacher. We illustrate the 
re-representation process with experts’ textual descriptions of the optimal strategies for 
solving the two dynamic decision making tasks introduced in section 2.  
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Table 1: Re-representation process in T-MITOCAR 

1 Preparing the text When text enters the system from sources unknown to the software, it 
most often contains characters which could disturb the re-
representation process. Thus, a specific character set is expected. All 
other characters and formatting code are deleted.  

2 Tokenizing After preparation, the text is split into sentences and tokens. Tokens are 
words, punctuation marks, quotation marks, and so on. 

3 Tagging Only nouns and names should be part of the final re-representation 
graph. Tagging helps to find out which words are nouns or names. 

4 Stemming Different inflexions of a word appear only once in the re-representation 
graph. Stemming reduces all words to their word stems. All words in 
the initial text and all words in the tagged list of nouns and names are 
stemmed before the re-representation. 

5 Retrieving the most 
frequent concepts 

After tagging and stemming, the most frequent noun stems (concepts) 
are listed from the text. 

6 Calculating the de-
gree of association 
between concepts 

The degree of association between concepts is calculated in several 
steps: 

1. Calculation of the default length. For each sentence the words are 
counted. The default length is the number of words in the longest 
sentence within the text plus 1. 

2. All retrieved concepts are paired, so that all possible pairs of con-
cepts are in a list.  

3. For each pair all sentences are investigated. If the pair appears 
within a sentence, the distance for the pair is the minimum number 
of words between the terms of the pair within the sentence. If at 
least one term occurs more than one time in the sentence, then the 
lowest possible distance is taken. 

4. If a pair does not appear in a sentence (true also if only one concept 
of the pair is in the text), then the distance will be the default length. 

5. The sum of distances is determined for each pair. 

6. The N pairs with the lowest sum of distances are included in the re-
representation graph. N depends on the number of words and sen-
tences within the text. The exact values can be controlled by the 
software settings. 

7. The algorithm automatically truncates the maximum distance for re-
representation. This prevents the algorithm from generating random 
pairs which do not really have any association evidence within the 
text. 

7 Determining the 
weights 

After determining the degree of association between pairs of concepts, 
the weights are calculated from the pair distances. All weights (0 ≤w≤ 
1) are linearly mapped so that 1 is the pair with the lowest sum of dis-
tances and 0 is the pair with the maximum sum of distances.  

8 De-stemming From the list of words and their stems produced in step 4 T-MITOCAR 
searches for the inflection of the word that most frequently led to the 
stem: If it was the plural then the plural is presented in the re-
representation graph. 

9 List form (for an ex-
ample see Table 2) 

T-MITOCAR constructs a table with the pairs of concepts, their sum of 
distances, and their weights (association strength).  

10 Association net (for 
an example see Figure 
3) 

The graphical output of the re-representation process is the association 
net that displays the most important concepts and their association 
strengths on the basis of the list form. 
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Based on an expert’s verbal description of the problem situation and of the optimal 
strategy to solve the national development planning task, i.e., the description of the 
structure of the simulation model (see Figure 2) and some of the behavior this structure 
gives rise to (detailed expert text in appendix 3), T-MITOCAR generates the list form 
presented in Table 2.  

Table 2: List form of the national development planning optimal strategy description 

Concept 1 Concept 2 Distances Weight 

education health 57 1 

roads education 60 0.909091 

roads health 60 0.909091 

capita debt 66 0.727273 

capita income 72 0.545455 

roads investment 75 0.454545 

capita interest 75 0.454545 

education investment 75 0.454545 

capita development 75 0.454545 

health investment 75 0.454545 

capita budget 75 0.454545 

debt interest 75 0.454545 

budget development 75 0.454545 

interest payments 78 0.363636 

capita payments 78 0.363636 

debt payments 78 0.363636 

investment environment 78 0.363636 

capita deficit 81 0.272727 

tax revenue 81 0.272727 

capita borrowing 81 0.272727 

roads environment 81 0.272727 

roads levels 81 0.272727 

roads years 81 0.272727 

education environment 81 0.272727 

education levels 81 0.272727 

health environment 81 0.272727 

health levels 81 0.272727 

capita roads 81 0.272727 
 

The pair distance values in Table 2 have no direct meaning. They depend on the longest 
sentence of the text. Therefore, only the relative measure of the weights is directly in-
terpretable as it represents the strength of association between two concepts. The list 
form is transformed into the association net (re-representation graph) shown in Figure 3.  
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Figure 3: Association net of the national development planning optimal strategy de-
scription 

 
 

Figure 3 displays the main concepts and links used in the textual description of the op-
timal strategy for solving the national development planning task. The main concepts 
are on the vertices (nodes) of the graph. The weights from Table 2 re-appear on the 
links between the main concepts and measure the association strength between two con-
cepts. Only the strongest associations are represented in the association net. In its de-
fault settings, T-MITOCAR displays up to 25 links from the list form. Therefore, there 
are two measures for the association strength at the links. The value outside the brackets 
shows the weight from the list form. The second value inside the brackets displays the 
weight relative to what is actually visualized. The strongest association will be 1 (“1” 
meaning that this is the strongest available association in the graph) and the weakest 
observation will be 0 (“0” meaning that this is the weakest among the strongest associa-
tions that made it into the graph).  

The association net displayed in Figure 3 may be unfamiliar and thus less intuitive to 
system dynamicists trained in the development of stock-and-flow diagrams. An associa-
tion net does not portray accumulations, feedback loops and the functional relationships 
described in the equations of a system dynamics simulation model. The main focus of 
the association net in system dynamics terms is on the structure underlying a complex 
dynamic problem. Process-related aspects may be represented in concepts but the be-
havior arising from the structure is not visible. This is, however, not the purpose of as-
sociation nets which focus on the degree of association between concepts. Association 
nets may be able to reveal parts of the underlying reasoning heuristic when people make 
decisions in complex dynamic environments. In the results section of this paper we will 
analyze some associative (mis-)conceptions of our two dynamic decision making tasks 
and investigate to what degree different structural and semantic characteristics of asso-
ciation nets correlate with performance in dynamic decision making tasks. Most impor-
tantly for the purpose of this paper, however, association nets are the basis for the quan-
titative comparison of different texts. 
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3.1.2 Comparison of different texts and association nets 
T-MITOCAR provides structural as well as semantic measures for comparing expert 
and non-expert texts. Such comparisons are useful in two respects: 

1. They help identify misconceptions about the structure and behavior of a complex 
dynamic system. This can be used to increase the usability of the simulator or 
simulation based game for the purpose of learning, since the structure of the 
problem space must take the learner’s epistemic belief into account (see Seel, 
2003). 

2. They show a progression of understanding over time (i.e., over multiple 
measurement time points) as compared to an expert’s understanding. This is 
essential if a learning environment should monitor and evaluate the actual change 
over time (see Ifenthaler & Seel, 2005). 

In order to compare texts T-MITOCAR calculates quantitative measures for structural 
and semantic constructs. T-MITOCAR compares association nets on a graph theoretical 
level. Of all the available graph theoretical measures, seven of them have shown a stable 
representation of different structural and semantic constructs (Ifenthaler, 2006, 2008; 
Pirnay-Dummer, 2006; Pirnay-Dummer, et al., 2010). The measures are based on the 
properties of the association net, i.e., on concepts and the links between them. The four 
structural and three semantic measures are defined as in Pirnay-Dummer, et al. (2010) 
and presented in Table 3.  

