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INTRODUCTION 

With different fortunes and oscillating enthusiasm, computer simulation has supported 

theoretical investigation in managerial disciplines since the 60’s. In the attempt to 

further corroborate the role of formal modeling and computer simulation in the 

repertoire of research strategies available to social scientists, the aim of the present 

essay is to sketch out a framework for an enquiry that combines computer simulation 

and field-based investigation, this latter a typical research strategy in social sciences.  

To begin with, it is important to set up in the front a definition for computer simulation. 

Computer simulation has to do with the manipulation of symbols using a computer 

code; more specifically, it uses algorithms to derive propositions from the assumptions 

that come together in a computer model. A computer model is a formal model in which 

‘[…] the implications of the assumptions, that is, the conclusions, are derived by 

allowing an electronic digital computer to simulate the processes embodied in the 

assumptions’ (Cohen and Cyert 1961: 115).  

In this respect, computer models can be regarded as special cases of mathematical 

models (Cohen and Cyert 1961) in which conclusions are derived from assumptions by 

using a computer simulation rather than a process of analytical solution. On the other 

hand, however, computer models not necessarily have to be stated in mathematical and 

numerical form (Clarkson and Simon 1960) since they allow manipulation of symbols 
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that can be words, phrases and sentences. Therefore, computer models make up the 

subset of mathematical models that are solved numerically rather than analytically but 

not all the computer models are stated in mathematical terms since they may incorporate 

not-mathematical symbols. In this respect, Troitzsch suggests that computer simulation 

is a third system beside natural language and mathematics (1998: 27). 

In principle, computer simulation is just a technologically-aided process of deduction. 

Yet, the crude technology can vary strongly from different approaches and, more 

importantly, the difference in the adopted technology often unveils profound differences 

in the philosophy that lies beneath modeling. 

System Dynamics approach is inspired by the idea that behavior of individuals that are 

embedded within a social system as determined by the feedback nature of the causal 

relationships that characterize the system (Forrester 1958, 1961). In this line, System 

Dynamics models reduce aggregate and often puzzling behaviors into underlying 

feedback causal structures and, a consequence, typically aggregate agents into a 

relatively small number of states, assuming their perfect mixing and homogeneity 

(Rahmandad and Sterman 2004). 

Taking as an example another modeling and simulation approach, Agent-based 

modeling, we observe that underpinning viewpoint is notably different. In Agent-Based 

models logic of investigation is typically inclined to show how interaction among 

individual decision-making and learning may generate complex aggregate behavior. 

Consequently, modeling needs to preserve heterogeneity and individual attributes.  

However, independently of the approach adopted and the inspiring philosophy, research 

work employing computer simulation has frequently been regarded, in social sciences, 

as influenced by an autonomous logic in respect to mainstream research. Too 
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formalized to effectively capture the complexity of social processes for someone, 

leading to results excessively dependent of specific parameters’ calibrations for others. 

Simulation studies, however, have a long tradition in organizational research. Going 

back to seminal work in the area of the behavioral theory of the firm and organizational 

decision theory, some of the most important theoretical pieces are based on a simulation 

approach. This is true, for example, for the well known Garbage Can model (Cohen, 

March and Olsen, 1972) and for the work leading to the development of The Behavioral 

Theory of the Firm (Cyert, Feigenbaum and March 1959; Cyert and March 1963).  

In recent times, computer simulations have recuperated terrain in mainstream 

management journals and the aim of this essay is to contribute to this process of 

legitimization process by laying bare an approach to associate formal modeling, 

computer simulation and field study to conduct an enquiry in managerial sciences. The 

approach that we describe is conceived of independently of different philosophies 

beyond formalization and simulation.  

The article is organized as follows; in the next section I consider a sample of recent 

works that use simulation and I muse on the differences in the underlying logic of 

enquiry. In the following section, I focus on a specific issue: the association of formal 

modeling, computer simulation and grounded field research. In the last section of the 

chapter I draw some conclusions. 
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COMPUTER SIMULATION FOR THEORY DEVELOPMENT IN STRATEGY 

AND ORGANIZATION 

In examining early contributions that adopt a research design that includes formal 

modeling and computer simulation, three groups of typical justifications recur to justify 

the adoption of this methodology. 

First, computer simulation, in comparison to formal analytical approaches, allows 

retaining a greater richness of details. Economists that adopted computer simulation 

operated in a cultural milieu in which research method, and rhetoric, was erected upon 

the rock-hard plinth provided by mathematical modeling. The typical way of proceeding 

demanded consequences of modeled assumptions to be deducted by the means of 

analytical solution of a mathematical model. The rigor of the approach, however, does 

not come without costs since the need to solve analytically a model bounds the 

complexity that the model can incorporate. The portrayal, for example, of non linear 

relationships among variables introduces in a model a considerable amount of 

complexity so to possibly impair its analytical solution.  

Under this perspective, we can interpret the candid enthusiasm that permeates writings 

of Cohen, for example, who explains that ‘It requires a much more extensive knowledge 

of mathematics to obtain an analytical solution to a complex mathematical model than it 

does to formulate the model’ and, thus, computer simulation ‘… allows a more flexible 

and easy approach and preserves richness of details…’ (Cohen 1960: 535). This 

enthusiasm is shared by Orcutt that gives the idea of how powerful computer simulation 

appeared to these pioneers as a tool to deal with complex systems: 
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The use of simulation techniques by the authors of this demographic 

study does not, of course, offer any guarantee in itself that they have 

produced an acceptable and useful population model. However, by 

producing a feasible means of solution it permitted them to introduce 

a variety of interactions, variables, nonlinearities and stochastic 

considerations into their model which they otherwise would have 

been forced to leave out despite strong evidence of their importance.  

 

(Orcutt 1960: 905) 

 

This characteristic rescues the researcher from a typical dilemma. The dilemma requires 

a researcher to either abandoning the idea to represent the object of study closely, 

thereby accepting costly simplification in order to rigorously generate testable 

hypotheses through mathematical analysis, or to preserve complex representations of 

the object of study at the cost of producing appreciative theories of behavior that have to 

deal with the ambiguity of natural language. 

