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Abstract
Formal analysis plays an important role in understanding how feedback structures drive dy-

namical behaviour. As we know the state behaviour is determined by a linear combination of
behaviour modes (associated with eigenvalues). The weight of each mode is a product of a coeffi-
cient and a right eigenvector component. An emerging technique in eigen-based analysis focuses
on the behaviour mode weight, together with the behaviour mode (eigenvalue), to identify the
dominant feedback structure. The purpose of incorporating the weight analysis is to conduct an
overall assessment of how feedback structure influences on the state behaviour. This paper revises
the conventional eigensolution to the state trajectory by alternating the behaviour mode coefficient
to be a product of the normalized left eigenvector, and the system initial conditions. Therefore,
the overall behaviour changes due to the changes in a system element (a link or a pathway) can
be fully assessed by calculating the eigenvalue, right and left eigenvector sensitivities. Through
studying the eigenvector sensitivity, we observe that the right and left eigenvector sensitivities as-
sociated with the same mode cannot be evaluated separately. We present an analytical approach
to the eigenvector-related sensitivity computation, i.e., a linear combination of the right and left
eigenvector sensitivity.

1 Introduction
System dynamics is a study of the behaviour over time of variables of interest. This can be achieved
by means of ordinary differential equations. Dynamical phenomena can be investigated by analyz-
ing these mathematical representations.

Formal analysis is a way of investigating how feedback structure determine the behaviour. The
objective is to gain insight into which loops dominant over time, so that policy actions can be
developed to improve the system performance. A wide range of methods aimed at resolving this
issue has been developed: behavioural method (Ford, 1999), pathway participation method (Mo-
jtahedzadeh, 2001; Mojtahedzadeh et al., 2004), eigen-based method (Forrest, 1983; Goncalves,
2006; Saleh et al., 2009) which is the focus of this paper.

Eigenvalue elasticity analysis (EEA) is an approach for identifying the dominant feedback
structure of a dynamic system. The core idea of EEA is addressed as follows: (1) decompose the
behaviour of the variable of interest into a linear combination of behaviour modes, each of which
is characterized by an eigenvalue; (2) eigenvalue elasticity with respect to various system elements
(a link, a pathway or a feedback loop) is computed to assess the influence of that element; (3) the
one yields the biggest elasticity is regarded as the dominant structure.

Eigenvector analysis is introduced in recent years. This paper presents a new approach on
eigenvector analysis. First, we decompose the linear state behaviour into a finer detail, i.e., the



coefficient of each behaviour mode is actually a product of the left eigenvector (associate with
particular mode) and the initial conditions of the system. Then, based on the new representation
of the solution, we can assess the overall change of the variable behaviour due to the change of a
system element by taking the change from eigenvector into consideration. Sensitivity is adopted to
measure the influence to the state due to the alternation of a certain element here. During the pro-
cedure of computing the eigenvector sensitivity, we find the right and left eigenvector sensitivities
have to be calculated simultaneously. Furthermore, we present a formula to compute eigenvector
sensitivity, making the computation without much effort.

This paper is organized as follows: first we will give a brief introduction to related researches
and outline the background of linear systems. Then we will show a new solution adopted here
to solve the linear systems and explore it by a linear system. Next, the following two sections
deal with the overall state sensitivity and describe the procedure of calculating the eigenvector
sensitivity with respect to different system elements (a link or a pathway) respectively. In addition,
the previous linear example will be utilized again to clarify the approach of eigenvector sensitivity
computation. Finally, we end the paper with the conclusion and future work.

2 Background research

2.1 Literature review
Formal analysis eigenvalue and eigenvector approaches are both derived from the linear system
theory, where the state behaviour can be decomposed into the linear combination of behaviour
modes. However, they focus on different parts of the solution.

Eigenvalue analysis was first introduced into feedback loop analysis by Forrester (1982). Many
papers discussed EEA approach and applied it in both linear and linearized models (Kampmann,
1996; Goncalves et al., 2000; Saleh and Davidsen, 2000; AbdelGawad et al., 2005). One drawback
over the conventional EEA is that it is used to identify the dominant feedback structure at the level
of the model but fails to relate it to any selected variable of interest (Ford, 1999).

Saleh et al. (2006) went beyond the eigenvalue to the behaviour mode related weight, which
is named as DDW, shorthand for dynamic decomposition weight. Moreover they exemplified the
DDW approach by two simple business cycle models, in which both links and parameters are
given small perturbance and the weight elasticity to parameters are assessed. As a consequence,
the leverage points, e.g., the most influential parameters and links are identified. A good reason for
using DDW analysis is that focusing on the weights, rather than on the eigenvalues, may be a more
efficient way to develop policy recommendations. However, the DDW approach is conducted in a
numerical way.

Meanwhile, other researchers (Goncalves, 2006) looked directly at the eigenvector and clearly
proposed an analytical method to incorporate eigenvector analysis to the EEA. They demonstrated
the eigenvector analysis by a linear inventory-workforce model. In the example, the eigenval-
ues and eigenvectors of the system are first represented by the loop gains and constants, then the
eigenvector sensitivity with respect to the loop gain can be obtained by simply differentiating the
equation on both sides. The second step of this method can be performed without much effort, yet
the difficulty lies in the first step that transforming the eigenvalue and eigenvector to the represen-
tation of the loop gains is extremely hard especially when the system is of bigger size. A more



crucial problem in this approach is that the eigenvector is not fixed, therefore it is impossible to
have a unique representation by the loop gain, so does the eigenvector elasticity.

2.2 Background in analyzing linear dynamic system
Broadly speaking, we say a phenomenon represented by a stimulus-response mechanism is linear
if, to a given change in the intensity of the stimulus, there corresponds a proportional change in the
response. As concerns dynamical systems, a continuous system can be written as:

dx
dt
= ẋ = f (x) x ∈ Rn t ∈ R

The system is linear if function f : Rn → Rn satisfies:

f (αv + βw) = α f (v) + β f (w)

for any α, β ∈ R and v, w ∈ Rn. A linear system with n equations can be put in a compact matrix
form, as

ẋ = Ax x(t0) = x(0)

where ẋ =


ẋ1

ẋ2

.
ẋn

, a vector of first time derivatives of the state variables x(t); x =


x1

x2

.
xn

, a vector

of state variables x(t); x(0) is also an n-by-one column vector representing the initial condition of
the system; A is the compact gain matrix of this linear system, denoting by Eq. (1). Each entry
represents the partial derivative of the net change of a state variable with respect to another state
variable. In a linear system, all of its entries are constants .

