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Abstract 
A healthy human body regulates blood glucose concentration via regulating the insulin 
concentration. Diabetes type 1 patients’ bodies cannot produce insulin. Therefore, blood 
glucose needs to be regulated by insulin injections. This is not an easy task because there 
are dynamic complexities such as accumulation processes, delays, nonlinearities, and 
feedback loops in the system. Moreover, the task is a critical one because both low and 
high levels of glucose are harmful for the body. In this work, we first developed and 
calibrated a system dynamics model for “the two time delay model” as described by Li et 
al., 2006. Later, we introduced a penalty formulation to be able to evaluate different 
cases. We also deleted the insulin production flow and added insulin injections to the 
base model in order to obtain the model for a diabetes type 1 patient. According to the 
initial results of the study, the suggested decision making heuristic would yield 
satisfactory results. However, further tests under different glucose infusion rate patterns 
and improvement to the heuristic are necessary. 
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Introduction 

 
Diabetes Mellitus is a disease associated with body insulin deficiency or inefficient 

use of it. A patient with diabetes either cannot produce insulin to absorb glucose and turn 
it into energy (diabetes type 1) or cannot properly respond to insulin (diabetes type 2) 
(Alberti and Zimmet, 1998). Regulation of glucose is very critical because both 
hyperglycemia (high blood glucose) and hypoglycemia (low blood glucose) are harmful 
for the organs (Cryer, 2001; Ruderman et al., 1992, Sanlioglu et al., 2008). In a healthy 
human body, glucose is regulated via regulating the blood insulin concentration. 
However, diabetes type 1 patients’ bodies cannot produce insulin, which leaves glucose 
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unregulated. Insulin injection is the main treatment for such patients (Sanlioglu et al., 
2008). However, one should be very careful with insulin injections because if more 
insulin than necessary is injected, this may lead to hypoglycemia and, if less insulin than 
necessary is injected, this may lead to hyperglycemia (Cryer, 2001; Sanlioglu et al., 
2008). Regulating the blood glucose and insulin concentrations by insulin injections is 
not a simple task because of the existing dynamic complexities in the regulatory system. 

 
There are many studies and different models on the glucose-insulin regulatory 

system (Makroglou et al., 2006). According to experiments, insulin secretion rate has 
three different oscillatory patterns superimposed on each other. The first oscillatory 
pattern is the fastest and it has a period of tens of seconds; The second oscillatory pattern 
is called rapid oscillation and has a period of 5-15 minutes; The third oscillatory pattern 
is called ultradian oscillations and has a period of 50-120 minutes (Makroglou et al., 
2006). Sturis et al. (1991) developed a six dimensional differential equation model to 
analyze the ultradian oscillations. The model introduced by Sturis et al. (1991) separates 
insulin stock (compartment) into two distinct stocks and contains a third order delay of 
insulin effectiveness and a glucose stock. Tolic et al. (2000) improved the model 
developed by Sturis et al. (1991) by simplifying it 2 . Li et al. (2006) proposed a 
delay-differential-equation model that uses the same functions and parameter values as 
in the models of Sturis et al. (1991) and Tolic et al. (2000). This model is named as the 
two time delay model and includes two distinct time delays for both insulin effectiveness 
and glucose effectiveness (Li et al., 2006). 

 
In this work, we first constructed a system dynamics model of the two time delay 

model introduced by Li et al. (2006). We run our model for the different cases discussed 
in the Li et al. (2006) paper and confirmed that our model produces the same dynamics 
as the Li et al. (2006) model in all cases. In order to save some space, we did not provide 
those runs in the paper. After the calibration of the system dynamics model, we set the 
delay parameters equal to the values used in section 3 of the Li et al. (2006) paper and 
obtained base run dynamics for a healthy person as a benchmark. We introduced a 
penalty formulation to be able to evaluate different cases. Later, we adapted the base 
model for diabetes type 1 patients. In order to obtain the model for a diabetes type 1 
patient, we deleted the insulin production flow from and added insulin injections to the 
base model. We also suggested a decision heuristic for insulin injections. 

 
 
 
 
 

                                                 
2 If correctly applied model simplification increases the usefulness of models (Saysel and Barlas, 2006; 
Yasarcan, 2010). 



Base Model for a Healthy Person 

 
We constructed a system dynamics model of the two time delay model introduced by 

Li et al. (2006). The stock-flow diagram of this model is given in Figure 1. Note that the 
equations (1-37) of this model are all taken from Li et al. (2006) and we also tried to 
provide the related information presented in the Li et al. (2006) paper by adding 
footnotes to the equations. Note that this model represents the glucose-insulin regulatory 
system for a healthy person. 