 

A second motive that is frequently mentioned is that in a computer model the 

relationship between assumptions and deducted consequences can be easily manipulated 

to account for a variety of changes and amendments in the model structure. The fact that 

a computer simulation does not require an analytical solution to derive consequences 

from assumptions entails that researchers can explore how modifications in a model’s 

structure have an impact on the unfolding behavior of the model without remaining 
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entrapped into the quandaries of often laborious mathematical analysis. As Cohen 

explains: 

 

A further advantage of computer models is the ease of modifying the 

assumptions of the theory. When suitable programming languages 

become available, relations can be inserted, deleted, or changed in 

the model, and only local changes, which can be quickly made, will 

be required in the computer program.  

 

Modifications of this kind will have a much smaller effect on the 

procedures for simulating a forma1 model than they would on the 

means used for obtaining analytical solutions to the model  

(Cohen 1960: 536) 

 

Considering the work done by Hoggatt (1957), for example, Shubik noted that ‘The 

number of cases and conditions worked out by Hoggatt would have been unfeasible 

without a simulation’ (Shubik 1960: 917). As Cohen and Cyert suggest (1961), the work 

of Hoggatt is a good example of how computer simulation may help to revive an old 

model (in this case the neoclassical decision model for determining output of firms 

given a market price) addressing complex questions that were not practicable with other 

techniques of analysis. The easiness in the manipulation of computer models is also 

connected to the fact that computer models may be structured in a modular format. 

Thus, ‘It is extremely convenient to be able to formulate a complex model in terms of 

several component submodels, to dea1 with each component separately at first, and then 
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to integrate them into a complete model.’ (Cohen 1961: 45). In similar veins, Gilbert 

and Troitzsch (2005) suggest that simulation is more appropriate for formalizing social 

science theories than mathematics because programming languages are more expressive 

and less abstract than most mathematical techniques and because computer models are 

often modular, so that major changes can be made in one part without the need to 

change other parts of the program. 

 

Finally, computer simulation allows researchers to generate complex hypotheses of a 

system’s behavior that are testable against empirical world. This is because deductions 

obtained with computer simulation, besides being as rigorous and reliable as those 

obtained through mathematical analysis, may be cast in the form of time series to be 

directly compared with observed behaviors. Imagine a theory that predicts, in specified 

circumstances, the emergence of a particular behavior over time of a specified variable. 

In this case, a verbal description of the behavior has to be compared with empirical 

paths of behavior. This verbal description may be ambiguous in comparison to the 

string of reported quantities collected over time as appearing into an empirical time 

series. On the other hand, computer simulation, to produce hypothesis of behavior, 

adopts the same language that is used to collect empirical time series: a string of 

quantities reported in specific intervals of time. In this way, computer simulation 

improves the capability to generate testable hypotheses of behavior (Meinhart 1966). As 

Orcutt explains: computer simulation makes it ‘... possible comparison of generated 

results with observed time series and cross sectional data and thus permitted testing of a 

sort that would not otherwise have been possible.’ (Orcutt 1960: 905). 
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THE LOGIC OF ENQUIRY USING COMPUTER SIMULATION  

As Cohen and Cyert suggest (1961), computer models are of two types: synthetic and 

analytic. In synthetic models, the modeler knows with a high degree of accuracy the 

behavior of the component units of the phenomenon under scrutiny. On the other hand, 

in analytic models, the behavior of the phenomenon is known and the problem is to 

capture the mechanisms that produce the behavior. In this classification, synthetic and 

analytic models reveal different underpinning logics of enquiry. While synthetic 

computer models are informed by a pure deductive logic, analytic models are 

characterized by an inductive logic (Cohen 1961). 

To start with, however, a word has to be said to better define what we mean by 

inductive or deductive process. More specifically, the associations synthetic/deductive 

and analytic/induction may sound not necessarily intuitive. 

Deductive process has been acknowledged as a key component of scientific reasoning 

since Aristotle. A deductive inference moves from general assumptions to specific 

consequences; in this respect, consequences drawn from assumptions have an inferior 

degree of universality than their premises. Deductive inferences have two properties; 

first, the information embodied in the deducted consequences is more or less explicitly, 

included in the assumptions; second, deducted consequences originate necessarily from 

assumptions. In other words, if assumptions are correct, deducted consequences must be 

correct as well. 

On the other hand, inductive processes move from particular instances to general 

conclusions. In this respect, in inductive inferences, derived conclusions are not entirely 

included in the premises. In other words, the information content in inducted 

conclusions is greater that the one crystallized into the premises. Thus, inductive 
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inferences say something new, or different, in respect to premises; thus, they add 

information. This property conceals an hazard because correctness of premises does not 

necessarily imply that conclusions are correct as well. 

As for the distinction between analytic and synthetic, starting from Kant’s Critique of 

Pure Reason (firstly published in 1781), an analytic statement is purely explanatory of 

an existing concept and it does not add more information than that already contained 

into the concept itself. A classic example reported by Kant regards the statement that 

affirms that an entity of matter is extended in the space. The fact that an entity of matter 

is extended in the space is already implicit in the definition of entity of matter. It does 

not add information regarding the concept entity of matter; rather it provides an 

extension, or further explanation, of the concept. On the contrary, a synthetic statement 

is extensive because it adds more information than that contained originally in a 

concept. For example, the fact that an entity of matter has a weight, explains Kant, is 

not included necessarily in the concept of entity of matter (it suffices to think of a state 

of absence of gravity) and rather it stems from a synthesis between an original concept 

and a quality external to the concept. 

Given this distinction between synthetic and analytic statements, Peirce, for example, 

put forward a dichotomy between deductive/analytic and inductive/synthetic inferences 

(Harshorne and Weiss 1931/1935).  

Thus, we have to be very careful in interpreting the distinction proposed by Cohen and 

Cyert between analytic/inductive and synthetic/deductive, since in their framework the 

concept of synthesis pertains to the use of simulation to aggregate local, or partial, 

components of a phenomenon, into a global emerging behavior. On the other, analysis 

concerns the dissection of behavior of interest into its components, or determinants.  
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To be clear about the wording we are going to use and to avoid misunderstanding, we 

focus on the distinction between computer simulations that adopt a deductive or an 

inductive logic of inference and we ignore the dichotomy between analytic and 

synthetic computer models. Within this framework, deductive computer models focus 

on the specification of a set of mechanisms or processes and explore unfolding 

consequences of such specifications whereas inductive computer models move from the 

definition of an aggregate behavior and use simulation to test whether candidate 

mechanisms or processes are able to determine in vitro, and thus explain, the aggregate 

behavior. 

