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Abstract 

Diffusion problems in general, and innovation diffusion problems in specific, are 
one of the most frequently revisited issues in system dynamics domain. Although 
the models used for analyzing specific diffusion problems differ in details, in 
most cases a set of assumptions is recognized to be common. In this study, we aim 
to conduct a set of experiments in order to question the validity and potential 
impact of fundamental assumptions regarding the aggregation and social network 
structure. First, a generic model focuses on the impact of information dynamics 
that accompany the diffusion process of an innovation is introduced. The 
experiments conducted on the aggregate and individual-level versions of the 
model reveal that the behavior of the system converges to the aggregate model 
assuming perfect mixing as the network gets denser. Secondly, the change in 
diffusion levels as a consequence of changing network densities was monotonic. 
However, direction of change was different for different groups of scenarios tested. 
In other words, in some cases diffusion level increases as the network gets denser, 
while in some other cases the opposite is observed. 

 
1. Introduction 
Diffusion problems in general, and innovation diffusion problems in specific, are one of 
the most frequently revisited issues in system dynamics domain. Although the models 
used for analyzing specific diffusion problems differ in details, in most cases a set of 
assumptions is recognized to be common. These simplifying assumptions are generally 
related to the to the aggregation and/or to the structure of interactions among the 
individuals in the system, i.e. social network. 
 
In most cases, these assumptions are made relying on the previous innovation diffusion 
modeling studies, and judged to be acceptable intuitively. However, little effort seems to 
be put on questioning the appropriateness on these assumptions. Questioning the 
validity of these assumptions, as well as evaluating the potential impact they may have on 
the model output is crucial in judging the validity of the results obtained by these 
models. Hence, analytical as well as experimental exploration on the impact of these 
assumptions is needed. In this study, we aim to conduct such a questioning process using 
a diffusion model developed by the authors as a basis, and provide some experimental 
results regarding the validity of these assumptions, as well as the way these assumption 
may influence the diffusion behavior. 

 
In the following section, we briefly introduce a diffusion model developed to study the 
impact of information-related mechanisms in conditioning the diffusion dynamics to be 
observed. The section covers the description of the model, as well as some interesting 
outcomes from the model. Following that, we will be questioning the degree to which 
simplest aggregate diffusion models represent the fully-connected populations, which we 
implicitly assume that they represent. In the two sections following that, we report our 
experiments about the impact of social network structure on aggregate diffusion 
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dynamics, as well as adoption chances at the individual level. The article concludes with 
a brief discussion and summary of the findings. 

 
2. Potential of Information Dynamics of Conditioning Diffusion Dynamics1 
The impact of the prior adopters on the diffusion dynamics constitutes one of the main 
components in most of the diffusion models. In the widely known Bass model [1], which 
is the basis for most of the diffusion models in marketing domains, this impact is 
represented by the internal influence concept [2, 3]. There can be various underlying 
reasons for such an influence that operate at the level of individual adopters. From a 
social influence point of view [4], it can be attributed to the imitation tendency of the 
potential adopters that drive their adoption decisions. Or, from a more economics-
driven point of view, it can be attributed to the information flowing from adopters to the 
potential adopters related to the innovation. In the work we will be summarizing below, 
we focus on internal influence due to information diffusion. 
 
As Rogers discusses in his seminal work on diffusion of innovations [5], awareness 
regarding an innovation (i.e. a type of information about the innovation) has its own 
dynamics within the potential adopter population, which significantly conditions/shapes 
the diffusion dynamics to be observed following the awareness. Using a simple abstract 
diffusion model (i.e. a model that does not represent a specific empirical case), we 
explored interaction between the diffusion of information about an innovation, and the 
diffusion of the innovation itself.   
 
In the model developed for this purpose two groups are represented; adopters (Ad) and 
potential adopters (PAd). The social system represented by these two groups is assumed 
to be perfectly mixed. In other words, individuals are assumed to interact with everybody 
in the system (i.e. everybody talks to everybody). The individuals in the system are 
assumed to be boundedly rational [6], in the sense that they decide in a rational manner 
using the information available to them, which is imperfect. In other words, what is 
known/perceived by the actors is not necessarily precise, and may differ from the actual 
information about the innovation. To simplify the model, without losing generality, the 
only information represented in the model is about a single attribute, which can be also 
assumed to be the overall utility delivered by the innovation. The level of the attribute is 
represented with a quantified index value, and higher values are preferrable. Hence, when 
we refer to information in the remaining parts of the document, we refer to the 
information regarding the level of this attribute.  
 