Table 3: Structural and semantic measures used for the quantitative comparison of texts 

 Measure Definition 

Structure surface measure (see 
Ifenthaler, 2008) 

compares the number of concepts within two graphs. It is a sim-
ple and easy way to calculate values for surface complexity 

 graphical matching 
measure (see 
Ifenthaler, 2008) 

compares the diameters of the spanning trees of the graphs and 
is an indicator for the range of conceptual knowledge. 

 density of vertices 
measure (also often 
called “gamma 
matching measure”) 
(Pirnay-Dummer, et 
al., 2010) 

describes the quotient of concepts per concept within a graph. 
Since both graphs which connect every concept with all the 
other concepts (everything with everything) and graphs which 
only connect pairs of concepts can be considered weak mental 
models, a medium density is expected for most good working 
models. 

 structural matching 
measure (see Pirnay-
Dummer & 
Ifenthaler, 2010) 

compares the complete structures of two graphs without regard 
to their content. This measure is necessary for all hypotheses 
which make assumptions about general features of structure 
(e.g., assumptions which state that expert knowledge is struc-
tured differently from novice knowledge). 

Semantics concept matching 
measure (Pirnay-
Dummer, et al., 
2010) 

compares the sets of concepts within a graph to determine the 
use of terms. It counts how many concepts are alike. This meas-
ure is especially important for different groups operating in the 
same domain (e.g., using the same textbook). It determines dif-
ferences in language use between the models. 

 propositional match-
ing measure (see 
Ifenthaler, 2008) 

compares only fully identical propositions (concept-link-
concept) between two graphs. It is a measure for quantifying 
semantic similarity between two graphs. 
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 balanced semantic 
matching measure 
(see Pirnay-Dummer 
& Ifenthaler, 2010) 

a measure which combines both propositional matching and 
concept matching to control for the dependency from proposi-
tional matching on concept matching: Only if concepts match, 
then propositions may match. BSM balances this dependency. 

 

All structural measures quantify the comparison between the structures of written texts 
and all semantic measures quantify the comparison of the texts’ semantics. However, 
the measures quantify different things and cannot substitute each other. The structural 
measures show convergent correlations between each other (between r=.48 and r=.79) 
and so do the semantic measures (between r =.68 and r =.91). The correlations between 
the structural and the semantic measures are lower and divergent (between r = -.24 and 
.36). The density of vertices (gamma) usually stands alone and only rarely correlates 
with the other structural measures because it accounts for a different feature of structure 
(correlations between r=.37 and r=.38 with the other structural measures). Pirnay-
Dummer et al. (2010) provide a full validation study for the calculation of these correla-
tion coefficients. The validation study was conducted with N = 1,849,926 text compari-
sons in 13 different subject domains ranging from common knowledge to scientific sub-
ject domains. Depending on the research questions underlying the comparison of mental 
models, some comparison measures may be left out. A more detailed overview of the 
comparison measures is provided in the following paragraphs. What every measure says 
qualitatively depends highly on how the text has been assessed, e.g., as to whether the 
compared entities have been assessed in a similar way and which task the assessment 
was embedded in. As with any methodology, even the best comparison measure can 
never level out an insufficient assessment. Thus, for models assessed with T-
MITOCAR, the task needs to allow (and motivate) the subjects to reflect on the given 
domain within their writing. All comparison measures are conducted on graphs only, 
and a graph G(Vv,Ee) is a set of vertices (nodes, concepts) Vv that are connected by a set 
of edges (links, relations) Ee. An edge connects two vertices. 

3.1.2.1 Surface Matching 

Within T-MITOCARs analysis, nodes are the most frequent concepts within an ana-
lyzed text, while the vertices are the most frequent syntactical associations between pair 
wise concepts (Figure 4). 

Figure 4: A vertex links two nodes that contain concepts 

 

The surface measure compares the number of vertices that are in a graph, to see how 
large a text model is. 
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Figure 5: Three different surface structures 

 
 

Figure 5 shows 3 different surface structures. Graph A has a surface of 1 (1 vertex), 
graph B has a surface of 4, and graph C has a surface of 7. The content of the nodes 
(concepts) does not play a part in this measure. We can now say that C is more complex 
than B which is more complex than A on a first superficial level. The similarity index 
for surface matching weights the differences between two surface measures. To calcu-
late a similarity index between B and C, we will take the frequencies f1 = surface (B) 
and f2 = surface (C) which will result in a similarity index of 

so =1−
f1 − f2

max(f1, f2)
=1−

7 − 4

7
≈ 0,57 

B and C have the same number of concepts (which may even be the same concepts) and 
a considerable structural similarity.  

3.1.2.2 Graphical Matching 

The graphical matching index takes the diameter of the spanning tree of a given graph. 
So, why is that and what does that mean? We start with the diameter. Between any two 
concepts within a graph that are at least indirectly linked to each other, there is a path.  

Figure 6: Different diameters. 
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See Figure 6: For graph A, it takes only one step to get from C1 to C2 since there is 
only one vertex. The same holds for graph D when we want to go from C1 to C2. How-
ever, it takes at least 3 steps to get from C1 to C6 in graph D: C1 � C2 � C5 � C6. 
There is also a path that would take 4 steps, but we are interested in the shortest avail-
able path. Every pair of concepts that is directly or indirectly connected within a graph 
has such a shortest path. Pairs of concepts that are not connected do not count as can be 
seen from graph E: There is no connection between C9 and C6. The diameter of a graph 
is the longest of the available shortest paths throughout the graph. For graph A, this is 
obviously 1, for graph D this is 3 as it is also for graph E. If the graph has different un-
connected sub graphs, the longest of the shortest paths can still be determined by the 
sub graph that has the longest diameter: This diameter then counts as the diameter of the 
whole graph. But we still need to explain the spanning tree. Diameters do have one con-
ceptual downside when it comes to cycles. And cycles that - among other things - re-
semble loops play an important role within knowledge structures throughout different 
knowledge representations (Seel, 2003). Thus, we do not want an algorithm that is sup-
posed to account for structure to yield half the complexity value just because a graph is 
or contains a cycle (a loop). On a level of the width of the graph we want the following 
graphs (see Figure 7) to have the same complexity value. 