We suspect, however, that simulation studies show a much broader variety of 

approaches that blend elements of deduction and induction. In addition, in computer 

simulations induction and deduction are intertwined in a cyclical process of theoretical 

investigation. Induction works when we introduce in a model a casual mechanism that 

we deem possibly responsible for an observed behavior. In this case, we run history 

backward to reproduce the conditions for the behavior under study to emerge. On the 

other hand, once we have found a candidate causal mechanism that we think may 

explain observed behavior, we might be interested in understanding how robust is the 

relationship between causal structure and the emerging behavior. Additionally, we may 

want to understand if the causal mechanism is connected to other possible behaviors. In 

other words, we may be interested in the relationship between the causal mechanism, or 

a class of similar causal mechanisms, and a class of behavioral phenomena. In both 

cases, we can generate a sensitivity analysis by simulating the model with different 

calibration of model’s parameters or we can simulate the model with a variety of 

modifications in the structure of key causal mechanisms. In this way, we can explore 
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near-histories or hypothetical histories (March, Sproull and Tamuz 1991) in order to 

articulate our understanding of a phenomenon. When we run a computer model and we 

observe simulated consequences of changes in parameters’ calibration or amendments 

in the model’s structure, we are embarking into a deductive inference. Thus, deduction 

and induction are inseparable in a research design based on computer simulation. We 

thus expect differences among simulation studies to be detected in the degree of 

accuracy of the description of the elements that compose an aggregate phenomenon or 

of the features that characterize the aggregate phenomenon itself. Simulation studies in 

which a deductive logic of inference prevails will move from accurate modeling of 

components while simulation studies informed by an inductive logic will set forth from 

the description of an aggregate behavior. 

Nonetheless, maintaining two idealtypes of computer models, deductive and inductive, 

seems a good strategy, or at least a safe point of departure, to get the picture of what 

logic of enquiry simulation studies have adopted in the field of strategy and 

organization. Differently from other typical, qualitative and quantitative, research 

strategies that are more legitimized and disciplined, simulation-based research has been 

structured in a variety of different guises. Only recently, Davis, Eisenhardt and 

Bingham (2007) have convincingly positioned simulation studies among other methods 

of enquiry within strategy and organization research developing a roadmap for rigorous 

simulation-based research. To carry on this avenue, we apply the two idealtypes to 

capture the often subtle differences in the logic underlying simulation studies.  

 

To address typical features of deductive inference in simulation studies, we begin from 

the classic Cohen, March and Olsen’s Garbage Can simulation model (1972). The 
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authors do not specify in details a reference mode of behavior to be explained, beyond 

the broad idea that they want to address the way in which organized anarchies1 embark 

in decision-making activity. Rather, the emphasis is on the modeling of the structural 

features of decision-making processes in specific types of organizations. The aim is to 

develop ‘a behavioral theory of organized anarchy’ (1977: 2). To do so, the authors 

develop a model that describes decision making within organized anarchies and 

examine ‘…the impact of some aspects of organizational structure on the process of 

choice…’ (1972: 2). The structure of the research design encompasses the modeling of 

organizational decision-making processes and the analysis of the behavioral 

consequences of such modeling.  

More specifically, the authors adopt a view of an organization as a garbage can in 

which are collected ‘…choices looking for problems, issues and feelings looking for 

decision situations in which they might be aired, solutions looking for issues to which 

they might be the answer, and decision makers looking for work.’ (1972: 2). Along 

these lines, they modeled problems that require a specific amount of energy devoted by 

members of the organization to be solved and depicted two matrix structures that 

describe organizational features. The first matrix defines the access structure that 

associates choices to problems by determining what choice is accessible to what 

problem. The second matrix represents the decision structure and associates decision-

makers to choices by establishing what decision maker is eligible to make what choice.  

In their experimental design, they portrayed different kind of organizations with 

different energy distribution, different problem loads and different organizational 

structures. Through simulation experiments, the authors derived emerging decision-
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making behaviors with typical features. For example, they observed that, depending of 

the different assumptions crystallized into the initial calibration of the model, 

organizations may show different styles in decision-making and problem-solving.  

We define this type of work deductive since the curiosity that triggers the effort of 

researchers regards the deduction of typical emerging patterns of organizational 

behavior given the description of organizational structures and decision-making 

processes.  

On the other hand, researchers adopt an inductive inference when they proceed from a 

phenomenon, more specifically, from the description of a behavior that unfolds 

longitudinally over time, and use computer simulation to select plausible determinants 

of the phenomenon among alternative causal mechanisms.  

For example, Adner (2002) studied the emergence of disruptive technologies and he set 

up his research design by stating at the front the description of the characteristics of the 

phenomenon he wanted to investigate. After clarifying that his contribution is to explain 

the emergence of disruptive technologies, Adner modeled consumers’ individual 

preferences and firm technological strategy to obtain mechanisms that are sufficient to 

produce the phenomenon.  

A similar logic inspires the work of Sastry (1997). Sastry analyzed Tushman and 

Romanelli’s verbal theory of punctuated change to demonstrate that the verbal theory 

does not contain the necessary causal mechanisms to explain the described behavior. 

Sastry conducted a textual analysis of the verbal theory and used qualitative 

descriptions of behavior to produce a dynamic behavior to test the theory. Then, she 

identified constructs and causal relationships that provided the basis of the formal 

model. Once a computer model that formalized key traits of the theory was built, Sastry 
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simulated the model and compared simulated behavior with those crystallized into the 

theory. The discrepancy between theoretical and simulated behaviors guided Sastry to 

introduce two new mechanisms that were not originally included into the verbal theory 

but that proved necessary to produce the behavior purported in the theory. The two 

mechanisms are a routine for monitoring organization-environment consistency and a 

heuristic that suspends change for a trial period following each reorientation. The work 

of Sastry provides the opportunity to speculate further on the features of inductive 

simulation research. As we said in the foregoing, typically, inductive inferences bring 

about additional information that is not necessarily crystallized into the premises. The 

inductive nature of the study of Sastry emerges when we appreciate that in the original 

premises of the study, which are captured in Tushman and Romanelli’s verbal theory, 

there was not mention or any sort of indication that pointed at, or give a clue about, the 

causal mechanisms that Sastry included into the theory ex-post. 