The perceived information about the innovation and the actual properties of the 
innovation are decoupled in the model. In other words, what is known to the potential 
adopter (InfoPAd) and adopter (InfoAd) groups need not be perfect and identical to the 
actual properties of the innovation (InfoAct).  
 
The adoption flow is defined to be dependent on the perceived information by the 
potential adopters (InfoPAd), and a threshold representing their minimal acceptable level 
for adoption (Thold). The model incorporates two dynamic mechanisms that directly 
influence the state of information about the innovation among the adopters and 

                                                   
1 Some parts of this section are reproduced from Yücel, G. and C. van Daalen, Exploring the interdependencies 
among mechanisms underlying diffusion dynamics, in PICMET Conference. 2009 (forthcoming): Portland, USA.  
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potential adopters; word-of-mouth and learning-by-experience2. The word-of-mouth 
mechanism imitates the flow of information from the adopter group to the potential 
adopter group, and is represented by a first order information smoothing structure. The 
learning-by-experience mechanism is about the learning process that adopters go through 
after the adoption decision. It is assumed that adopters may possess imperfect 
information about the innovation even at the point of adoption. Hence, they also go 
through a learning process during which they improve the precision of their information 
via experience with the innovation as a user. This learning process is also represented as a 
first order information delay in the model.  
 
The causal-loop diagram that summarizes the relationships and feedback mechanisms in 
the model are given in Figure 1, and detailed specifications of the model are provided as 
an appendix. 
 

 
Figure 1. Major relationships in the model 

 
Some important feedback loops we will refer to in the text are introduced below; 
 
Loop 1 (L1): Learning-by-experience loop for the adopter group. Works in the direction 
of reducing the gap between the actual attribute of the artifact and the adopters’ 
information about it. 
 
                                                   
2 Although the learning-by-experience name resembles learning-by-doing, the mechanism discussed here is totally 
different from the learning-by-doing or learning-curves concepts in technological development and innovation 
diffusion literature. 
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Loop 2 (L2): Word-of-mouth loop for the potential adopter group. Works in the 
direction of reducing the gap between the potential adopters’ information about the 
artifact, and the adopters’ information about it. 
 
Loop 3 (L3): Weakening-of-potential adopters loop. Supports the L2 mechanism by 
altering the Adopter/Potential Adopter ratio. The fewer potential adopters, the higher 
the ratio of adopters, the more the influence of adopters on potential adopters. 
 
Loop 4 (L4): Empowerment-of-adopters loop. Supports the L2 mechanism by altering 
the Adopter/Potential Adopter ratio. The more adopters, the higher the ratio of 
adopters, the more the influence of adopters on potential adopters. 
 
Loop 5 (L5): Dilution of information in the adopter pool. Changes the averages of the 
adopter group towards the averages of the potential adopters group due to the inflow of 
newcomers joining the adopter group. Once information on the PA side is favoring 
adoption, this loop supports the adoption process. 
 
Loop 6 (L6): Market saturation loop. The adoption rate is dependent on the number of 
existing potential adopters. As potential adopters decrease in number due to former 
adoptions, the rate of adoption also goes down. 
 
Since the main motivation is to explore the impact of learning mechanisms on diffusion 
dynamics in general, four key parameters are selected to generate different cases regarding 
these mechanisms;  

• Acceptance threshold (THold),  
• Actual attribute of the innovation (InfoAct),  
• Information perceived by potential adopters (InfoPAd), and  
• Information perceived by adopters (InfoAd).  

 
One of the challenges in working with a generic model is the impact of initial parameter 
values on the observed dynamics, which hinders the ability to draw general conclusions. 
In order to minimize this shortcoming, first 24 different scenarios in terms of initial 
values of the selected four parameters are identified. Although it is possible to initialize 
these parameters in infinite different ways, there can be only 24 different ordinal 
scenarios (i.e. ordering of the four parameters of interest). For example, the cases where 
Thold>InfoAct>InfoAd>InforAct are all a member of one scenario among these 24 scenarios. 
After identifying these scenarios, for each scenario numerous instances (i.e. 500) are 
created randomly and tested. This allowed us to draw, at least, general conclusions 
related to each scenario, for example when a dominant dynamic behavior is observed 
almost independent of the initial values in those numerous simulations. Additionally, we 
were even able to cluster some these scenarios together since we observed that the 
dominant diffusion dynamic is identical in all of these scenarios, almost independent of 
the initial values. The results of this extensive experimentation and observations are 
discussed in detail elsewhere [7]. Under different scenarios, the model generates some 
interesting diffusion cases, along with the regular S-shaped diffusion to the whole market. 
In this article, we will only mention some of the interesting dynamics observed, which 
also constitute the base cases we will be using during the following sections of the paper. 
 