A =


∂ẋ1
∂x1

. . ∂ẋ1
∂xn

. . . .

. . . .
∂ẋn
∂x1

. . ∂ẋn
∂xn

 (1)

Several important concepts associated with matrix A are introduced here. Eigenvalues λs are
a special set of scalars that each of which satisfies the following equation:

|A − λI| = 0

where I is an n-by-n identity matrix. It is known as the characteristic equation. We assume the
gain matrix A has n distinct eigenvalues. Thus, it has n independent right eigenvectors and left
eigenvectors respectively. The right eigenvector ri is an n-by-one column vector while the left
eigenvector ℓH

i is an one-by-n row vector (the superscript H denotes the conjugate transpose for the
case of the complex numbers), both of which are associated with eigenvalue λi and henceforth, we
call these two vectors as an eigenpair.



3 General solution to linear systems: a second order example
We will present a general solution to linear systems which distinguishes itself from the conven-
tional formula (below) adopted in eigen-based approaches (Güneralp, 2005; Goncalves, 2009).

xi(t) = etλ1 r1iα
0
1 + etλ2 r2iα

0
2 + ... + etλn rniα

0
n (2)

If we can normalize the eigenpairs of the system gain matrix in such a way that:

ℓH
i r j

{
= 1 : i = j
= 0 : i , j (3)

The new solution of a linear system can be generated in Eq. (4). For the details of how to
derive the solution, please see appendix A.

xi(t) = etλ1r1i ℓ
H
1 x(0) + etλ2r2i ℓ

H
2 x(0) + ... + etλnrni ℓ

H
n x(0) (4)

Within each behaviour mode in the above solution, we find the term ℓH
i x(0) is a number generated

via the vector multiplication, which is called the coefficient associated with that behaviour mode.
Furthermore, it is interesting to notice that for the same behaviour mode in different state variables,
the coefficient does not change while right eigenvector switches to its corresponding component.
A note to the above solution is that all the eigenvectors are normalized to satisfy Eq. (3).

Compared with Eq. (2), the only difference lies in the two solutions is that Eq. (4) manages
to decompose the mode coefficient α0

j in Eq. (2) into the left eigenvector ℓH
j and the system initial

condition x(0). We will see this decomposition provides us with an opportunity to assess the overall
state sensitivity with respect to a certain system element.

To get a better understanding of the new decomposition method, we use a linear system from
Strogatz (2000) to illustrate it. The linear system has only two state variables and no auxiliaries
and its stock-flow diagram is shown in Figure 1.

ẋ = x + y
ẏ = 4x − 2y; (x0, y0) = (2,−3)

The gain matrix can be obtained by definition:

A =

 ∂ẋ∂x ∂ẋ
∂y

∂ẏ
∂x

∂ẏ
∂y

 = [
1 1
4 −2

]
Therefore, the characteristic equation of this linear system is:

0 = |A − λI| =
∣∣∣∣∣∣ 1 − λ 1

4 −2 − λ

∣∣∣∣∣∣ = (1 − λ)(−2 − λ) − 4 × 1 = (λ + 3)(λ − 2)

hence the eigenvalues λ1,2 = 2, −3. As for the eigenvectors, they can be computed from the defini-



Figure 1: Stock and flow diagram of the linear system

tions using different eigenvalues.

Ari = λi ri

ℓH
i A = λiℓ

H
i

We compute the eigenpair associated with λ1 = 2 to clarify the eigenvector normalization.

0 = (A − λ1I)r1

=

(
−1 1
4 −4

) (
r11

r12

)
As two rows in (A−λ1I) are proportional, to solve this equation is equivalent to solve: −r11+r12 = 0,
so the solution to the right eigenvector:

r1 = α

(
1
1

)
where α is a nonzero scalar. The left eigenvector is obtained by following the same procedure.

0 = ℓH
1 (A − λ1I)

=
(
ℓH

11 ℓ
H
12

) ( −1 1
4 −4

)
As two rows in (A−λ1I) are proportional, we only need to solve −ℓH

11 + 4ℓH
12 = 0. Therefore, the left

eigenvector is computed:

ℓH
1 = β

(
4, 1

)
where β is a nonzero scalar. Finally, we have to adjust the eigenpair to make them satisfy the the



normalization condition. An easier way to accomplish is to let α= 1
β
, the normalized eigenpair are

turned out to be:

r1 = α(1, 1)H

ℓH
1 =

1
α

(4/5, 1/5)

Table 1 lists the eigenvalues and normalized eigenvectors generated by Matlab. Note that every
eigenpair shown here is one of the infinite possible values.

Eigenvalue Right eigenvector Left eigenvector
λ1 = 2 r1 = [0.7071, 0.7071]H ℓH

1 = [1.1314, 0.2828]
λ2 = −3 r2 = [−0.2425, 0.9701]H ℓH

2 = [−0.8246, 0.8246]

Table 1: The eigenvalues and eigenvectors of the linear system

Constructing the solution by Eq. (4), produces:

x(t) = eλ1tr11ℓ
H
1 x(0) + eλ2tr21ℓH

2 x(0)

= e2t∗0.7071∗(1.1314, 0.2828)

 2

−3

+e−3t∗(−0.2425)∗(−0.8246, 0.8246)

 2

−3


= e2t + e−3t

y(t) = eλ1tr12ℓ
H
1 x(0) + eλ2tr22ℓ

H
2 x(0)

= e2t∗0.7071∗(1.1314, 0.2828)

 2

−3

+e−3t∗0.9701∗(−0.8246, 0.8246)

 2

−3


= e2t − 4e−3t

4 Sensitivity analysis of state behaviour
The state behaviour solution in Eq. (4) is the starting point for the sensitivity analysis. Our first step
is to relate the system behaviour to the compact link. A compact link is an information connection
from a state variable, e.g., xq, to a net rate of a state, e.g., ẋp, whose gain is defined:

apq =
∂ẋp

∂xq
= A(p, q)

From a broader sense, except the link relating a flow to a state, whose gain is by default to be 1
(inflow) or −1 (outflow) (Kampmann, 1996), the gain of any link connects two variables vq to vp is
defined by taking partial derivative of the head, vp with respect to the partial derivative of the tail,
vq:

gpq =
∂vp

∂vq



We can see the compact link gains are the same as entries in the gain matrix A, a perturbance of
any entry of A can vary eigenvalues and eigenvectors. This would also change the state behaviour.
To assess the impact to the state behaviour (Eq. (4)) due to the change in a compact link gain,
sensitivity is introduced to measure this influence, i.e., taking partial derivative of the state xi with
respect to the compact link gain apq:

xi(t) = etλ1r1i ℓ
H
1 x(0) + etλ2r2i ℓ

H
2 x(0) + ... + etλnrni ℓ

H
n x(0)