To clarify the position taken in this essay, however, when I suggest that inductive 

simulations bring in a study information content that is not included in the stated 

premises, we are not speaking about empirical information. Computer simulation may 

interact with empirical information and help to investigate real instances but do not per 

se say anything about the empirical world. What I am suggesting is that given a set of 

initial premises, a simulation study has an inductive nature when it facilitates the 

enlargement or the modification of this set of premises.  

Nevertheless, often computer simulation studies maintain a more or less close 

relationship with empirical data. Malerba, Nelson, Orsenigo and Winter (1999), for 

example, propose a class of computer models that they define history friendly because 

of the adherence of these latter to the empirical realm that is the object of exploration. 
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To elucidate their approach, they focused on an appreciative theory that describes the 

pattern of evolution of the computer industry and developed a formal representation of 

that theory. Through simulation, they checked the consistency between the appreciative 

and the formal version of the theory by examining whether the formal version is able to 

reproduce the same stylized facts as described in the appreciative theory. The empirical 

information is the pedestal to build the computer model but the contribution of the 

simulation study is not one of extending such information. The contribution of the study 

rests in its corroborating the relationship between causal mechanisms and emerging 

behaviors as observed in the real world.  

 

The interplay of induction and deduction in simulation studies 

A consideration is fundamental in order not to misinterpret the distinction between 

deductive and inductive simulation studies. In most of the simulation studies in social 

sciences, inductive and deductive inferences are intertwined. However, we cannot avoid 

noting that the logic by which they are inspired often differs not marginally. For 

example, in the mentioned study of Sastry, the logic of enquiry is clearly stated and 

hinges upon two elements. First, the author has a clear imagine of the dynamic features 

of the behavior she wants to explain. Second, she uses the comparison between 

theoretical and simulated behavior as a trigger to import in her modeling candidate 

causal mechanisms.  

On the other hand, at the other extreme, consider, for example, Cohen, March and 

Olsen’s Garbage Can simulation model. The authors described how problems, choices 

and people met within an organization but they start their enquiry without a precise idea 

about the aggregate decision-making behavior that follows from the premises they 
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designed. The curiosity was exactly to understand what the consequences are of 

representing an organization as an organized anarchy and the contribution of the study 

is indeed to suggest that organized anarchies maintain a peculiar style in their decision 

making behavior. Most of the simulation studies, however, blend the two components.  

Beside cases in which the inductive or deductive approaches clearly come into view, 

most of studies incorporate both approaches. A simulation study may incorporate a 

loosely defined idea of the features of the behavior it is aimed to explain and this idea 

guides the modeling of the premises. The deduction of consequences from premises 

through computer simulation aids the refinement of the description of the behavior of 

interest. On the other hand, the materialization of surprising or counterintuitive 

behaviors induces the search for alternative causal mechanisms to modify the original 

set of premises.  

The diagram in figure 1.1 suggests that induction and deduction are often embedded in a 

cyclical process of discovery. Deduction generates repertoires of patterns of behavior 

that represent near-histories that proceed from a common deep causal structure. This 

exercise contributes to theory building by making available ex-ante falsifiable 

hypotheses that connect casual mechanisms to behaviors. Deduction may also create 

counterintuitive and surprising behaviors that bring about marginal amendments in the 

modeling of the premises or may trigger inductive processes of revisions of modeled 

premises. In this case, the discrepancy between expected and simulated behavior is the 

incentive to refine, or deeply modify, the modeled set of premises by introducing in the 

model new causal mechanisms.  

For example, in their study on population ecology and competition among structurally 

different populations of organizations, Carroll and Harrison (1994) built a mathematical 
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model, designed a structurally superior population and simulated competition between 

two populations (one inferior and one superior). Through the simulation study, they 

demonstrated, in vitro, that the dominance of structurally superior populations may not 

emerge depending on their timing of entry in the industry. The contribution of this 

theoretical falsification is to delineate the hypothesis of historical inefficiency, 

according to which the explanation of an observed behavior is history-dependent and 

the time in which events happens modify their expected consequences.  

Thus, the diagram in figure 1.1 conveys one of the key ideas that inspire this essay. 

Technically speaking, a computer simulation cannot be anything different than a 

computer-aided process of deduction. This deduction process both unveils not 

necessarily intuitive cause-effect relationships that are implicitly hidden in the premises 

and assists rigorous articulation of appreciative theories. This facilitates researchers in 

producing testable hypotheses. On the other hand, when deducted behaviors do not 

match with expectations, this mismatch activates an inductive inference that amends the 

original set of premises. In this respect, I suggest that by embedding a computer-based 

process of deduction into a richer research perspective provides a powerful environment 

to use of computer simulation for theory development. 
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Figure 1.1: Logic of enquiry underpinning computer simulation 
 

Premises Consequences

Counterintuitive deductions
Surprise behaviours

Inclusion of additional
causal mechanisms

Revision of initial
set of premises

Computer 
simulation

DEDUCTIVE INFERENCE

INDUCTIVE INFERENCE

 

A FRAMEWORK TO INTEGRATE COMPUTER MODELING AND 

GROUNDED FIELD RESEARCH  

In this section, I outline some ideas to inspire the use of computer modeling and 

simulation as a support for theory building associated to grounded field research. This 

area of methodological development is under investigated and hopefully the few 

directions offered in this essay may indicate a possible avenue to explore. 

Among the possible, and slightly different, logics that animate field studies, I take the 

viewpoint of grounded theorizing. Glaser and Strauss (1967) described a grounded 

approach to systematically discover theory from empirical data in field research. 