a. Self-deceiving Crowds 
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We labeled a group of diffusion cases as self-deceiving crowds cases due to the way 
information diffusion mechanisms interact during the diffusion process. Although the 
underlying explanation of the observed diffusion dynamics is quite similar in these cases, 
there is considerable variety in the diffusion levels obtained at the end of the simulations. 
The first scenario in which we can observe this situation is Scenario 73 (i.e. 
InfoPAd>Thold>InfoAd>InfoAct). We will use this particular scenario in order to elaborate 
more on what is going on during this type of diffusion. 
 
As can be seen, in this scenario the potential adopters have misleading information about 
the artifact, and according to what they know their expectation from the innovation is 
higher than the innovation can deliver. Additionally, in their initial situation the 
willingness to adopt is non-zero (i.e. InfoPAd>Thold). The adopter group also has 
imprecise information about the artifact, but at least this group is aware of the fact that 
the innovation does not meet expectations (i.e. Thold >InfoAd). As seen in Figure 2, the 
extent of the diffusion may vary significantly; so how come a product that is not able to 
deliver minimal expectations of users can achieve high diffusion levels? The dynamics of 
adoption to be observed in this case will be the outcome of interplay between the 
learning processes and the pace of adoption. While the learning processes takes the state 
of information of the adopters (L1) and potential adopters (L2) closer to the real 
information, new individuals join the adopter group with their deceived information 
over-valuing the utility of the innovation (i.e. more new adopters who think the artifact 
is good enough to be adopted) (L5).  
 

 
Figure 2. Sensitivity runs for Scenario 07 (behavior envelopes) 

 
 
Assume that the adoption rate is fast, and the time it takes for adopters to learn about 
the actual performance of the innovation is long. In such a case, the adopter group will 
                                                   
3 Not all instances of scenario 7 yield this type of situation. Only in a subset of all instances we observed this 
type of diffusion. 
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be dominated by the new adopters having the misleading information about the 
innovation. Since the time to learn for the adopters is long, the imprecision in the 
information won’t be corrected soon, and the adopter group will be broadcasting a 
positive, but deceiving, message to the potential adopters about the innovation4. 
Basically, it is the potential adopters who recently made an adoption decision who 
deceive the rest of the potential adopters regarding the innovation. Hence, the label is 
“self-deceiving crowds”. Although older adopters will have more precise information 
about the innovation, due to the large number of new adopters with misleading 
information their effectiveness will decline in influencing the potential adopter. This can 
be seen as the dilution of experience-driven precise information due to massive adoption 
movements. Consequently, depending on the relative strength of the learning mechanism 
(L1 and L2) compared to the adoption-related mechanism (L5), significant differences in 
the overall diffusion levels are observed. 
 
 
b. Misguiding Front-runners 
As in the previous case, this is also a case where an inferior artifact (i.e. an artifact having 
an attribute level below the acceptance threshold of the potential adopters) may reach 
significant diffusion levels. The difference is that this time the adoption process is mainly 
driven by the initial adopters who have an artificially high expectation about the 
innovation. As in the former case, it is all about the relative speed of learning and 
adoption mechanisms.  
 
We will demonstrate this case on scenario 9 (i.e. InfoAd>Thold>InfoPAd>InfoAct), as an 
example. In this case, the actual attribute of the artifact is below the acceptance 
threshold of the potential adopters. Additionally, the information that potential adopters 
have about the innovation is also below the threshold. Thus, if the potential adopter 
group is isolated and left alone no adoption should be expected. However, the 
individuals initially defined as adopters (e.g. front-runners) are assumed to have an 
artificially high positive perception about the innovation. An intuitive expectation would 
be that adopters would broadcast a deceptive positive message about the innovation 
during the first phase. However, this will gradually turn into a negative message as they 
start learning about the innovation as a result of their accumulated experience.  
 