 

 
Figure 1.  Stock-flow diagram of the two time delay model 

 



• Initial values and approximate integral equations for the stock variables: 
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• Flow variables: 
 

[ ]minutemilligramRateInfusionGlucose 108=  (5) 
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• Other variables: 
 

( ) [ ]milligramGlucoseTau1GlucoseGlucoseofValueDelayed  , ,DELAY=  (11)3 

( ) [ ]milliunitInsulinTau2InsulinInsulinofValueDelayed  , ,DELAY=  (12) 

[ ]decilitermilligramdecilitersinVgGlucoseionConcentratGlucose =  (13) 

[ ]litermilliunitVpInsulinionConcentratInsulin =  (14) 

 
• Parameters: 
 

[ ]litermilligrama1 300=  (15) 

[ ]litermilligramAlfa 300=  (16)4 

[ ]essdimensionlBeta 77.1=  (17)5 

[ ]litermilligramC1 2000=  (18) 

[ ]litermilligramC2 144=  (19) 

[ ]litermilligramC3 1000=  (20) 

[ ]litermilliunitC4 80=  (21) 

[ ]litermilliunitC5 26=  (22) 

[ ]litermilliunitC5 26=  (23) 

[ ]minutedi 106.0=   (24)6 

[ ]minuteliterE 2.0=  (25)7 

                                                 
3 DELAY(input, delay time, initial value) is a function that creates a delayed version of the input as its 
output such that if Y = DELAY(X, t1, Y0), this means that Yt + t1 = Xt. 
4 The software that we used to develop the system dynamics model does not allow symbols. In the Li et al. 
(2006) paper Alfa is represented with the symbol α. 
5 In the Li et al. (2006) paper Beta is represented with the symbol β. 
6 di is the clearance fraction. 
7 E is the diffusion transfer rate. 



[ ]minutemilligramRg 180=  (26) 

[ ]minutemilliunitRm 210=  (27) 

[ ]minuteTau1 7=   (28)8 

[ ]minuteTau2 12=   (29)9 

[ ]minuteti 100=   (30)10 

[ ]minutemilligramU0 40=  (31) 

[ ]minutemilligramUb 72=  (32) 

[ ]minutemilligramUm 940=  (33) 

[ ]deciliterdecilitersinVg 100=  (34)11 

[ ]literlitersinVg 10=  (35) 

[ ]literVi 11=   (36)12 

[ ]literVp 3=   (37)13 

 
We simulated the model for 1440 minutes (1 day) in order to obtain the benchmark 

dynamics. The glucose and insulin concentration dynamics for this run is given in Figure 
2. Glucose concentration level varies approximately between 83 and 106. Insulin 
concentration level varies approximately between 25-43. According to Li et al. (2006), 
the oscillatory behavior observed in Figure 2 is in agreement with physiological data. 

 

                                                 
8 In the Li et al. (2006) paper Tau1 is represented with the symbol τ1 and it is the insulin transportation 
delay time. 
9 In the Li et al. (2006) paper Tau2 is represented with the symbol τ2 and it is the time lag for insulin effect 
on liver. 
10 ti is the insulin degradation time constant. 
11 Vg in deciliters and Vg in liters are actually the same parameter. We separated Vg into two parameters 
because the software that we used cannot handle unit transformation. 
12 Vi is the effective volume of the intercellular space. 
13 Vp is the plasma insulin distribution volume. 
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Figure 2.  Base run: glucose and insulin concentration dynamics for a healthy person 

 
 

Suggested Penalty Formulation 

We introduced the following penalty formulation (equations 38-40): 
 

[ ]deciliterminutemilligramPenalty ⋅= 00  (38) 
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[ ]decilitermilligramnncentratioGlucose CoGenerationPenalty −= 94.25  (40) 

 
Approximately, 94.25 is the average glucose concentration. Penalty is the 

accumulated absolute difference between 94.25 and Glucose Concentration (equations 
38-40). Penalty is 10,179 for the base run in Figure 2. 

 
 

Changes in the Model for a Diabetes Type 1 Patient 

We changed Equation 4 to the following (Equation 41) by replacing the inflow of 
Insulin stock, which is Insulin Production Stimulated by Glucose Concentration, with 
Insulin Injections: 
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We assumed that the actual value of Glucose Concentration is not available to the 
decision maker. Hence, the following equations (42-45) are added to the model: 
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[ ]minuteTimeDelaytMeasuremen 2=  (45) 

 
We assume that a dynamic decision making heuristic control the automatic insulin 

injection unit attached to the patient. Patient should use the unit 24 hours a day. The 
equations for the suggested dynamic decision making heuristic, which controls the 
injections, are given below (equations 46-52): 
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0 ELSE
DT
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0> IF

 (50) 

[ ]minuteonsen InjectiTime BetweMinimum 15=  (51) 



{ }[ ]essdimensionlTimeRemaining DownCount 0 ELSE 1 THEN 0> IF=  (52) 

 
The resulting behavior can be seen in Figure 3. The associated penalty is 

approximately 8,801, which is even less than the penalty (10,179) obtained for a healthy 
person. Thus, we can conclude that the proposed heuristic is successful under the 
conditions presented in this paper. 
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Figure 3.  Run for a diabetes type 1 patient 

 
 

Conclusions 
 
In this work, we first constructed a system dynamics model of the two time delay 

model introduced by Li et al. (2006). This model represents the glucose-insulin 
regulatory system in a healthy person. We simulated the model for 1440 minutes (1 day) 
and obtained the benchmark dynamics given in Figure 2. Later, we introduced a penalty 
formulation and calculated the penalty as 10,179 for the benchmark. 

 
We adapted the model for a diabetes type 1 patient by replacing the insulin 

production with Insulin Injections. We assumed that an automatic insulin injection unit is 
attached to the patient 24 hours a day. We also introduced a dynamic decision making 
heuristic that can be utilized in the control of the unit. The suggested decision making 
heuristic generated a penalty value (8,801) less than the benchmark penalty (10,179). 
Hence, we conclude that the proposed heuristic is successful under the conditions 
presented in this paper. However, further tests under different glucose infusion rate 
patterns would be required before utilizing the heuristic. Moreover, the performance of 
the heuristic should be improved by optimizing its parameters. 
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