=

n∑
j=1

etλ jr ji ℓ
H
j x(0)

∂xi(t)
∂apq

=

n∑
j=1

(
∂etλ j

∂apq
r ji ℓ

H
j x(0) + etλ j

∂r ji

∂apq
ℓH

j x(0) + etλ1r ji

∂ℓH
j

∂apq
x(0)

)

=

n∑
j=1

(
∂etλ j

∂λ j

∂λ j

∂apq
r ji ℓ

H
j x(0) + etλ j

∂r ji

∂apq
ℓH

j x(0) + etλ jr ji

∂ℓH
j

∂apq
x(0)

)
(5)

In a linear system, the gain matrix A is time-invariant and constant, so:

∂etλ j/∂λ j = tetλ j

Substituting it to Eq. (5) yields:

∂xi(t)
∂apq

=

n∑
j=1

(
tetλ j
∂λ j

∂apq
r ji ℓ

H
j x(0) + etλ j

∂r ji

∂apq
ℓH

j x(0) + etλ jr ji

∂ℓH
j

∂apq
x(0)

)
(6)

Eq. (6) evaluates the overall state sensitivity with respect to a compact link gain. It indicates the
variation in the behaviour of xi(t) due to the change of link gain apq can be attributed to three
sources:

1. ∂λ j/∂apq, eigenvalue sensitivity. The first term in equation captures the influence to a be-
haviour mode owing to the eigenvalue. The eigenvalue sensitivity with respect to the link
gain apq is defined and calculated:

S λ j
apq =

∂λ j

∂apq
= ℓ jp × r jq (7)

where ℓ jp is pth component of left eigenvector ℓH
j and r jq is qth component of right eigen-

vector r j. The proof of computing the eigenvalue sensitivity with respect to the compact link
gain is in appendix B.

2. ∂r ji/∂apq, the ratio between the change of ith component in the right eigenvector r j and the
change in the compact link gain apq. It is an element in the entire right eigenvector sensitivity,



which is defined as follows:

S r j
apq =

∂r j

∂apq
=


∂r j1

∂apq

.

.
∂r jn

∂apq


3. ∂ℓH

j /∂apq, the ratio between the change of the left eigenvector and the change of the compact
link gain. Analogously, it is the left eigenvector sensitivity:

S
ℓHj
apq =

∂ℓH
j

∂apq
=

[
∂ℓH

j1

∂apq
. .

∂ℓH
jn

∂apq

]
Eq. (6) also suggests as the time increase, the influence of eigenvalue alternation gradually domi-
nates the change of the behaviour mode. We use these new definitions to rewrite Eq. (6):

∂xi(t)
∂apq

=

n∑
j=1

etλ j

{
tS λ j

apq r ji ℓ
H
j x(0) + S r ji

apq ℓ
H
j x(0) + r ji S

ℓHj
apq x(0)

}
(8)

Compared with the work from Goncalves (2009), we take the coefficient sensitivity (the last term
in the above equation) into consideration as well. It is actually equivalent to the left eigenvector
sensitivity multiplied by the initial conditions. We see that the decomposition of the coefficient
makes the overall state sensitivity analysis possible as the state sensitivity is decomposed into a
linear combination of the eigenvalue sensitivity and eigenvector sensitivity.

5 An analytical approach to the eigenvector sensitivity compu-
tation

Our focus now is to solve Eq. (8) analytically. Its first term, tS λ j
apq r ji ℓ

H
j x(0), can be solved as the

eigenvalue sensitivity is obtained by Eq. (7). However, a challenge remaining is to calculate the
right and left eigenvector sensitivity.

Computing the derivatives of matrix eigenvectors is studied in the domain of structural opti-
mization. It is important because these eigensolutions characterize the normal modes of vibration
for structure modeled. The method proposed by Nelson (1976) is generally accepted as the most
efficient and exact method for eigenvector sensitivity analysis. Since the eigenvector is not unique
by a scalar, this method draws on the eigenvector normalization conditions to generate the eigen-
vector sensitivity. Nevertheless we will find it is hardly applicable in this particular eigenvector
sensitivity problem.

5.1 Problems in the right eigenvector sensitivity
We first attempt to solve the right eigenvector sensitivity. Let A be a compact gain matrix of a
linear system with n state variables and assume A has n distinct eigenvalues. In the following



discussion, we will explicitly incorporate the eigenvector scalar to indicate its non-uniqueness.
From the definition of eigenvector and eigenvalue, we get:

A (ciri) = λi (ciri)

where ci is a scalar. Rearranging the above equation yields:

0 = (A − λi I) ciri

In order to obtain the right eigenvector sensitivity with respect to the compact link gain, we
take partial derivative of both sides in the above equation with regard to an entry in A, e.g., A(p, q)
and use the product rule:

0 =
∂(A − λi I) ciri

∂A(p, q)

= ci
∂(A − λi I)
∂A(p, q)

ri + (A − λi I)
∂(ciri)
∂A(p, q)

= ci
∂A

∂A(p, q)
ri − ci

∂(λi I)
∂A(p, q)

ri + (A − λi I)
∂(ciri)
∂A(p, q)

(9)

For the first partial derivative in above equation, since each entry in A is independent of the others,
so the result yields:

∂A
∂A(p, q)

=


∂A(1,1)
∂A(p,q) .

. ∂A(p,q)
∂A(p,q)
.

. ∂A(n,n)
∂A(p,q)

 =


0 0
. 1
.

0 0


The second term is a diagonal matrix with ith eigenvalue sensitivity to the link gain A(p,q) at

its diagonal. In the last term, the partial derivative of ciri is what we are looking for, i.e., ith right
eigenvector sensitivity. Expanding the above equation to see more in details:

0 = ci


0

.
riq

.
0

 − ci


∂λi
∂A(p,q) 0

.

0
∂λi
∂A(p,q)


 ri1

.
rin

 + (A − λi I)


∂(ciri1)
∂A(p,q)
.
.

∂(cirin)
∂A(p,q)



= ci


−S λi

apq ri1

.

−S λi
apq rip + riq

.