Figure 7: A loop and a sequence that should have the same conceptual width 

 
 

The diameter alone would yield a 2 for graph F and a 4 for graph G within Figure 7 
while they should at least resemble the same complexity value, maybe in some cases F 
would in fact be even more complex than G. But the heuristic of graphical matching 
cannot account for these content- and context-specific differences. A spanning tree (see 
Kruskal, 1957) allows for a modification of any graph that will account for that re-
quirement. First of all, a spanning tree is a sub graph of a given graph that contains no 
cycles. It also connects every pair automatically with their shortest paths if possible: It 
finds an optimum for the distances throughout the graph. 
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Figure 8: Graph B is a spanning tree for graph C 

 
 

Figure 8 shows that B is a spanning tree of graph C. But why do we get rid of the cycles 
that may exactly have an important meaning within the knowledge model-structure? We 
do not apply the spanning tree on a descriptive level, but only to account for the above 
mentioned problem that cycles would yield half the complexity than sequences due to 
the nature of the diameter measure. If we now apply the diameter of the spanning tree to 
the graphs F and G, they are identical on the width-index of the graphical matching 
level; both now have a graphical width of 4 and therefore yield a similarity of 1 for the 
graphical matching: 

sG =1−
f1 − f2

max(f1, f2)
=1−

4 − 4

4
=1 

3.1.2.3 Structural Matching 

Structural matching is the most complex measure to derive from the graphs. It clearly 
has its limits in terms of computability and can thus only feasibly be applied to small 
and medium size graphs. T-MITOCAR generates graphs in that range, as do most con-
cept mapping techniques when applied in experimental settings or in the usual scope of 
studies (see Al-Diban, 2002; Ifenthaler, 2006; Johnson, O'Connor, Pirnay-Dummer, et 
al., 2006; Pirnay-Dummer, 2006; Schvaneveldt, et al., 1985). At this point, only an ab-
breviated description of the algorithm can be provided. Please refer to Pirnay-Dummer 
(2010) for a detailed description and empirical testing of the structural comparison. We 
start with three graphs that have the same surface and graphical matching indices 
(Figure 9; see Pirnay-Dummer, 2010, p. 239). 
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Figure 9: Three graphs with the same surface and graphical matching indices. 

 
 

According to the first two structural indices all three graphs (H, I, J) are identical and 
would yield a similarity of 1. However, they also do have structural differences that can 
not only be derived back to visualization differences. They have a different inner struc-
ture, which so far the two other indices do not account for. Differences are easy to rec-
ognize by human viewers when the graph is visualized, but not as easily quantifiable. 
Structural matching uses an analytical approach that is automatable. As a first step, a 
graph is split into several different possible sub graph-pieces. The resulting pieces are 
not exclusive, so that the results become quite complex even for the simple graph I 
(Figure 10). 
Figure 10: Basic sub graphs and their frequencies within graph I from Figure 9 

 
 

Figure 10 shows the sub graphs and the frequency of their occurrence as constructed by 
the structural comparison measure. Essentially, from every node, every possible path 
through the graph is constructed as a sub graph. These sub graphs are called “traces”. 
Cycles (loops) are treated in a special way. On the one hand, as a stop criterion, path 
reconstruction has to be halted once a node is passed twice. On the other hand, this 
gives an opportunity to specially code a cycle. Paths are reconstructed from each mem-
ber of the cycle in the same way. Therefore the node occurs more often than in non-
cyclic structures, e.g., in I.4 within Figure 10: the basic form occurs only twice but due 
to the cycle it will be constructed for each member thus leaving fI.4 = 2⋅3 = 6 traces of 
the same basic form. The traces are usually not visualized during analysis; they are in-
stead represented on strings (Table 4). Depending on the graph’s complexity, there can 
be millions of possible traces. 
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Table 4: String representation for the traces in graph I (Figure 10) 

Sub graph Trace-String Frequency 

I.1 1,2,1 4 

I.2 2,2,2,2,-2 4 

I.3 1,2,2,1 2 

I.4 2,2,2,-2 6 

I.5 1,3,2,2,-3 2 

I.6. 3,2,3,2,-3 

2,3,2,3,-2 
2⋅2=4 

Σ  22 
 

Table 4 shows how the traces are represented on strings. For each node that the trace 
passes, the string contains the number of vertices (or in graph theory terms: the degree) 
that this node has as: 

Γ ν( ) = 2 

A whole string is then an ordered chain of degrees: 

Γi ν( ) = 1,3,2,2,−3{ } 

A complete cycle will be encoded with a “-“ at the last node. 

In order to retrieve all underlying basic shapes automatically, the graph needs to be 
processed in two steps. First, all paths that are directly available from the graph’s verti-
ces Vv need to be collected in a set for each possible path length u: 

  

Γυ ,i
V Vv( )= Γu,i ν( )

u=2

υ

U
i =1

n

U = 1,3,2,2,−3{ }, 1,2,1{ },...{ } 

There is also a stop criterion υ as a maximum length (range) for the traces that are con-
structed. With that stop criterion the algorithm focuses only on the basic traces and bal-
ances computability at the same time. Traces beyond that range will not be constructed. 
Once all directly accessible traces are constructed, implicit traces are added. One of 
these traces was already “illegally” illustrated in Figure 10, I.2: When the algorithm 
traces through the graph, this shape will at first not occur: There is no node configura-
tion that directly leads to {2,2,2,2,-2}, the only traces that the algorithm will find are 
{2,3,2,3,-2} twice and {3,2,3,2,-3} twice. Therefore also the underlying sub traces are 
built, i.e., {2,2,2,2,-2}. This second procedure is called downtrace. The final set con-
tains all directly available sets plus all the possible downtraces thereof. To indicate that 
a downtrace has been constructed, we write the downtrace as function Ξ on all the di-
rectly available traces: 

Ξ Γυ ,i
V Vv( )( ) 

Although the number of downtraces has shown to be highly selective between experts 
and non-experts (see Pirnay-Dummer, 2010), it is usually not taken into account when 
structural similarity is calculated. Once all downtraces are available for two graphs, then 
the Tversky Similarity Measure (Tversky, 1977) is applied to compare the two sets of 
downtraces: 
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sΞ =
f ΞA ∩ ΞB( )

f ΞA ∩ ΞB( )+ α ⋅ f ΞA − ΞB( )+ β⋅ f ΞB − ΞA( ) 

Intersection and difference sets are both incorporated, and α and β can be used to bal-
ance the difference sets if the models of the graphs had been assessed in a completely 
different way and would therefore yield unfair comparisons, e.g., when an expert had 
more time than the subjects to create their expert model. However, we strongly suggest 
to control for this on the methodological side whenever possible and keep α and β 
equally weighted as α =β=.5. With all that at hand, the structural matching indices be-
tween the graphs H, I, and J from Figure 9 can be calculated as shown in Table 5. The 
structural matching index reveals the differences between the graphs. 

Table 5: Structural matching measures between the graphs H, I, and J from Figure 9 

 J I 

H 0.71 0.32 

J  0.47 

 

3.1.2.4 Gamma Matching 

The gamma measure stands for an internal connectedness. Its raw value is simply calcu-
lated as a relative measure of links per concept, and it thus projects a density of vertices. 
The procedure and reason is easily understandable when illustrated with the help of two 
structurally weak models (Figure 11). 

Figure 11: Two structurally weak models on a graph. 

 
 

Graph K from Figure 11 shows only single pair wise links, nothing is really intercon-
nected, whereas graph L just connects everything with everything. The latter usually 
yields higher plausibility, because untrained viewers can always find their specific ideas 
represented. Both represent the possible extremes to each side. K has a raw value of 2 
nodes per link (6 terms and 3 links), and L has one of 0.4 (6 terms, 15 links). The top 
raw value is always 2 but the bottom value depends on the number of concepts. Thus, 
the raw value Rγ is: 
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n
n!

2⋅ n − 2( )!
≤ Rγ ≤ 2 

To produce a readable output, the raw value is linearly scaled as γ between 0 (resem-
bling the bottom value) and 1 (resembling the top value, i.e., 2). Several studies showed 
that expert models seem to have a gamma value of around γ = 0.35 (Pirnay-Dummer, 
2006). However, also in these studies, the gamma value was not very selective between 
experts and non-experts. A final conclusion about the quantifying discriminatory power 
of the gamma matching is still a pending research question. After retrieving the individ-
ual values for gamma, its matching index between two graphs can be calculated as: 

s=1−
f1 − f2

max(f1, f2)
=1−

1− 0

1
= 0 

Of course, for the example graphs in Figure 11 this yields no similarity and a gamma 
matching of 0. 