According to this approach, by comparative analysis, researchers first generate 

conceptual categories and the conceptual properties of these latter, then, they create 

hypotheses on the relationships among the categories. In their view, researchers need to 

start their research into an empirical setting without any previously structured 



19 
 

conceptual category2. This approach is, for example, different from the approach based 

on explanatory case study which has a recognized tradition in management and has 

been thoroughly described by Yin (1994). According to this latter approach, field 

research is aimed at answering to how or why questions by eliciting causal links among 

variables over time. Interestingly, Yin draws a distinction between the case study 

approach, which he describes, and the grounded theorizing as described by Glaser and 

Strauss. Yin affirms that the key difference is that in a case study researchers use a 

previously developed theory as a template and the design of a case study is tantamount 

the conceiving of a theoretical experiment aimed at further articulating the theory. 

To assess the contribution of formal modeling and computer simulation to the 

enhancement of the quality of grounded field research, I focus on two typical problems: 

the internal validity problem and the problem of theoretical saturation of a grounded 

study. 

 

The problem of internal validity 

Given an explanation that infers a casual relationship between two events, internal 

validity is a judgment on the robustness of that causal relationship. Thus, a potential 

threat to internal validity is the existence of spurious effects. When a researcher makes 

an inference, and connects an event to an earlier occurrence, a spurious effect intervenes 

if the appearance of the event object of observation is connected instead to another 

unobserved occurrence. Yin describes three techniques to improve internal validity of a 

case-study: pattern-matching, explanation-building and time-series analysis (1994: 35, 

106-118).  
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Pattern matching implies the comparison between the predicted and the actual behavior 

of a variable. When empirically observed results match those predicted by a theory, the 

case study represents an experiment that corroborates propositions embedded in the 

theory. On the other hand, if patterns do not match, theory has to be questioned. The 

more articulated is the predicted pattern of dependent variables, the more demanding is 

the test of pattern matching and the stronger is the test of theoretical propositions.  

For example, if a prediction involves not one pattern but a variety of patterns for a 

variety of dependent variables, matching of those patterns allows for strong causal 

inferences. Pattern matching also includes independent variables. Researchers may 

articulate rival explanations that imply different causal mechanisms, different 

independent variables and different, mutually exclusive, unfolding patterns for 

independent and dependent variables. The matching between one specific predicted 

pattern and the observed empirical behavior supports selection among rival 

explanations. When a complete explanation for the phenomenon under analysis does not 

exist at the beginning of the study, Yin suggests that the pattern-matching procedure 

gives the way to a more sophisticated protocol that is named explanation-building.  

Explanation building consists of an iterative process though which researchers gradually 

build an explanation by making initial theoretical statements and predictions, comparing 

predictions with available empirical patterns and revising statements.  

Finally, pattern matching can be applied on time series of variables rather than to a 

chain of events chronologically linked. This kind of analysis is named time series 

analysis. 

At the core of the three techniques, is the problem of understanding how a causal 

structure is able to explain observed patterns of behavior. The key theme here is the 
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ability of a researcher to enact and maintain a dialogue between theoretical behaviors, as 

predicted by an explanation, and observed empirical patterns.  

 

The problem of theoretical saturation 

 

In grounded research, Glaser and Strauss consider research as a process in which a 

researcher often starts her analysis with a ‘partial framework of local concepts (1967: 

45). She has a general idea of the concepts and the processes that will be parts of her 

theoretical investigation but she ignores the relevancy of these concepts and processes 

neither she knows whether additional concepts will emerge in the course of her study or 

if some of the concepts initially selected will result irrelevant. 

In this research process, initial collection of data needs to be followed by further 

collections. This practice of analyzing collected data and deciding what data to collect 

next is defined theoretical sampling (Glaser and Strauss, 1967: 45) and is an emergent 

process that cannot be planned in advance since it guided by gaps emerging in a 

analysis. The objective of theoretical sampling is to fully develop a repertoire of 

concepts to be used in the theory being developed and to articulate the properties of 

each concept. 

When theoretical sampling is sufficient and can be stopped? 

Glaser and Strauss suggest that theoretical sampling continue until theoretical 

saturation is reached (1967: 61). The attainment of theoretical saturation implies that a 

researcher cannot find additional data to develop further properties of conceptual 

categories. The aim of theoretical saturation is to maximize the variety of empirical data 
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connected to each conceptual category in order to achieve adequate richness of 

properties. 

The problem of theoretical saturation entails deciding when the search for further data 

collection can be stopped and how to select a research site for the collection. 

 

A framework to integrate computer modeling and grounded field research 

In the following, I delineate a research design in which computer modeling and 

simulation, and field research are associated to support theorizing. The research design 

proceeds in a sequence of steps in which a researcher begins by theorizing from an 

exploratory field study, translates this preliminary theorizing into a formal model and 

through computer simulation both strengthens the causal structure of the theory and 

envisions new research sites to locate further field studies that serve as experiments to 

consolidate the theory.  

 

Building of a preliminary theoretical framework 

In the sketched approach, the point of departure is an exploratory field study (step 1 in 

figure 1.2). The field-study entails the grounding of theorizing in a specific research 

site. As described by Glaser and Strauss (1967), the field-study leads to the building of a 

theoretical framework by defining conceptual categories, conceptual properties of the 

categories and hypotheses regarding the causal relationships among categories. The 

sketch of the theoretical framework needs to proceed without any ‘…preconceived 

theory that dictates, prior to the research, “relevancies” in concepts and hypotheses.’ 

(Glaser and Strauss 1967: 33).  
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A researcher should select, at this stage, a research site because she is interested in a 

specific empirical phenomenon not because the site is appropriate to conduct a 

theoretical experiment on an existing theory. Of course, it is naïve to propose that a 

researcher approaches a research site without any previously crystallized theoretical 

lens. It is plausible to suspect that the theoretical background of the researcher, along 

with the state of the art of the literature to which she aims at contributing, plays a role in 

the sedimentation of a more or less uncovered cognitive filter that steers the attention 

towards one or another research site. The intellectual curiosity that illuminates a specific 

research site is motivated by the interest for an observed phenomenon and it is likely 

that this interest is, at least implicitly, driven by the fact that the phenomenon is an 

empirical instance that confirms or disconfirms a prior theory. Hardly can theorizing 

totally be disconnected from relevant literature because what captures the attention of a 

researcher is the observation that a conceptual category is empirically associated with a 

property different from the one expected, that two conceptual categories are empirically 

linked by a counterintuitive causal relationship or that an empirical phenomenon 

escapes previous conceptualizations.  