−S λi
apq rin


+ (A − λi I)


S ri1

apq

.
S rip

apq

.
S rin

apq

 (10)

Unfortunately, Eq. (10) cannot be solved for S ri
apq as the matrix (A − λiI) has no inverse (it is

singular). Moreover, the mathematical computation reflects a fundamental problem of our eigen-



vector sensitivity analysis: our definition of the eigenvector sensitivity is not precise enough. The
definition of the eigenvector sensitivity:

S ri
apq
=
∂ciri

∂A(p, q)
=

c∗i r∗i − ciri

A(p, q)∗ − A(p, q)
=

∆ri

∆A(p, q)

where A(p, q)∗ is the new link gain and c∗i r∗i is the eigenvector of the new matrix. The problem
is neither ciri nor c∗i r∗i is unique due to their scalars. We resort to the idea of normalization we have
chosen in Eq. (3), however this does not provide us sufficient information to make the eigenpair
unique: the normalization can only determine one eigenvector provided the other is given.

As we have identified the eigenvector sensitivity is not deterministic due to the non-uniqueness
of the eigenvector itself, a straightforward solution can be adding another normalization to gen-
erate unique eigenvector. There are various normalizations available: ||ri||2 = 1 (its norm is 1),
ri j = 1 (define a component of ri to be 1) and so on. Nevertheless, these normalizations are not
necessary here. The normalization provided in Eq. (3) is sufficient and satisfactorily expresses the
eigensolution to the linear system. Before we proceed further to solve this problem, we would also
have to look at the left eigenvector sensitivity.

5.2 The left eigenvector sensitivity
The left eigenvectors sensitivity can be derived following the same way as the right eigenvector
sensitivity. From the definition of the left eigenvector, we have: (ℓH

i /ci)A = λi(ℓH
i /ci). Differenti-

ating it with respect to the compact link gain A(p, q) on both sides and bringing them to the right
hand side:

0 =
∂(ℓH

i /ci)
∂A(p, q)

(A − λi I) +
ℓH

i

ci

∂(A − λi I)
∂A(p, q)

= S ℓ
H
i

apq(A − λi I) +
ℓH

i

ci
(
∂A

∂A(p, q)
− S λi

apq
I) (11)

Analogously, the row vector S ℓi
H

apq is not unique and has one free variable in its solution. At this
point, we have to make use of the normalization condition between the eigenpair:

(ℓH
i /ci) ciri = 1 (12)

which provides an extra constraint to determine that free variable. Taking partial derivative of the
above equation with respect to the link gain A(p, q), renders:

0 =
∂(ℓH

i /ci)
∂A(p, q)

(ciri) +
ℓH

i

ci

∂(ciri)
∂A(p, q)

= S ℓ
H
i

apq (ciri) +
ℓH

i

ci
S ri

apq
(13)

By virtue of Eq. (11) and (13), the left eigenvector sensitivity can be solved on the condition that
ci and S ri

apq are determined.



5.3 The implicit constraint on the eigenvector sensitivity
Let us return to the problem of seeking for a unique solution to the right eigenvector sensitivity,
although we fail to solve it by the common way (drawing upon the normalization), we find out an
implicit constraint in this specific application context, the state behaviour sensitivity with respect
to the compact link gain in Eq. (8), which implies this value (∂xi/∂apq) is a constant in spite of
the non-unique value of the eigenvector sensitivity. Let us change the state sensitivity in Eq. (8)
to gather the eigenvector-related sensitivity. Since the behaviour modes are independent of each
other, we can consider them separately. Within each behaviour mode, the term with the eigenvalue
sensitivity is solvable and yields a constant value, so we can ignore it in the eigenvector-related
sensitivity computation. The remaining terms contain eigenvector sensitivity, we will drop etλ j and
the initial condition x(0) as they do not affect the eigenvector either. For clarity, we use the formulas
to demonstrate these steps below.

∂xi(t)
∂apq

=

n∑
j=1

etλ j

{
tS λ j

apq r ji ℓ
H
j x(0) + S r ji

apq ℓ
H
j x(0) + r ji S

ℓHj
apq x(0)

}
=⇒ etλ j

(
tS λ j

apq r ji ℓ
H
j x(0) + S r ji

apq ℓ
H
j x(0) + r jiS

ℓHj
apq x(0)

)
=⇒ etλ j

(
S r ji

apq ℓ
H
j x(0) + r jiS

ℓHj
apq x(0)

)
=⇒ S r ji

apq ℓ
H
j + r jiS

ℓHj
apq (14)

The scalar is explicitly added to Eq. (14) and this is shown in Eq. (15).

Ci j =
∂(ciri j)
∂apq

ℓH
i

ci
+ ciri j

∂(ℓH
i /ci)
∂apq

= S ri j
apq

ℓH
i

ci
+ (ciri j) S ℓ

H
i

apq (15)

where Ci j is a 1 × n vector, and the notation is swapped as subscript i refers to the mode and j
refers to the state variable x j. Owing to this implicit constraint, we know that Ci j is a vector with
constants, which will yield a constant value after multiplying x(0). From previous analysis, we are
aware that the left eigenvector sensitivity can be solved by knowing the associated right eigenvector
sensitivity while the right eigenvector sensitivity has only one unknown. Therefore, we are going
to use that unknown to express the eigenpair sensitivity, substitute them to Eq. (15) and examine
the outcome. The previous example will be used again to explain the procedure. Without loss of
generality, a general linear system will also be adopted when addressing this problem.

In the following, we deal with the dominant mode sensitivities (associated with λ1 = 2) with
respect to the compact link gain a11 in the concrete example and link apq of mode i in the general
linear system. First, let us look at the solution to the right eigenvector sensitivity. Start with
the Eq. (10). As we assume A has distinct eigenvalues, Eq. (10) is a linear system with n − 1
independent functions and n unknowns. Thus, there is one free variable in the solution. We choose
one unknown as the free variable to represent the solution. Row reduction is used to produce the



outcome as follows:

S rik : unknown
S ri1 = αi1S rik + βi1ci

...

S rin = αinS rik + βinci (16)

where S rik is the kth component of ith eigenvector sensitivity, and αi and βi are both constant
vectors. For the computation convenience, we use another eigenpair value associated with 1st

mode:

r1 =

(
1
1

)
ℓH

1 =

(
4
5
,

1
5

)
The counterpart in the concrete example:

S r11 : unknown
S r12 = S r11 − 1

5c1

At this point, we start to evaluate the left eigenvector sensitivity. By utilizing Eq. (11), we can
follow the similar calculation as in the right eigenvector sensitivity and the solution is given below:

S ℓ
H
ik

S ℓ
H
i1 = ui1S ℓ

H
ik + vi1/ci

...