3.1.2.5 Concept Matching 

Concepts within a graph are semantically represented by concrete terms. A term does 
not necessarily constitute the presence of a concept per se. A term can be an instance of 
a concept. However, once a term is embedded frequently in a similar way into its neigh-
boring web, it is likely that the term fills a concept. Due to its embeddings we heuristi-
cally assume, that if a term that converges into a net that has sufficient stability (fre-
quency) then it would also resemble a concept. Concept matching is the first semantic 
measure. Semantic measures look at the content as opposed to the structural measures 
that look at how the graph is structurally composed. As the name suggests, the first 
measure aims at the concepts that are used within a model. 

Figure 12: Two different concept maps from music. 

 
 

Figure 12 shows two graphical models that represent similar aspects from music. Both 
contain two specific composers and focus on the connection of two of their symphonies, 
namely Rachmaninoff’s fate theme that is composed as a variation on a theme from 
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Beethoven’s 5th symphony. M is more hierarchical and points out the symphonies as a 
central concept. It has the fate theme but leaves it open as to which musical piece this 
belongs to. N focuses on the variation technique as a common composing method, thus 
also showing that the fate theme is a variation on another symphonies theme. We leave 
the interpretation as to which model should be considered more expert-like to the ex-
perts themselves, consider them both as different learners’ models, and look into the 
language use, particularly the use of concepts between both text models. The matching 
concepts are already marked in both graphs. We have a set that matches (7 concepts) 
and two difference sets (1 concept in model M and 2 concepts in model N) for each 
graph. Again, Tverksy-Similarity is used to calculate the concept matching measure: 

( )
( ) ( ) ( ) 82.

25.15.7
7 ≈

⋅+⋅+
=

−⋅+−⋅+∩
∩=

MNNMNM

NM
v vvfvvfvvf

vvf
s

βα
 

As for structural matching α and β can be used to balance the difference sets, but again 
we recommend to control for this already by the assessment methods and leave the two 
at .5 each. In our case, N and M match as regards their concepts with a similarity of 
s=.82. 

3.1.2.6 Propositional Matching 

A real proposition needs to specify its predicate that connects two concepts. To that end 
the propositional matching does not use full propositions. It heuristically assumes that if 
two concepts are stably connected that there is an inherent reason for this association. 
Thus, propositional matching can be calculated with or without knowing the annotations 
at the links, e.g., equations, causal directions, or hierarchical functions. Propositional 
matching does something similar to concept matching. It counts the match of the edges 
(links, relations) between two graphs. We use the same graph as for concept matching, 
but with a different focus to illustrate the measure (Figure 13). 

Figure 13: Different propositions match between the two graphs N and M. 

 
 

7 propositions match between graph N and M (Figure 13), M has 3 propositions that do 
not match (difference set) and N has 4. Again, Tversky Similarity is calculated to de-
termine the propositional matching measure. 
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The concepts may be very well aligned and the models may have semantic similarities 
on the propositions. However, we also see that they are about something else in some 
details of the models. 

3.1.2.7 Balanced Semantic Matching 

This measure uses a combination of concept matching and propositional matching to 
balance for a specific dependency between both semantic measures. It is however not an 
aggregation of them and should not be misinterpreted in that way. Propositional match-
ing is dependent on concept matching: Only if concepts match then also propositions 
can match. The more concepts match, the more propositions may match. But proposi-
tions obviously do not automatically match only because the concepts do. Sometimes 
this dependency is hard to interpret from the first two semantic measures alone, espe-
cially when individual comparisons are aggregated otherwise (e.g., within group 
means). Balanced semantic matching accounts for this dependency by dividing proposi-
tional matching by concept matching, except if no concepts match then also balanced 
semantic matching is 0. 
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Thus, the balanced semantic matching value between the graphs N and M is s = .81. 

3.2 Manual analysis 
The purpose of the manual analysis was to validate the automated analysis with T-
MITOCAR for the application to complex dynamic problems. We only compared the 
two analysis methods for the national development planning task as a manual analysis 
of the verbal descriptions of the 129 subjects in the reindeer rangeland management task 
was virtually impossible.  

Subjects’ understanding was assessed using the questions about their description of the 
problem situation and the proposed solution strategy, which had been asked both before 
and after using the simulation. The responses of the subjects were printed on one side of 
an index card and their subject number was on the reverse side to enable blind scoring. 
A scoring protocol was devised that roughly assessed subjects’ understanding of detail 
complexity and dynamic complexity (Senge, 1990). Detail complexity represents the 
amount of content and can be measured for example, by the number of variables or con-
cepts and the number of links between them. Dynamic complexity refers to the presence 
of feedback thinking and appreciation of other important system dynamic concepts such 
as delays and nonlinearities. The scoring protocol awarded a number of points to these 
elements with the maximum number of points determined by the expert text. 

In the expert text, we identified 16 relationships between important variables. An exam-
ple of such a relationship is that per capita income depends on capital and total factor 
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productivity. Subjects received one point for each of those relationships that they identi-
fied, the maximum being 16. 

To measure subjects’ understanding of stock and flow variables and their interactions, 
points were assigned if subjects were able to infer the characteristics of successful in-
vestment strategies. In total we coded the verbal descriptions for a maximum of 6 such 
characteristics. Subjects received one point if their description included the concept of 
balancing education, health and roads (recognition of non-linearities). They received 
one point each if their description included education and roads requiring early invest-
ment and health requiring a somewhat delayed investment (recognition of stock vari-
ables with different delays in their inflows). Finally, they received one point each if they 
included the notion that borrowing early was important and that, at a later time, debt 
should begin to be paid off (recognition of stock and flow variables, and understanding 
how these variables interact to produce an increase or a decrease in the stock). The scor-
ing was fairly liberal, that is, any phrase suggesting they understood these key concepts 
was awarded a point.  

4 Results 
The comparison of subjects’ verbal descriptions of the problem situation and their in-
tended strategy to solve a dynamic decision making task and the expert descriptions 
helps revealing misperceptions of structure-behavior relationships in the decision mak-
ing task (section 4.1). If subject texts are available for several measurement time points 
during the decision making task (e.g., before, while and after interacting with a simula-
tor or a simulation based game) a progression of improved understanding over time (us-
ing an expert’s understanding as a standard) can be provided. Similarly, the differences 
in understanding between different experimental conditions (e.g., experimental and con-
trol group) can be analyzed (section 4.2). Verbal descriptions of a problem situation and 
the intended strategy to solve the problem can also be compared to the performance 
measures recorded during the decision making trials. With such comparisons, the rela-
tionships between elements of understanding and performance can be analyzed (section 
4.3). For the national development planning task we also compare the results from the 
automated and the manual analysis methods to gain insight into the validity of the auto-
mated analysis in the context of dynamic decision making tasks. 