It is not the purpose of this chapter to dwell into the delicate dispute regarding the 

selection of a research site; neither this chapter gives attention to how a researcher 

extracts a preliminary theoretical framework from a field study. We simply assume that 

a preliminary empirically grounded theoretical framework exists, this latter including a 

number of conceptual categories, conceptual properties that characterize the categories 

and a number of tentative hypotheses on causal relationships among categories.  
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Figure 1.2: Computer simulation and grounded field research 
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Building the computer model 

Once the exploratory field study has generated a preliminary theoretical framework, the 

second step implies to transform an appreciative theorizing into a set of formal 

propositions (step 2). At the end of this second step, a computer model embodies the 

preliminary theoretical framework. This is a subtle endeavor that requires the 

transformation of conceptual categories into measurable constructs that reflect their 

theoretical properties and the formalization of causal link among constructs. Causal 

mechanisms included in a computer model may originate from two sources. They may 

be formalizations built upon a researcher’s interpretation of verbal descriptions 

collected during the field study or they may be formalizations that replicate either 

existing formal theories or descriptions of processes that already exist in a quantitative 

format.  
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Let’s take for example a researcher that conducts a field study to explain the process of 

strategy formation in large firms. If a firm makes available to the researcher memos, 

blueprints and manuals with already formalized decision-making routines, then the 

formalization is likely to adhere more realistically to the empirical setting under 

scrutiny. More often, however, the researcher needs to translate verbal description of 

operating organizational routines into formal modeling. Furthermore, let’s suppose that 

the researcher wants to include in its theorizing the behavior of financial markets that 

respond to focal organization’s financial performances by allowing credit. In this case, 

modeler may take advantage of existing theory of financial markets and include in her 

model the formalizations that are provided in the literature to capture expected behavior 

of financial markets. In this case, the use of an existing theory does not really violate the 

mandate, stated at the beginning, to initiate an exploratory field research without 

previous preconceived theory since the theory employed regards the behavior of 

financial markets not the object of study of the research, which is the process of strategy 

formation. In other words, in this case, the researcher borrows elements from the theory 

of financial markets’ behavior to complete the description of the environmental context 

in which the object of study – the firm – operates. 

In addition, the field study may be helpful to provide researcher with information to be 

used for a provisional calibration of model’s parameter. The calibration will be useful in 

the next step of the described research protocol that requires the simulation of the 

formal model. As Kaplan (1964) suggests, ‘...in all simulation experiments the 

fundamental problem is that of “scaling” - that is, the translating of results from a 

simulation model to the real world’. The grounding and calibration of a simulation 
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model on a case study facilitates the process of translating the abstract insights of a 

formal model into real-world problems.   

 

Synthetic experiments with computer simulation 

The fourth step entails the use of the formal model to produce simulation runs that 

describe behavioral implications of the causal relationships that originated from 

preliminary theorizing. If the theoretical framework that a researcher has built to explain 

the observed behaviors is correct, simulation runs tend to replicate observed behaviors. 

In this light, computer simulation supports researchers in using data from field studies 

to detect fallacies in underpinning logic and to test a theoretical framework. The use of 

computer simulation as a tool to derive behavioral consequences from stated 

assumptions brings about a number of advantages.  

First, in general, computer simulation generates time-series. This may result of some 

help when time-series can be compared directly with real-world quantitative figures, for 

example financial figures extracted from balance sheets and economic reports. In this 

case, the availability of real and simulated time series that are accessible in a similar 

quantitative format facilitates pattern matching by assigning to a researcher the 

possibility to generate a measure of how predicted events match empirical instances of 

those events (Sterman 1984). 

Second, computer simulation allows for a rigorous longitudinal articulation of 

theoretical behaviors. In other words, the computer-aided process of deduction goes far 

beyond the human capability to appreciate the long-term features of the behavior of 

selected variables. Thus, computer simulation can support researcher to articulate 

hypotheses on behavioral properties of conceptual categories included in a theoretical 
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framework. For example, complex patterns of behavior such as peaks and lowest point, 

oscillations with different characteristics and changes in rate of growth or decline may 

become parts of a more developed description of a behavioral property.  

Third, researchers, by simulating a formal model, can generate what I define a 

categorical articulation of theoretical behaviors, that is, they can further extend their 

theory by contemporaneously producing behavior of different conceptual categories. 

For example, researchers can simulate the interaction of independent and dependent 

variables in each time step, along a given time horizon. Using this exercise, researchers 

can produce additional hypotheses on the interaction among behavioral properties of a 

numbers of conceptual properties contemporaneously. 

This longitudinal and categorical articulation of theoretical behavior increases the points 

of contacts between the theoretical propositions and the empirical world of the case 

study. As Kaplan suggests ‘What counts in the validation of a theory, so far as fitting 

the facts are concerned, is the convergence of the data brought to bear upon it […]’ 

(1964: 314).  

I argue that computer simulation expands the terrain where comparison between theory 

and empirical setting takes place by generating a rich theoretical framework that 

crystallizes a dense collection of interweaved theoretical behaviors. Thus, convergence 

of data and concatenation of events that are necessary to confirm the adherence of 

theory to empirical evidence are increasing demanding.  

In this respect, computer simulation aids researchers to consider field research as a 

difficult experiment where the falsifiability of a theory is easier because fitting the facts 

becomes increasingly hard. Of course, on the other hand, had empirically collected facts 
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to fit into a complex web of interweaved simulated behaviors, the experiment would 

lead to stronger evidence to confirm propositions contained in the theory.  