S ℓ
H
in = uinS ℓ

H
ik + vin/ci (17)

where S ℓ
H
ik is the kth component in the ith left eigenvector sensitivity, ui and vi are constant vectors.

It is easy to get the counterpart in the example:

S ℓ
H
11

S ℓ
H
12 = 1

4 S ℓ
H
11 − 1

25 c1

It is time to make use of the eigenpair normalization. Let us substitute Eq. (16) and (17) for S ri and
S ℓ

H
i in Eq. (13). The solution to the left eigenvector sensitivity can be described by the unknown,

i.e., a component in the right eigenvector sensitivity:

S ℓ
H
i1 = gi1S rik/c2

i + hi1/ci

...

S ℓ
H
in = ginS rik/c2

i + hin/ci (18)

where gi =

 gi1

.
gin

, hi =

 hi1

.
hin

, and are both constant vectors. Analogously, our example yields a



similar outcome:

S ℓ
H
11 = −4

5
S r11/c2

1 +
8

125c1

S ℓ
H
12 = −1

5
S r11/c2

1 −
3

125c1

Finally, recall the constraint in Eq. (15), if we replace the eigenpair sensitivities with their solu-
tions, the equation reduces to be:

Ci j = S ri j
apq

ℓH
i

ci
+ (ciri j) S ℓ

H
i

apq

= (αi j S rik + ciβi j)
ℓH

i

ci
+ ciri j(

S rik

c2
i

gH
i +

hH
i

ci
)

=
S rik

ci
(αi j ℓ

H
i + ri jgH

i ) + βi jℓ
H
i + ri jhH

i

= µH
i

S rik

ci
+ σH

i (19)

where µi =

 αi j ℓi1 + ri jgi1

.
αi j ℓin + ri jgin

 and σi

 βi jℓi1 + ri jhi1

.
βi jℓin + ri jhin

. Meanwhile, we apply the same procedure to

the example and obtain:

C11 = S r11
ℓH

1

c1

+ c1r11 S ℓ
H
1

= S r11(
4

5c1

,
1

5c1

) + c1 × 1 × (
−4S r11

5c2
1

+
8

125
,
−S r11

5c2
1

− 3
125

)

= (
8

125
,
−3
125

) (20)

Post-multiplying Eq. (19) with the initial conditions x(0) and etλi renders the eigenvector-related
sensitivity in the state sensitivity in Eq. (8). Furthermore, we have two important conclusions
derived from the above equation and analysis procedure:

1. If we choose the scalar ci in a form as in Eq. (12), the scalar does not impact the eigenvector-
related sensitivity in the evaluation of the state sensitivity. It is apparent in the concrete
example, whose C11 does not involve the scalar c1. In regard to the general form of the linear

system, we can verify it by Eq. (19). The term S rik

ci
can be rearranged as: S rik

ci
= 1

ci

∂(cirik)
∂apq

=

∂rik
∂apq

. Subsequently, we can remove the scalar in Eq. (15):

Ci j =
∂ri j

∂apq
ℓH

i + ri j
∂ℓH

i

∂apq

= S ri j
apq ℓ

H
i + ri j S ℓ

H
i

apq (21)



2. The concrete example shows the unknown disappears in Eq. (20) and leads us to believe it
is not a coincident but a rule holds in other cases. In the generalized system, it is difficult
to observe now. But if we expand all the constants along the eigenvector sensitivity com-
putation process, we can get the same result: the unknown S rik is canceled out, as µi is a
zero vector (the computation is complicated and omitted here, we provide another proof in
appendix C). We prove that for a specific behaviour mode i and a state x j, the eigenpair-
related sensitivity in the state sensitivity (in Eq. (15)) yields a constant vector (before
multiplying the initial condition) and can be calculated as jth row in Eq. (22) ( details
are presented in appendix C). This conclusion also indicates that the eigenpair sensitivity
must be calculated simultaneously as they are dependent of each other.

Ci = −(A − λiI)# ∂A
∂apq

riℓ
H
i − riℓ

H
i
∂A
∂apq

(A − λiI)#, (22)

5.4 Eigenvector sensitivity with respect to the pathway and causal link gains
Now let us look at how to develop eigenvector sensitivity with respect to pathway gain. Pathway
(Mojtahedzadeh, 1997) is the path that starts from and end with a state variable (both can be
the same variables), in addition, it does not contain any other pathways within itself. Let those
pathways be Ppq1, Ppq2, ... , and Ppqm, where m is the number of pathways from xq to xp. We use gpq1,
gpq2, ... , and gpqm to represent those pathway gains respectively. Let the compact link gain from
xq to xp be apq. If we sum up the gains of the pathways who share the same starting state and the
ending states, they are equivalent to the corresponding compact link gain:

apq = gpq1 + ... + gpqm (23)

From the definition of the right eigenvector sensitivity with respect to a pathway Ppq j, we have:

S ri
pq j =

∂ri

∂gpq j

By utilizing the chain rule and Eq. (23):

S ri
pq j
=
∂ri

∂a11

∂a11

∂gpq j

+ ... +
∂ri

∂apq

∂apq

∂gpq j

+ ... +
∂ri

∂ann

∂ann

∂gpq j

(24)

where n is the number of states in the system. It is known that the partial derivative of the compact
link gain to the pathway gain is zero when the pathway does not lie in the compact link, otherwise it
is one by Eq. (23). Furthermore, one pathway can only contribute to one compact link. Therefore,
Eq. (24) can be simplified as:

S ri
pq j
=
∂ri

∂apq

∂apq

∂gpq j

=
∂ri

∂apq

× 1 = S ri
apq

(25)

The above equation suggests that the eigenvector sensitivity with respect to the pathway is
equal to that with respect to the compact link gain where this pathway lies. Consequently,



their eigenvector-related sensitivities are also the same.
Let us focus on the causal link. The pathway gain can be computed by multiplying its causal

link gains (links between auxiliaries, states and constants):

gpu =
∏
ek∈Pu

gek (26)

We are aware that one causal link can contribute to more than one pathways. By utilizing the
chain rule, we can write the eigenvector sensitivity with respect to the causal link gain:

S ri
ek
=
∂ri

∂gek

=
∂ri

∂gp1

∂gp1

∂gek

+ ... +
∂ri

∂gps

∂gps

∂gek

(27)

where subscript s denotes the number of total pathways in the system. Eq. (26) suggests:

∂gpu/∂gek

{
= gpu/gek : Pu ∈ ek

= 0 : otherwise

Therefore, Eq. (27) is rewritten as:

S ri
ek
=

∑
ek∈pu

∂ri

∂gpu

gpu

gek

=
∑
ek∈pu

gpu

gek

S ri
pu

(28)

The equation above shows the eigenvector sensitivity to the causal link gain is equal to the
summation of the sensitivity to the pathway which contain the causal link multiplied by their
gain ratio. For the eigenvector-related sensitivity with respect to causal link gain, we can calculate
it as follows:

C(ek)
i j = S ri j

ek ℓ
H
i + ri j S ℓ

H
i

ek

=

 s∑
u=1

gpu

gek

S ri j
pu

 ℓH
i + ri j

 s∑
u=1

gpu

gek

S ℓ
H
i

pu


ek∈Pu

=

s∑
u=1

gpu

gek

(
S ri j

pu ℓ
H
i + ri j S ℓ

H
i

pu

)
=

s∑
u=1

gpu

gek

(
S ri j

apq ℓ
H
i + ri j S ℓ

H
i

apq

)
pu∈apq

=

s∑
u=1

gpu

gek

C(apq)
i j (29)

Eq. (25) and (28) show the relationships between different types of eigenvector sensitivity
and Eq. (29) proves the eigenvector-related sensitivity with respect to the causal link gain can be
obtained by a series of linear operations on the counterpart with respect to the compact link gain.



6 Application to a Linear System
We return to the linear example (see Eq. (30)) for two purposes: elaborate the computation of
eigenvector-related sensitivity provided in appendix C (Matlab is used in the computation); demon-
strate how to assess the eigenvector-related sensitivity with respect to different system elements.
The variable of interest is x and we have obtained its solution in previous discussion (Eq. (31)).

x = x + y
y = 4x − 2y; (x0, y0) = (2,−3) (30)

x(t) = e2t + e−3t (31)

The trajectory of x will be growing exponentially steered by the first mode whereas the second
behaviour mode will dissipate as time goes. Thereby we focus on the dominant mode associated
with λ1 = 2. The stock-flow diagram of this system is presented in Figure 2 to assist our analysis.

Let us begin with constructing the group inverse of (A − λ1 I), (A − λ1 I)#. The eigenvectors
are based on Table 1. First we configure matrix P whose columns form an orthonormal basis for
(A − λ1 I):

P =
[
−0.2425
0.9701

]
Hence it is not difficult to obtain the following results by Matlab. The notations are explained as
follows: [ | ] isolates columns in a matrix; [—] isolates rows in a matrix; (·)# represents a group
inverse matrix.

W = [r1|P] =
[

0.7071 −0.2425
0.7071 0.9701

]

W−1 =

[
ℓH

1

PH(I − r1ℓ
H
1 )

]
=

[
1.1314 0.2828
−0.8246 0.8246

]

(A − λ1 I)# = W
(

0 0
0 {PH(A − λiI)P}−1

)
W−1

=

(
−0.04 0.04
0.16 −0.16

)

Compact link x→ ẋ: A(1,1) y→ ẋ: A(1,2) x→ ẏ: A(2,1) y→ ẏ: A(2,2)

Eigenvector- be f ore [0.064,−0.024] [−0.096, 0.136] [−0.024,−0.016] [−0.064, 0.024]
related sen. a f ter 0.2 -0.6 0 -0.2

Eigenvalue sen. 0.8 0.8 0.2 0.2

Table 2: Eigenvector-related and eigenvalue sensitivity of 1st mode



Figure 2: Stock and flow diagram of the linear system

The eigenvector-related sensitivity with respect to a11 in terms of 1st mode is given by Eq. (22):

C(a11)
1 = −(A − λ1I)# ∂A

∂a11

r1ℓ
H
1 − r1ℓ

H
1

∂A
∂a11

(A − λ1I)#

= −

 −0.04 0.04

0.16 −0.16


 1 0

0 0


 0.7071

0.7071

( 1.1314 0.2828
)

−

 0.7071

0.7071

( 1.1314 0.2828
) 1 0

0 0


 −0.04 0.04

0.16 −0.16


=

 0.064 −0.024

−0.096 −0.064


The first row of Ca11

1 contributes to the eigenvector-related sensitivity in terms of state variable x
while the second row corresponds to the counterpart in y. Compare the first row with the result we
get in Sec. 5.3 by another method, we obtain identical answer: [8/125, −3/125]. The eigenvector-
related sensitivity with respect to the compact link gain before and after multiplying by the initial
conditions are shown in Table 2, as well as the eigenvalue sensitivity.

From Figure 2, we identify four pathways and lie in four different compact links. Table 3 lists
the pathway gains and the compact links they pass through. In addition to the conclusion that the
pathway sensitivity is equal to the corresponding compact link sensitivity, so their eigenvector-
related sensitivities are also equivalent as depicted in Table 2 and Table 3. The computation of the
eigenvalue sensitivity with respect to pathway gain or causal link gain is out of the scope, readers
can find more details in AbdelGawad et al. (2005).

The causal links are marked in Figure 2. Their sensitivities can be assessed by adding up
the pathways sensitivity which pass through that link multiplying their gain ratio, so does the
eigenvector-related sensitivity which is computed by Eq. (29). For example, the eigenvector-



Pathway Gain Compact link Eigenvector−related sen. Eigenvalue sen. S tate sen.

P1 ge1∗ge2=1 x→ẋ 0.2 0.8 (0.8t+0.2)e2t

P2 ge3∗ge4=4 x→ẏ 0 0.2 0.2t e2t

P3 ge4∗ge5=−2 y→ẏ −0.2 0.2 (0.2t−0.2)e2t

P4 ge6∗ge2=1 y→ẋ −0.6 0.8 (0.8t−0.6)e2t

Table 3: Sensitivity with respect to pathway gains of 1st mode

related sensitivity of e2 is calculated:

C(e2)
11 =

gp1

ge2

C(a11)
11 +

gp4

ge2

C(a12)
11

=
1
1
∗ 0.2 +

1
1
∗ (−0.6)

= −0.4

Furthermore, the overall state sensitivity with respect to the causal link gain in terms of the dom-
inant mode is also calculated using Eq. (8). Table 4 exhibits all the information (the eigenvector-
related sensitivity is displayed after multiplying the initial condition).