The vast majority of the subjects in the national development planning tasks were 
students for whom English is a second language. Their problem and strategy 
descriptions were, to different degrees, lexically or grammatically incorrect or confusing 
for the automated scoring program. After an initial attempt at completely automated 
analysis, we filtered and fixed the protocols by hand. This could be done fairly 
objectively and thus should not distort the results. For the national development 
planning task we analyzed the data both for a long expert text and for a shorter expert 
text that contained less technical jargon and only a summarized description of the 
problem situation and solution strategy (see appendix 3). We only report on results with 
the long expert text as the results for the long and short expert texts were the same. 



 

_____________________________________________________________________________________________________________________________________________ 

23 

4.1 Comparing non-expert to expert texts 

4.1.1 Automated analysis 
For a quantitative comparison of subject and expert texts T-MITOCAR automatically 
generates association nets and calculates the structural and semantic indices described in 
the methods section. From 377 descriptions of the problem situation and the proposed 
strategy to solve the reindeer rangeland management task 365 could be automatically 
represented as an association net. The 12 texts that could not be represented as associa-
tion nets were too short for T-MITOCAR to analyze in a meaningful way. All of the 78 
descriptions of the problem situation and the proposed strategy to solve the national 
development planning task could be automatically represented as an association net.  

Table 6 contains the comparison measures that T-MITOCAR calculated for the two 
dynamic decision making tasks. The measures indicate the similarity between the aver-
age subject and the expert for texts provided by the subjects after reading the instruc-
tions but before interacting with any computer simulation tools. A value of 1 for any of 
the indices in the table would indicate that the subject text is equal to the expert text for 
a specific structural or semantic characteristic.  

Table 6: Structural and semantic indices between the expert’s and the subjects’ strategy 
description in the two dynamic decision making tasks 

  Reindeer rangeland man-
agement task 

National development 
planning task 

 Index  Similarity, mean (SD) Similarity, mean (SD) 

Structure Surface Matching  0.51 (0.26) 0.23 (0.07) 

 Graphical Matching  0.66 (0.22) 0.40 (0.13) 

 Structural Matching  0.58 (0.31) 0.20 (0.16) 

 Gamma Matching  0.62 (0.24) 0.50 (0.36) 

Semantics Concept Matching  0.38 (0.13) 0.31 (0.09) 

 Propositional Matching  0.14 (0.10) 0.11 (0.07) 

 Balanced Semantic Matching  0.38 (0.96) 0.76 (0.51) 
 

Table 6 indicates that for both decision making tasks, the structure of the subjects’ texts 
is closer to that of the experts than is the semantics of the texts. As the overall structural 
similarities are high, this may be interpreted as in indicator that the method of reasoning 
may point in the right direction. As the semantic similarities are low, it might however 
be that the subjects focus on irrelevant features of the problem situation and the solution 
strategy. Low semantic similarities indicate that subjects use different concepts and dif-
ferent propositions than the expert text. Individual subject association nets for the rein-
deer rangeland management task, for example, mention the relevant stock (lichen) but 
fail to mention the flows that change the stock, lichen growth and grazing (consump-
tion) by the reindeer. The failure to pay attention to the flows makes it difficult for sub-
jects to make effective decisions.  

Cronbach’s standardized alpha reliability was α=.61 (.73) between the three semantic 
measures and α=.89 (.90) between the structural measures for the reindeer rangeland 
management task (national development planning task). The reliability measures indi-
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cate the degree to which T-MITOCAR is able to generate stable results. The measures 
are slightly lower than in general validation studies (e.g., Pirnay-Dummer & Ifenthaler, 
2010) which implies a moderate effect that is specific to dynamic decision making 
tasks.  

4.1.2 Manual analysis 
Table 7 lists the relationships and characteristics of successful strategies described in the 
expert text for the national development planning task. The last column of the table in-
dicates the number of times these relationships or characteristics were mentioned in the 
subject texts.  

Table 7: Frequency of relationships and characteristics of successful strategies de-
scribed in the subject texts for the national development planning task 

goal: max. pc income-interest payments 13 

pc income = f(capital, TFP) 10 

capital increases with investment 2 

investment increases with pc income 1 

investment increases with education 10 

investment increases with health 10 

investment increases with roads 10 

PM can regulate resource expenditure 16 

available budget =tax revenue-interest payments 5 

tax revenue = pc income * tax rate 16 

deficit when desired > available budget 2 

surplus when desired < available budget 1 

deficit leads to borrowing 9 

borrowing leads to debt 14 

debt leads to interest payments 13 

relationships 

surplus leads to paying down 3 

balance resources 3 

education early 13 

roads early 12 

health later 4 

borrow early 13 

strategy 

pay down later 3 
 

Table 7 illustrates that a high number of subjects were able to identify the key stocks in 
the system (capital, education, health, roads, and debt). While they are able to see the 
capital stock (“pc income =f(capital, total factor productivity)” relationship) they fail to 
mention the inflow (capital increases with investment). Similarly, many subjects de-
scribe the debt stock and that it increases with borrowing. Only very few, however, are 
also able to describe the outflow that can decrease the stock (that is, the “surplus leads 
to paying down” relationship).  

Only one subject is able to close the private sector development loop between capital, 
pc income, investment and capital. Also, very few subjects describe the budget mecha-
nisms correctly (that is, the “deficit when desired > available budget” and the “surplus 
when desired < available budget” relationships). 
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The missing focus on the flows is confirmed in the descriptions of the characteristics of 
successful strategies. Many subjects realize that they need to finance the important early 
investments in education (because of the long delay) and roads (because of the rather 
immediate impact on growth) through borrowing. However, only very few subjects 
mention the importance of paying down debt later to avoid exponentially growing inter-
est payments on debt.  

The majority of subjects fail to recognize the importance of the non-linearities in the 
system, with only 3 subjects mentioning that the three resources (education, health and 
roads) need to be balanced for maximum growth and that as a result, investment in 
health must be increased a bit after investment increases in education and roads.  

4.2 Comparing texts over time and across groups 

4.2.1 Automated analysis 
Table 8 lists the means for the structural and semantic indices at three different meas-
urement time points (before, while and after interacting with the simulation tools) and 
for two experimental treatments (control group, experimental group using a beneficial 
learning strategy) for the reindeer rangeland management task. None of the differences 
between the measurement time points and treatments are statistically significant, indi-
cating that understanding did not increase over time or due to a specific experimental 
condition. 

Table 8: Structural and semantic indices (means) between the expert’s and the subjects’ 
problem and strategy description for the treatments and the measurement time points in 
the reindeer rangeland management task 

  MTP.1 MTP.2 MTP.3 

 Index  Ctr Exp Ctr Exp Crt Exp 

Structure Surface Matching  0.60 0.60 0.60 0.60 0.62 0.59 

 Graphical Matching  0.72 0.71 0.68 0.71 0.69 0.72 

 Structural Matching  0.63 0.63 0.64 0.60 0.64 0.60 

 Gamma Matching  0.61 0.62 0.59 0.61 0.60 0.63 

Semantics Concept Matching  0.38 0.39 0.40 0.40 0.41 0.41 

 Propositional Matching  0.14 0.16 0.15 0.16 0.15 0.16 

 Balanced Semantic 

Matching  
0.25 0.40 0.24 0.34 0.23 0.37 

Ctr = Control Group; Exp = Experimental Group; MTP = Measurement Time Point 
 

In the case of the national development planning task there were also no significant dif-
ferences in the indices between the measurement time points (MTP; before and after 
interacting with simulation tools). However, the results displayed in Table 9 show sig-
nificant differences between the control group and the experimental group for the struc-
tural indices. The experimental group has higher similarity indices than the control 
group. However, the two groups already differ at the first measurement time point, i.e., 
right after studying the instructions to the task but before interacting with the simula-
tion. The better indices for the experimental group can therefore not entirely be ex-
plained by the beneficial instructional strategy.  
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Table 9: Structural and semantic indices (means) between the expert’s and the subjects’ 
strategy description for the treatments and the measurement time points in the national 
development planning task  

  MTP1 MTP2 

 Index  Ctr Exp sig. Ctr Exp sig. 