 

In figure 1.3, we imagine to start a field study with the objective to explore the increase 

in profits empirically observed in the time period comprised between t1 and t2. A 

researcher can build a variety of hypotheses to explain the behavior. These hypotheses 

can be formalized into a computer model. Yet, there might be a large collection of 

computer models that are able, for different reasons, to produce a behavior similar to the 

one observed. However, once we use computer simulation to articulate the behavioral 

implications of the model beyond the observed time span t1-t2 (longitudinal articulation) 

and for both the profits and other variables such as revenues and market share 

(categorical articulation), then the theory of behavior captured in the model becomes 

more complex and easier to falsify by further data collections of empirical instances 

regarding market share and revenues.   
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Figure 1.3: Integration of empirical and simulated patterns of behavior 

Time

1,000,000

1,500,000,000

45%

Market share

Profits

Revenues

t1 t2

 

In this respect, in the example of figure 1.3, longitudinal articulation of behavior of the 

variables of interest, that is the generation of an hypothesis of behavior that extends 

beyond the originally considered time span t1 -t2, and categorical articulation, that is the 

generation of hypothetical behavior for a variety of relevant variables, orient further 

data collection and increase falsifiability of a theoretical framework. This process of 

data collection to falsify formalized theoretical hypotheses narrows down the set of 

candidate explanatory models. 

 

Pattern matching 

Now we turn to the process that involves the analysis of the matching between 

simulated and empirically observed patterns of behavior (step 5 in figure 1.2). In 

particular, we investigate this process by looking at two cases. The first case is when the 

field study confirms the predictions made through computer simulation. The second 
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case applies when a researcher reports a mismatch between computer-generated 

predictions and empirically collected evidences and time-series. 

 

Sensitivity analysis and history-convergent runs 

When simulated and historical patterns of behavior match, computer simulation can be 

used as a laboratory to conduct sensitivity analysis in order to explore in what 

circumstances simulated and empirically observed behaviors diverge (step 6). 

Sensitivity analysis entails the analysis of the sensitivity of a simulated behavior to the 

change in the calibration of a model’s parameters. Also, changes in parameters’ values 

may often imply that parts of a model are deactivated thereby testing the sensitivity of a 

model’s behavior to the inclusion or exclusion of specific conceptual categories.  

Field cases are retrospective studies. Retrospective studies explain, ex-post how a set of 

variables interacted to drive an observed behavior of interest. However, it could become 

troublesome to ascertain the extent to which a theoretical explanatory model and the 

observed behavior are linked. This difficulty is explained by the fact that retrospective 

studies are not particularly efficient in connecting causes and effects (Leonard-Barton 

1990). 

If, for example, we are aware that two conceptual categories affect the observed 

behavior, given the complex web of interactions in which the concepts are embedded, it 

might be hard to determine their relative strengths. It might be the case that the 

influence of one of these two concepts is insignificant, and could be omitted from the 

analysis to satisfy the criterion of parsimony for a good theory (Eisenhardt 1989).  

To investigate further the importance of that concept, an experiment could be run to 

detect what happens if it is omitted from the model.  
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Thus, sensitivity analysis helps revising a theoretical explanation by suggesting that 

specific conceptual categories are not necessary to explain a behavior whereas others 

are fundamental since the change in their calibrations produces simulated behavior that 

is divergent from the one observed (step 7 in figure 1.2).  

In addition, the intentional generation of history-divergent simulation runs orients 

further empirical enquiry by indicating new potential research sites. Indeed, in a new 

site that resembles the simulation settings that have been adopted in the sensitivity 

analysis, a researcher can test whether, given the characteristics of the new site, a 

behavior closer to the history-divergent run is observed (step 8 in figure 1.2). For 

example, some longitudinal event studies have compared polar cases, that is, cases of 

organizations that have shown opposite behaviors in responding to an identical 

exogenous stimulus, and have explained the different unfolding of their histories as the 

result of different initial conditions (Noda 1994; Noda and Bower 1996).  

What we suggest is that using sensitivity analysis to generate history-divergent runs 

may be helpful to illuminate the potential of a research site to become a polar case in 

which, given a change in some key features of the research context, a behavior 

divergent from the one observed in the original field study ensues. 

In general, simulation, by connecting a theoretical structure to a variety of possible 

emerging, often unexpected, behaviors, activates dormant consequences of a theory, 

which were not observed in the original empirical study. This generation of a 

distribution of near-histories, or unrealized events, both strengthens the understanding 

of causal structures and envisions areas for further empirical investigations. Field 

researches conducted in these sites represent further theoretical experiments to reinforce 

internal validity of a theory. Thus, computer simulation helps validating a theory by 
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supporting a researcher in demonstrating that a common theoretical engine may explain 

a repertoire of different behaviors in different empirical contexts. In this vein, the 

coupling of field-study and computer simulation speaks to the problem of learning from 

samples of one or fewer as presented by March, Sproull and Tamuz (1991).  

In addition, when a theoretical argument includes the mention of specific parameters’ 

calibration as necessary conditions for a predicted behavior to emerge, change in the 

parameters’ calibration can represent a further test of the theory encapsulated in the 

computer model. For example, Malerba et al. modified parameters’ calibration in order 

to test that model calibrations ‘that are counter to those argued as strongly causal in the 

appreciative theory should obtain history-divergent results’ (1999: 35).  

 

Sensitivity analysis and history-divergent runs 

Finally, we address the case in which a researcher observes a mismatch between 

computer-generated and empirically observed events and time-series. In this case, the 

problem is to understand why the behaviors diverge. The idea here is that computer 

modeling and simulation provide a theoretical laboratory that is relatively easy to 

manipulate in order to investigate the origins of the discrepancy between simulated 

predictions and observed behaviors.  

In this respect, I agree with Malerba et al. (1999) in suggesting that computer 

simulation provide an appropriate terrain to nurture a friendly dialogue between 

empirical evidence and theory. When history-divergent simulations appear, researcher 

tries to explain where discrepancies come from. Investigators can intervene on the 

structure of a computer model or on the calibration of model’s parameters and 



33 
 

rigorously deduct whether these interventions narrow down the gap between predicted 

and actual behaviors.  

Pressures for historical and simulated behaviors to diverge arise in two cases. The first 

pressure intervenes when the causal structure of the theory that is captured in the 

computer model is isomorphic to the causal relationships at work in a specific empirical 

context and the discrepancy is the consequence of flaws in the specifications of 

parameters’ calibrations. The second pressure for historical and simulated behaviors to 

diverge arises when the causal structure of the theory and the causal relationships at 

work in the real world are not isomorphic in some respects.  