Causal link link gain Pathway Eigenvector−related sen. Eigenvalue sen. S tate sen.

e1 ∂ẋ/∂x=1 P1 0.2 0.8 (0.8t+0.2)e2t

e2 g(ẋ→x)=1 P1, P4 −0.4 1.6 (1.6t−0.4)e2t

e3 ∂ẏ/∂x=4 P2 0 0.2 0.2te2t

e4 g(ẏ→y)=1 P2, P3 0.4 0.4 (0.4t+0.4)e2t

e5 ∂ẏ/∂y=−2 P3 −0.2 0.2 (0.2t−0.2)e2t

e6 ∂ẋ/∂y=1 P4 −0.6 0.8 (0.8t−0.6)e2t

Table 4: Sensitivity with respect to causal link gains of 1st mode

From the above analysis, we can identify the eigenvector-related sensitivity is much affected by
the initial condition and remains constant while the influence from the eigenvalue is impacted by
the time factor. Table 4 shows be6 has the most significant affect to x in terms of the eigenvector.
When we increase the gain of e6, the amplitude of x will decrease by 0.6 of that amount from the
perspective of the eigenvector. In total, e2 plays the most important role in the behaviour of x as it
gives rise to the greatest impact in terms of the eigenvalue.

7 Conclusions
This paper describes a mathematical procedure of expressing the state trajectory by an eigensolu-
tion in a linear system. The solution differs itself from the conventional solution by decomposing
the mode associated coefficient into a product of the corresponding left eigenvector and system
initial conditions. An analytical framework of fully evaluating the influence of a certain system (a



link or a pathway) element on the state behaviour trajectory is proposed which involves a formula
for the eigenvector-related sensitivity in calculating the overall state sensitivity. Furthermore, we
demonstrated this overall state sensitivity analysis by a linear model. An important conclusion de-
rived in this paper is that the right and left eigenvector sensitivities have to be assessed together
and simultaneously as the eigenpair are dependent of each other.

Through studying how the overall changes in behaviour due to changes in link (or pathway)
gains, we observe that the derivatives of eigenvectors are closely associated with the short-term
impact while the derivatives of eigenvalues are associated with the long-term impact. Therefore,
the eigenvector analysis is important in rendering a complete picture of the dynamic change in the
behaviour, especially, when we care about its transient behaviour. Furthermore, there is another
advantage of eigenvector analysis, it solves a general problem related to the eigen-based methods
that they cannot relate the analysis result to the variable of interest. Because eigenvector analysis is
associated with the weight of the behaviour mode which varies in different state variables. Finally,
it can be used to implement the weight analysis in Saleh et al. (2009) analytically which enables a
much more efficient search for leverage policies.

Meanwhile, this approach also has a number of limitations. The proposed overall state sensi-
tivity analysis so far applies only to linear systems, representing a small subset of typical system
dynamics models. In addition, we did not present some more complex examples, e.g., oscillatory
systems. Finally, we did not relate the eigenvector-related sensitivity analysis to the loop gain.
Despite the limitations of the eigenvector related approach, we believe it provides the necessary
exploration and beneficial outcomes for extending the application to a wider range of systems. A
good practice is to use this approach to analyze the inhomogenous system, which can be trans-
formed into homogeneous systems by translating the system without affecting its qualitative dy-
namics. Besides, eigenvector analysis in identifying dominant loops is a topic of great interest.
These explorations are left as further development and future work.
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A General solution to linear systems
Let us consider an n-order linear system and assume it has distinct eigenvalues:

Ax = ẋ (32)
x(t0) = x(0)

In addition to our previous discussion on this problem, we will utilize the following notations
during the process of generating the solution to the linear system:

1. The eigenvalues are placed at the diagonal of a matrix: Λ =


λ1 0
λ2

.
0 λn

.
2. All the n right eigenvectors of A constitute the right eigenvector matrix R =

[
r1 . . rn

]
.

If we express the eigenvalues and right eigenvector set of A in a matrix way, it would be as
simple as:

AR = RΛ (33)

3. All the n left eigenvectors ℓ1H, ... , ℓH
n make up the left eigenvector matrix LH =


ℓH

1

.

.
ℓH

n

.
There are two general but important properties that the eigenvectors hold:

1. If v is an eigenvector, then so is γv for any nonzero scalar γ ∈ C.

2. The set of right eigenvector R and the set of left eigenvector LH forms a bi-orthogonal system
(Saleh and Davidsen, 2000). This relationship is shown in the formula below:

ℓH
i r j

{
, 0 : i = j
= 0 : i , j

In other words, the left eigenvector is orthogonal to the right eigenvector as long as they are asso-
ciated with different eigenvalues, otherwise they are not orthogonal. Moreover, with property 1, it
is easy to verify that there exist numerous scalars such that the eigenvector normalization satisfies:

ℓH
i r j

{
= 1 : i = j
= 0 : i , j

or equivalently,
LHR = I (34)

The normalization is not unique due to many possible scalars. For example, any nonzero scalar
γ can applied to the normalized eigenpair so that γ ℓH

i
1
γri = ℓ

H∗
i r∗i = 1, we use ∗ to distinguish



the new eigenvector from the old one. After the normalization, post-multiplying Eq. (33) with LH

renders:

A = RΛLH (35)

Now we use linear algebra approach to solve Eq. (32). Hence, the solution yields:

x(t) = etAx(0) (36)

where etA is a matrix exponential. Now let us start to decouple the linear system equation. A matrix
exponential eM can be expanded by the power series:

eM = I + M +
(M)2

2!
+

(M)3

3!
+ ... +

(M)n

n!
+ ... (n = ∞)

where I refers to an n-by-n identity matrix. In conjunction with Eq. (34) and (35), the above
equation can be expressed in the following:

x(t) = etAx(0) = (tI + tA +
(tA)2

2!
+

(tA)3

3!
+ ... +

(tA)n

n!
+ ...)x(0)

= (tRLH +
t2(RΛLH)2

2!
+

t3(RΛLH)3

3!
+ ... +

tn(RΛLH)n

n!
+ ...)x(0)

= R(tI + tΛ +
(tΛ)2

2!
+

(tΛ)3

3!
+ ... +

(tΛ)n

n!
+ ...)LH x(0)

= RetΛLH x(0)

This compact form has to be fully expanded to gain more insights of the system behaviour:

x(t) =
[

r1 r2 .. rn

] 
etλ1 0

etλ2

.
0 etλn



ℓH

1

ℓH
2

.
ℓH

n

 x(0)

=
[

etλ1r1 etλ2r2 .. etλnrn

] 
ℓH

1 x(0)
ℓH

2 x(0)
.