Structure Surface Matching  0.38 0.40 * 0.34 0.40 * 

 Graphical Matching  0.56 0.61 ** 0.64 0.58 ** 

 Structural Matching  0.44 0.53 * 0.43 0.54 ** 

 Gamma Matching  0.63 0.57  0.64 0.53  

Semantics Concept Matching  0.28 0.33  0.29 0.34  

 Propositional Matching  0.09 0.06  0.09 0.06  

 Balanced Semantic 

Matching  
0.18 0.37  0.17 0.41  

Ctr = Control Group; Exp = Experimental Group; MTP = Measurement Time Point; sig. = significance 

* significant at .1; ** significant at .05; *** significant at .001 
 

According to Table 9 the experimental subjects used a significantly higher number of 
concepts in their textual descriptions than the control subjects (surface matching), the 
range of the concepts was significantly larger (graphical matching) and the entire struc-
ture of their association nets is significantly closer to the structure of the expert text 
(structural matching). It is interesting to note that the similarity in the case of the surface 
and the graphical matching decline slightly after interacting with the simulation tools 
(indices at measurement time point 2 (MTP2) < indices MTP1). The changes are, how-
ever, not statistically significant. The values for the structural matching increase from 
measurement time point one to measurement time point to two indicating a shift to-
wards a more expert structure of the text.  

4.2.2 Manual analysis 
Table 10 lists the mean number of relationships and characteristics of successful plan-
ning strategies described by the subjects of the national development planning task. 
Similar to the automated analysis the table differentiates between measurement time 
points (before and after interacting with the simulation tool) and two experimental con-
ditions.  

Table 10: Number of relationships and characteristics of successful planning strategies 
for the treatments and the measurement time points in the national development plan-
ning task  

 MTP.1 MTP.2 

 Ctr Exp sig. Ctr Exp sig. 

Relationships 3.9 4.1  3.9 4.3  

Strategy 0.9 1.8 ** 0.9 2.1 *** 

Ctr = Control Group; Exp = Experimental Group; MTP = Measurement Time Point; sig. = significance 

* significant at .1; ** significant at .05; *** significant at .001 
 

The two experimental conditions as well as the two measurement time points are not 
different in terms of the mean number of relationships described in the subject texts. 
The experimental conditions, however, have significant differences in the number of 
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characteristics of effective or successful strategies. As is the case in the automated 
analysis, the experimental group is already better than the control group at measurement 
time point one, i.e., right after studying the instructions for the task. The differences 
between the two groups become bigger at measurement time point two where the ex-
perimental group describes even more characteristics of successful strategies.  

4.3 Understanding of and performance in dynamic decision 
making tasks 
The performance results of the reindeer management task did not show significant dif-
ferences for the measurement time points or experimental conditions (experimental ver-
sus control group). We were also not able to detect any significant relationships be-
tween the structure and semantic measures and performance in the three decision mak-
ing trials.  

Table 11 lists the correlation coefficients between performance in the national develop-
ment planning task (value of per capita income minus per capita interest payments on 
debt) and the seven understanding measures generated by T-MITOCAR. Figure 14 il-
lustrates graphically (to emphasize changes) the development of the correlation between 
performance and the understanding measures (similarity measures) over time. 

Table 11: Correlation coefficients between performance and understanding measures in 
the national development planning task 

  Structure Semantics 

 Year 
Surface 
Matching 

Graphical 
Matching 

Structural 
Matching 

Gamma 
Matching 

Concept 
Matching 

Propositional 
Matching 

Balanced 
Semantic 
Matching 

Trial 1 2015 -0.11 -0.09 -0.04 0.18 -0.01 -0.16 -0.07 
 2020 -0.13 -0.13 -0.08 0.13 0.01 -0.14 -0.05 
 2025 -0.10 -0.08 -0.04 0.08 0.03 -0.11 -0.03 
 2030 0.07 0.11 0.11 0.17 0.11 0.04 0.05 
 2035 0.20 0.24 0.22 0.21 0.15 0.13 0.08 
 2040 0.26 0.31 0.27 0.22 0.16 0.17 0.09 
 2045 0.28 0.33 0.29 0.23 0.17 0.19 0.10 
 2050 0.29 0.35 0.30 0.23 0.17 0.20 0.10 
 2055 0.29 0.35 0.30 0.23 0.17 0.20 0.10 
 2060 0.29 0.35 0.30 0.23 0.17 0.20 0.10 
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Figure 14: Performance similarity fit for the national development planning task 

 
 

Figure 14 shows the convergence of the correlations between the performance measures 
(in-game-performance-measures IGPM) and the similarity measures (s) over time dur-
ing the first trial. *** indicate correlations that are statistically significant, p<.001). The 
“in game rounds” label of the x axis denotes the time in the simulation model with 1 
representing the year 2015 and 10 the year 2060. The correlation coefficients increase 
over time. The more similar a subject text becomes with respect to the expert text (i.e., 
the higher its similarity measure) the better performance becomes at the end of the 
game. From this we can conclude that the text descriptions (represented by the under-
standing or similarity measures) can explain the performance measures better over time. 
Both structural and semantic measures converge to the performance measures and can 
more stably explain the resulting performance. In general, the structural measures show 
higher correlation coefficients than the semantic measures. Understanding of different 
aspects of the structure of the complex dynamic problem therefore determines perform-
ance more than understanding of entire propositions (concept-link-concept) does.  

 

5 Discussion 
In our ongoing research on learning in system-dynamics based learning environments, 
evaluating and improving such systems depends foremost on our ability to measure the 
learners’ outcomes. Those outcomes are of two main categories: learners’ performance 
within the environment (to what extent they make decisions which result in beneficial 
simulation results) and learners’ understanding (to what extent they correctly compre-
hend the nature of the underlying simulation model and the principles for effectively 
managing the simulation model). Measuring performance within the learning environ-
ment is relatively straightforward. Measuring understanding, which is inside the learn-
ers’ heads, is much more difficult. In previous work we have used the traditional 
method of asking learners to write statements describing their understanding and think-
ing processes. Those verbal protocols are then analyzed by human raters who search for 
statements in the protocols which reflect either good or poor understanding and good or 
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poor thinking, such as a strategy for managing the simulation. Such analysis must be 
done very systematically and objectively, for example, by raters being blind to the ex-
perimental conditions represented by particular protocols. Such “by hand” analysis is 
difficult and time-consuming, and their own validity issues are hidden by their meth-
odological nature: Even a sufficiently available objectivity does not necessarily lead to 
validity. This study subjected data from research participants to an automated analysis 
(T-MITOCAR) which compares learners’ protocols to expert protocols, and did so 
across time (to assess learners’ improvement) and between experimental conditions (to 
assess the relative effectiveness of different instructional strategies within a system dy-
namics based learning environment).  