This may be the result either of the fact that a researcher has not properly formalized a 

theoretical argument arising from a field study or the fact that the researcher was not 

able to select the key causal mechanisms at work in the case studied.  

The first direction to explore is the analysis of sensitivity of model’s behaviors to 

change in parameters to check whether simulating the model with a new calibration 

improves the match between simulated and observed behaviors (step 9). The fact that 

the fit between simulation and empirical data is improved by manipulating a model’s 

parameters points at two areas of analysis. First, it may suggest that the model is 

characterized by non-linear causal relationships among variables so that slightly 

different model’s calibrations yield very different emerging behaviors. 

Second, the causal structure at work may include positive feedback among variables and 

initial calibration of variables has a mounting weight in molding unfolding patterns of 

behavior. For example, as reported in Carrol and Harrison (1994), the presence of 

positive feedback among variables generates behaviors that unfold in a way that is 



34 
 

history-dependent, that is, depends on the research’s calibration of a parameter: time of 

entry in the simulated scenario of a population.  

Finally, in general, the fact that a computer model produces history-replicating 

simulation runs only after implausible values are assigned to parameters casts an 

alarming light over the robustness of causal structure of the theory. 

The second avenue to explore discrepancy between predictions and observed behaviors 

is the analysis of the structure of the model, that is, the causal relationships among 

variables that are deemed necessary to produce behaviors of interest. Different 

formalizations may exist for specific relationships and including in the model one or the 

other may have different behavioral implications. To revise formalization, researchers 

need to go back and compare the formal structure of the computer model and the real 

processes at work in the case study. This further investigation plays as a catalyst to 

define possible amendments to the theory (step 7).  

To begin the analysis of the discrepancy between the structure of the computer model 

and the structure of the phenomenon under study, those formalizations that are directly 

obtained from descriptions sufficiently clear and less questionable are not good 

candidates to look for the origins of the discrepancies. Researcher ought to start to 

generate alternative formulations for those descriptions that were originally provided in 

a verbal form and, thus, to be formalized, required a more dubious and arguable 

interpretation. The fairly intuitive idea here is that formalization that required a 

researcher’s translation of verbal descriptions into quantitative formulations are more 

debatable, more prone to conceal misinterpretation and hence good candidates for the 

analysis of history-divergent simulations.  
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However, such an instinctive expedient ought not to veil another potential source of 

history-divergent simulation runs that materializes when firms describe processes on the 

basis of existing formal procedure whereas everyday activity is grounded on informal 

and tacit routines which are different from those crystallized in official manuals and 

blueprints. 

 

Theoretical saturation and internal validity 

In the iterated process of pattern matching, structural adjustment and theory refinement 

that I delineated in the foregoing, field study informs computer model and this latter 

puts on the right track empirical research.  

Once the dialogue between computer model and field research kicks off the critical 

issue is whether a researcher is able to mediate the dialogue by pursing two critical 

processes. First, the researcher has to feed the model with the information extracted 

from a case study. Second, the researcher needs to understand what information the 

observed gap between simulated and historical behavior provides that can be utilized to 

both indicate further research sites and to refine underlying theoretical argument. 

Associated with a simulation study, the field study is not more a retrospective 

photograph of what has happened, but rather becomes a living picture illustrating what 

could have happened in different circumstances. Capturing in a simulation model the 

rich but static appreciative theorizing grounded on a field study, the researcher can build 

a laboratory where simulation experiments are used to pursue two endeavors. 

First, analysis of history-divergent runs triggers a cycle of internal validation thereby 

missing variables and hidden assumptions are elicited, emerging theory is tested for 

internal consistency (Langley 1999).  
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Second, sensitivity analysis on history-convergent prompts a cycle of theoretical 

saturation thereby new research sites are selected to refine the set of theoretically 

relevant conceptual categories, to capture the properties of these categories and to 

describe the nature of causal relationships among conceptual categories. 

 

CONCLUSION 

As Montgomery, Wernerfelt and Balakrishnan suggested almost 20 years ago (1989), a 

serious problem that may compromise the quality of theory development in strategy and 

organization is the looseness and the lack of logical consistency in developing 

implications from a set of assumptions where “Small changes in assumptions or 

parameters can alter dramatically the implications of a model.” (Montgomery, 

Wernerfelt and Balakrishnan 1989: 192) 

In this article I proposed that computer modeling and simulation support theory 

generation in managerial studies and, in general, in social sciences by contributing to 

amend for the critical shortcomings that emerge in theory development when 

implications are not rigorously derived from assumptions. In particular, computer 

modeling forces a researcher to tease out unambiguously her theoretical argument. A 

simulation experiment entails the formalization of a theory. Formalization enhances 

simplicity and parsimony and helps to clarify the morphology and to sharpen the 

discussion of the theory thereby supporting both its audit trial (Saloner 1994: 170) and 

its communication. In this respect, I suggest that formalization and computer simulation 

of a theory represent devices that support communication among scholars of different 

disciplines. 
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Furthermore, the discourse articulated in this chapter suggests that computer modeling 

and simulation offer a helpful tool to enhance quality of field-based theory building. 

Field research and simulation studies, although both having strong roots in management 

and organization theory research, have not often been used in combination. This essay 

contains the sketch for a research protocol that integrates simulation-based research and 

field study.  

The idea that motivates this attempt is that computer simulation, by producing artificial 

time series that are directly comparable with real time series, sets basis for a fruitful 

dialogue between the observation of empirical patterns of behavior and the modeling of 

theoretical hypotheses. As Cohen and Cyert suggest (1961), this dialogue both 

strengthens the theoretical argument and directs field research: 

 

The requirements of a computer model can provide a theoretical 

framework for an empirical investigation, and, in return, the 

empirical information is utilized in developing a flow diagram for 

the model. Through this process of working back and forth, it is 

possible to know when enough empirical information has been 

gathered and whether it is of the proper quality.  

 

(Cohen and Cyert 1961: 127) 

 

This dialogue between available empirical data, in the forms of detailed description of 

observed behavior, and a theory, or a set of hypotheses, formalized in a computer model 

establishes the premises to develop sound theories of behavior. 
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