ℓH
n x(0)


= etλ1r1 ℓ

H
1 x(0) + etλ2r2 ℓ

H
2 x(0) + ... + etλnrn ℓ

H
n x(0)

Since ℓH
j x(0) produces a number, it is easy for us to present the details of the eigensolution of a

particular state variable xi:

xi(t) = etλ1r1i ℓ
H
1 x(0) + etλ2r2i ℓ

H
2 x(0) + ... + etλnrni ℓ

H
n x(0)

=

n∑
j=1

etλ jr ji ℓ
H
j x(0)



B Computation of eigenvalue sensitivity
For any square matrix A (n×n) has a distinct eigenvalue λi, the sensitivity of the eigenvalue with
respect to any entry of the matrix A, apq, is equal to the product of the pth component in the left
eigenvector and the qth component in the right eigenvector (both are associated with λi):

S λi
pq = ℓ

H
ip × riq

Proof :
For the eigenvalue λi, we have:

Ari = λiri

Differentiating this equation with respect to the entry apq gives:

∂A
∂apq

ri + A
∂ri

∂apq
− ∂λi

∂apq
ri − λi

∂ri

∂apq
= 0

(
∂A
∂apq

− ∂λi

∂apq
I)ri + (A − λiI)

∂ri

∂apq
= 0 (37)

Eq. (37) is now pre-multiplied by ℓiH. The second term becomes zero and it can be rewritten as:

ℓH
i
∂λi

∂apq
ri = ℓ

H
i
∂A
∂apq

ri

∂λi

∂apq
ℓH

i ri = ℓ
H
i
∂A
∂apq

ri

S λi
pq = ℓ

H
ip riq



C Computation of eigenvector-related sensitivity
In order to compute eigenpair sensitivity rigorously, we will bring in some mathematic concepts
to facilitate our calculation. On the other hand, we change our notations a bit for convenience: the

eigenvector sensitivity notation S ri j
apq is substituted with r′i j, S

ℓHi j
apq with ℓH

i j
′ as well. Let us start from

Eq. (21) and we show it again:
Ci j = r′i j ℓ

H
i + ri j ℓ

H
i
′ (38)

In a broader sense, for all n state variables in a system, we have n such equations. Therefore we
can rewrite them into a compact matrix form:

Ci =

 r′i1 ℓ
H
i + ri1 ℓ

H
i
′

. . .
r′in ℓ

H
i + rin ℓ

H
i
′

 = r′iℓ
H
i + riℓ

H
i
′ (39)

where Ci is an n × n matrix associated with ith behaviour mode and each row corresponds to the
eigenvector sensitivities in relation with different state variable. So far, we have adjusted our goal
a little bit and we are going to prove:

For a matrix A whose entries are all real values, Ci associated with a distinct eigenvalue
(λi) restricted to satisfy a constraint of the eigenpair in the form of rH

i ℓi = 1 yields a constant
matrix, and Ci = −(A − λiI)#A′ riℓ

H
i − riℓ

H
i A′(A − λiI)#, where A′ is ∂A/∂apq for shorthand.

Proof
If Pn×n−1 is a matrix whose columns form an orthonormal basis for R(A − λi I) (R(·) denotes

range and N(·) denotes the nullspace). The orthmnormal basis can be formed by performing the
Gram-Schmidt orthogormalization. Then W = (ri|P)1 is nonsingular and it is easy to verify that:

W−1 =

(
ℓH

i

PH(I − riℓ
H
i )

)
2 (40)

Matrix W−1(A − λiI)W has the form

W−1(A − λiI)W =

(
0 0
0 PH(I − ri ℓ

H
i )(A − λiI)P

)
=

(
0 0
0 PH(A − λiI)P

)
since λi is simple, PH(A − λiI)P is nonsingular and the group inverse of (A − λiI)

(A − λiI)# = W
(

0 0
0 {PH(A − λiI)P}−1

)
W−1

is well defined. We can further verify that the non-uniqueness of ri and ℓi will not affect the
computation of (A − λiI)#. Additional material on group inverse can be found in Campbell and

1Vector ri(n×1) forms the first column of matrix W while Pn×n−1 fill in the rest column space.
2Vector ℓH

i forms the first row of matrix W while PH(I − riℓ
H
i ) fill in the rest row space.



Meyer (1979). Since we will make use of the group inverse’s properties in our analysis, so we
introduce some of them now.

1. The nullspace of the original matrix and its group inverse matrix is the same, i.e., N(A−λI) =
N(A − λI)#

2. If A is a group matrix and b ∈ R(A), then the set of all solutions for p in Ap = b is given by
p = A#b + N(A)

3. For an eigenvalue λ,

λ# =

{
1/λ, λ , 0
0, λ = 0

A vector r is an eigenvector for A corresponding to the eigenvalue λ if and only if r is an
eigenvector for A# corresponding to λ#, i.e., Ar = λr if and only if A#r = λ#r.

From Eq. (9), we know that
(A′ − λ′i I)ri + (A − λiI)r′i = 0

with addition to property 1 and 2, there must exist a scalar β such that

r′i = βri − (A − λiI)#(A − λiI)′ri

= βri − (A − λiI)#A′ ri − (A − λiI)#λ′i ri

= βri − (A − λiI)#A′ ri (41)

Recall the normalization condition we have established in Eq. (13), we rewrite it to be:

ℓH
i ri
′ + rH

i ℓi
′ = 0 (42)

Utilizing Eq. (41) and (42) derives the scalar β = −rH
i ℓi
′, which is substituted into Eq. (41) to

produce the following expression:

r′i = −rH
i ℓ
′
i ri − (A − λiI)#A′ ri (43)

Analogously, we can obtain the general solution to the left eigenvector sensitivity by Eq. (11):

ℓH
i
′
= βℓH

i − ℓH
i A′(A − λiI)#

Plug it into Eq. (42) to generate β = −ℓH
i ri
′. As a result, the left eigenvector sensitivity can be

sorted out to be:
ℓH

i
′
= −ℓH

i r′iℓ
H
i − ℓH

i A′(A − λiI)# (44)

In light of Eq. (43), (44) and (42), our objective Eq. (39):

Ci = ri
′ℓH

i + riℓ
H
i
′

= −(rH
i ℓi
′) riℓ

H
i − ri(ℓH

i ri
′)ℓH

i − (A − λiI)#A′ riℓ
H
i − riℓ

H
i A′(A − λiI)#

= −(rH
i ℓi
′ + ℓH

i ri
′)riℓ

H
i − (A − λiI)#A′ riℓ

H
i − riℓ

H
i A′(A − λiI)#

= −(A − λiI)#A′ riℓ
H
i − riℓ

H
i A′(A − λiI)# (45)