Our main research goal was to evaluate the validity between the manual and the auto-
mated quantitative method for assessing understanding in dynamic decision making 
tasks. Our past work, using manual analysis of verbal protocols, has demonstrated sig-
nificant differences in understanding between learners using beneficial learning strate-
gies (preliminary behavior exploration) and learners not using such strategies 
(Kopainsky & Sawicka, accepted; Kopainsky, et al., 2009). The automated analysis 
would demonstrate validity for measuring learner understanding if its numerical indices 
showed similarly that learners working with good instructional strategies did better than 
learners with poorer (or more traditional) instructional strategies. Our analysis of the 
automated indices tends towards supporting its validity in the case of the national de-
velopment planning task. The manual as well as the automated analysis revealed a miss-
ing focus of the subjects’ texts on the flows that can change the stocks. Both methods 
for analyzing differences between experimental conditions found that learners receiving 
the theoretically better instructional strategy improved more (from their initial descrip-
tion to their final description) than did the learners receiving the theoretically poorer 
instructional strategy. The results from the automated analysis are thus in keeping with 
our theoretical prediction and in line with the manual analysis, which provides a form of 
construct validity. 

While the validity in general seems to be given a number of issues have to be consid-
ered. First, the reindeer rangeland management task revealed no significant results for 
subject-expert comparisons or for learner progression over time or comparisons between 
experimental conditions. The system dynamics model underlying the reindeer rangeland 
management task is a very small model with only one stock and two flows. Verbal de-
scriptions of both the model structure and the optimal strategy to solve the task can only 
be very short. Thus, minor differences in the verbal descriptions and the use of terms 
may result in major deviations from the expert text. An automated analysis of verbal 
protocols such as the one by T-MITOCAR therefore seems to be practical only for tasks 
with larger underlying simulation models. 

Second, the number of participants in the national development planning task was rather 
low and thus the statistical power of our correlation analyses could be improved. In ad-
dition to more subjects, modifications in the decision making task itself might help 
identifying the understanding related drivers of performance in more detail. As dis-
cussed in past studies (e.g., Pirnay-Dummer, 2006), a good writing task is very impor-
tant for the analysis to work. Such a task would not only induce the learners to write 
essentially more text, but to be more precise about what they write. There are several 
known ways to construct better writing tasks. Task embeddedness is one approach, in 
which the writing becomes an integral part of the task itself to make it less obvious that 
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it is used for assessment. Usually, to write for a peer or to write, for example, to a “local 
politician in order to help him or her with a certain problem” has shown to be success-
ful.  

Although we believe that system dynamics-based learning environments hold great po-
tential for improving important types of human performance, attaining such improve-
ment depends upon two things: designing those environments and conducting research 
to measure their learning effectiveness. Measuring learning effectiveness has always 
required great time and effort. As a part of our program to design and improve system 
dynamics-based learning environments, better methods to measure learning effective-
ness are necessary. In this study we have begun the investigation of automated methods 
for assessment of learning outcomes. Success with them will enhance our capacity to 
evaluate and improve the learning environments we design. The results of this study 
provide some evidence that automated analysis of learning outcomes can be as accurate 
and valid as more traditional and labor-intensive methods. Our next step is to refine our 
collection of learning data (e.g., using embedded story questions) for input to the auto-
mated technique, and to validate that for different conditions in which differences in 
learning can be expected to occur. 
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Appendix 
 

Appendix 1: Instructions for the reindeer rangeland 
management task (modified with respect to the original 
instructions in Moxnes, 2004) 

For this activity you will play the role of the manager of a reindeer herd. Your task is to 
produce as many reindeer as possible. But you must also make sure that the animals do 
not overgraze the lichen, which is the limiting source of food for the reindeer in winter.  

Setting 

Your reindeer herd grazes on a pasture used exclusively to feed your herd. Hence its 
resources will depend only on your decisions regarding the herd size. In summer, food 
supply is no problem – there is always plenty of grass and herbs. In winter, the food is 
scare and limited to lichen. If there is no lichen, all the animals will die.  

Lichen is a low-growing species that is part plant and part fungus.  

  
 

Lichen re-grows itself during summer when the reindeer feed on other plants. Lichen 
grows by propagating its spores. Lichen growth depends on its density and is described 
by an inverse U-shaped function as illustrated below.  
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When there is very little lichen,

i.e. when lichen density is very low,
there are just a few spores and 
there will be only little growth. 

(2) 
When there is very much lichen,

i.e. when lichen density is very high, 
they start to fold onto themselves

 and stop growing.(3) 
In between these extremes,

the growth reaches a maximum.
 

 

Grazing by reindeer affects lichen density. It therefore also influences the lichen growth 
rate. You should assume that 1000 reindeer eat 80g/m2 of lichen during one winter. So 
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as you can see, the reindeer are dependent upon the lichen, but the lichen is dependent 
upon the reindeer as well. That means that you have to maintain both the reindeer and 
the lichen populations together. 

 

Starting point 

The previous owner has steadily increased the number of reindeer from 1150 to 1900. 
As a consequence, the lichen density [g/m2] has dropped from 1000 to 488 g/m2. This 
development is shown in the following diagram and table. 
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density 
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herd size 
[number of 
reindeer]

1 1000 1150

2 964 1200

3 930 1250

4 900 1300

5 872 1350

6 842 1400

7 814 1450

8 786 1500

9 756 1550

10 726 1600

11 694 1650

12 658 1700

13 622 1750

14 582 1800

15 538 1850

16 488 1900  
 

Decisions to make 

It is your job to decide how to maximize the size of your reindeer herd, while maintain-
ing a manageable lichen density. You cannot control the lichen directly. You can con-
trol the number of animals you want to keep on the pasture, and that controls the 
amount of grazing (food eaten) by the animals.  

Each year for 15 years, you will set a desired herd size. You are trying to have the 
maximum number of animals you can, while also maintaining the lichen at the best den-
sity for its growth. You should try to achieve the maximum sustainable herd size as 
soon as possible. 

You can vary the herd size freely: You do not have to think about the sex ratio, the 
number of calves, losses of animals, or the age structure of the herd.  

 

Appendix 2: Instructions for the national development 
planning task 

You have just been elected the Prime Minister of Blendia. You will stay in office as 
prime minister for a period of 50 years. You are thus in charge of the long term devel-
opment of Blendia.  
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Blendia is an island located off the western cost of Africa. It is currently one of the 
poorest countries in the world with an income per capita of 300 $ per year. Your task is 
to bring your country onto a sustainable economic growth path and achieve and main-
tain the highest possible income per capita.  

Income per capita results directly from production and production is driven by the 
available capital (machinery and its technology level) as well as by total factor produc-
tivity. As a government you cannot invest in capital directly. However, you can improve 
the general investment environment. Investors in capital will invest the potentially 
available money (a share of per capita income) more when the labor force is more pro-
ductive and roads provide access to input and output markets for the goods produced. 
You can specifically invest in the following three resources: 

• Education 

Investments in education are used for building and maintaining schooling capacity, 
i.e., for building and maintaining schools, for training and paying teachers, as well 
as for paying books. 

Education is the stock of knowledge, skills, techniques, and capabilities embodied 
in labor acquired through education and training. These qualities are important for 
the labor force to understand and perform tasks, to properly use the available physi-
cal capital, and to efficiently organize the production process. Maximum or optimal 
education would mean an average adult literacy rate of 100% (maximum or optimal 
value for Human Development Index calculations).  

• Health 

Investments in health are used for building and maintaining basic health care ser-
vices, i.e., for building and maintaining health care centers, for training and paying 
doctors and nurses, as well as for paying drugs. 

Health defines the strengths of the labor force and thus its capability to properly use 
the available physical capital and to efficiently organize the production process. 
Maximum or optimal health would mean an average life expectancy of 85 years 
(maximum or optimal value for Human Development Index calculations). 

• Roads 

Investments in roads are used for building and maintaining roads. 

Efficient and extended infrastructure allows faster and cheaper access to the market, 
broader access to information, and reliable access to the inputs required for produc-
tion. Maximum or optimal roads would mean a value of kilometers of roads per 
person as in the year 2005 in the United States. 

Budget issues 

For making your investment decisions you will have to take a number of budget mecha-
nisms into account. 

Your expenditures for education, health and roads are fed by two sources:  

• Revenue: Through taxation the government generates revenue from per capita in-
come.  
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• Borrowing: You can borrow money from foreign resources. If you borrow money 
you start accumulating debt. Each year you will have to pay interest on your debt. 

Government development expenditure 

• In Blendia, government development expenditure is the total revenue minus interest 
payments on debt.  

Decisions 

Every five years, as part of a national development planning effort, you decide on the ex-
penditures for education, health and roads. You can do three things and as the prime minis-
ter you have the absolute power to decide (see also Figure 1): 

1. Distribute more than the total available development expenditure. In this case you 
borrow money and create a deficit. 

2. Distribute less than the total available development expenditure. In this case you 
will have a surplus and be able to service debt or lend money. 

3. Distribute the total available development expenditure without creating neither 
deficit nor surplus. 

Figure 1: Budget decisions mechanism with initial values 

Government development expenditure  90 $ per person 

– Education expenditure – 30 $ per person 

– Health expenditure – 30 $ per person 

– Transportation expenditure – 30 $ per person 

Surplus (+)/deficit (-)  0 

Evaluation 

Your performance will be evaluated on the following basis: 

• Income per capita: You should try to achieve and maintain the highest possible in-
come per capita. The country’s official goal is a value of 600 $ per capita in 50 
years from today. 

• Interest payments on debt: Per capita income can only be maintained if you have 
not accumulated excessive debt. At the end of the 50 years period the interest pay-
ments on debt in year 50 will be deducted from your income per capita in year 50. 
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Appendix 3: expert texts for the dynamic decision making 
tasks 

Expert text for the reindeer rangeland management task 
“I play the role of the manager of a reindeer herd. I need to produce as many reindeer as possible and I 
have to reach the maximum sustainable herd size as soon as possible. The limiting source is lichen or 
lichen density, respectively. 

Lichen density increases with lichen growth and decreases with grazing. Grazing depends on the number 
of reindeer and the grazing per reindeer. Lichen growth depends on lichen density. If lichen density is 
equal to the optimal lichen density, lichen growth will be equal to maximum lichen growth. If lichen 
density is above or below the optimal lichen density, lichen growth will be lower than the maximum li-
chen growth. The relationship between lichen density and lichen growth describes an inverse U-shaped 
function. 

For lichen density to remain stable lichen growth needs to be equal to grazing. 

The maximum sustainable herd size can be produced if lichen density is equal to the optimal lichen den-
sity and grazing is equal to the maximum lichen growth. The maximum sustainable herd size is 1250 
reindeer. 

If grazing exceeds lichen growth the number of reindeer has to be reduced; if grazing is below lichen 
growth the number of reindeer can be increased. 

The previous owner has left me an overgrazed pasture with lichen density below optimal lichen density 
and too many reindeer.” 

Detailed and technical expert text for the national development planning 
task 

“I play the role of the prime minister of Blendia, a very poor sub-Saharan African country. My task is to 
achieve and maintain the highest possible income per capita. 

My performance is evaluated by subtracting interest payments on debt from per capita income. 

Per capita income is determined by the amount of capital per person and total factor productivity. Capital 
increases with investment and decreases through depreciation. Investment depends on the potential in-
vestment which is the fraction of per capita income used for savings and on the investment environment.  

The investment environment improves with higher levels of education, health and roads. Higher levels of 
education, health and roads also increase total factor productivity. 

Education, health and roads improve as a consequence of education, health and roads expenditure. As the 
prime minister I decide on the desired per capita budget for education, health and roads which together 
yield the desired per capita development budget.  

The available per capita development budget depends on tax revenue and interest payments on debt. Tax 
revenue is per capital income multiplied by the tax rate. 

The difference between the desired per capita development budget and the available per capita develop-
ment budget determines whether there is a deficit or surplus. In the case of a deficit I need to borrow 
money and borrowing accumulates debt per capita. In the case of a surplus I can pay back debt per capita.  

The higher the debt per capita the more interest has to be paid on debt. Interest payments on debt are 
subtracted from the tax revenue and thus decrease the available per capita development budget.  
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Neither roads, health nor education alone can improve the investment environment very much. The in-
vestment environment improves fastest when the levels of education, health and roads are similar. Educa-
tion, health and roads therefore need to develop in a balanced way.  

Investments in education take a long time to have an effect. The same holds true for investments in 
health. The health investment delay is, however, considerably shorter than the education investment de-
lay. The roads investment delay is fairly short.  

In order to stimulate a balanced growth of education, health and roads I need to prioritize education in the 
early years. I also need to invest in roads in the early years because this generates per capita income fairly 
soon. 

If the desired per capita development budget exceeds the available per capita development budget a defi-
cit arises that can only be covered by borrowing. Borrowing adds to debt per capita and leads to exponen-
tially growing interest payments. 

At the outset, it is very effective to borrow money and use it to improve education, health and roads. With 
reasonable debt per capita in the early years and adequate allocation to education, health and roads, per 
capita income starts growing so well that debt per capita can be paid back and education, health and roads 
expenditures increase even more.” 

Shorter expert text for the national development planning task  
Blendia is a very poor country. I have to achieve and maintain the highest possible per capita income. 

Per capita income is determined by capital and total factor productivity.  

Capital increases with investment and investment increases with higher levels of education, health and 
roads.  

Higher levels of education, health and roads also increase total factor productivity. 

Education, health and roads improve as a consequence of education, health and roads expenditure.  

I determine the desired expenditure for education, health and roads.  

The available expenditure is the tax revenue minus interest payments on debt.  

Tax revenue is per capita income multiplied by the tax rate. 

The difference between the desired expenditure and the available expenditure determines whether there is 
a deficit or surplus.  

In the case of a deficit I need to borrow money. Borrowing accumulates debt which leads to growing 
interest payments.  

 

I should balance the levels of education, roads and health because investment increases most with bal-
anced resources. 

I should invest early in education because it has the longest delay and therefore takes time to have an 
effect on per capita income.  

I should also invest early in roads because it has a more direct impact on per capita income.  

I should also borrow, that is, increase debt, at the beginning because then I have money to invest in edu-
cation, roads and health right away.  

Later I should pay off the debt, after per capita income has improved because interest payments grow 
exponentially. 