We expect an initial wave of adoptions due to this wrong information from adopters, and 
termination of the adoption process after a while. However, we can see that the scale of 
adoption may show significant variations in different cases by conducting a sensitivity 
analysis. The summary of 500 runs is provided in Figure 3.  
 

                                                   
4 There are some key implicit assumptions that are important in this case. The first of these is the perfect 
mixing assumption. We assume that every individual is in contact with every other member in the population. 
Secondly, we assume that potential adopters weight the information coming from different individuals as 
equal in terms of trustworthiness; thus they do not weight information from experienced adopters more than 
information from new adopters. 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Figure 3. Sensitivity runs for Scenario 09 (behavior envelopes) 

 
 
The variation in the outcome is a result of the interplay of a couple of mechanisms, as in 
the former case. In this case, the competing mechanisms are the two learning 
mechanisms; learning-by-experience (L1) and word-of-mouth (L2). So it is all about 
whether deceptive information of the adopters diffuses to the potential adopters before 
adopters achieve more precise information via experience, or not.   
 
The following instance demonstrates an extreme case of diffusion in such a scenario. In 
this case, the information diffusion from adopters to the potential adopters takes place 
much faster than the learning-by-experience process. This may be a case where extensive 
experience is required to reveal the actual attribute level of the artifact. The diffusion 
dynamics obtained in this case are presented in Figure 4. Since information diffusion is so 
fast, the information of the potential adopters quickly converge to the information level 
of the adopters (see Figure 5). After that point, until the perceptions of both groups 
converge to the actual level (and hence drop below the threshold level) due to the 
learning processes, adoption continues. In this case, this happens only after almost a full 
adoption is realized. 
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Figure 4. Full-adoption case in scenario 9 

 

 
Figure 5. Information dynamics in full-adoption case in scenario 9 

 
 
The model and experiments introduced briefly in this section, which are presented in 
detail elsewhere [7], demonstrates the potential of information flow dynamics within the 
adopter population in influencing the diffusion dynamics to a great extent. Since the 
information dynamics play such a remarkable role in innovation dynamics, it seems 
crucial to question related structural assumptions and simplifications made in such 
models. The following sections will focus on this matter, and explore the impact of 
assumptions especially made for aggregate representation of the system regarding the 
social communication network and/or actor heterogeneity on the dynamics observed 
with diffusion models. 
 
 
3. Impact of Major Aggregation Assumptions  
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One of the fundamental assumptions, implicitly or explicitly made in aggregate diffusion 
models similar to the one presented in the previous section is the perfect mixing 
assumption. According to this assumption a potential adopter is assumed to be in contact 
with everybody in the system, hence learns from all adopters in the same time. Another 
major assumption is about the adoption fraction variable. It is assumed that a system, 
which is composed of individuals having probability p of adoption can be represented by 
initializing the adoption fraction parameter equal to p in the aggregate representation. 
Shortly, such a model (i.e. M) is assumed to represent a system perfectly mixed and 
composed of individuals who have a probability p of adopting the innovation (i.e. S). 
Equivalence of M to S may be demonstrated analytically, but as an intermediate step of 
this study we tested this claimed equivalence empirically. 
 
In order to do so, an individual-based disaggregated model of the same system is 
constructed. Although the model includes the identical mechanisms as the former one, 
their implementation differs slightly since they have to be defined for the individual level. 
 

a. Word-of-Mouth: Each potential adopter checks the average of the adopters’ 
information about the innovation. Based on this average, the potential adopter 
updates its own perception. The information delay is identical with the aggregate 
version. 

b. Learning-by-Experience: Identical to the way it is implemented in the aggregate 
version. Each adopted individual updates its perception about the artifact based 
on the gap between its perception and the actual information. 

c. Adoption decision: This seems to be most significant difference between the two 
models. In the aggregate model, there was a variable representing the fraction of 
potential adopter group that will adopt the artifact. The same variable is used in 
the individual-based model. Its value is calculated for each individual actor. Then 
it is used as the likelihood/probability of artifact adoption. For each individual a 
random number between 0 and 1 is generated, and if this number is less than or 
equal to the probability of adoption of a certain individual, that individual adopts 
the innovation.  

 
In order to make a comparison between the dynamics of the individual-based and the 
aggregate model, we used the scenarios discussed previously, namely scenario 7 and 9.  
According to the former experiments based on the aggregate model, scenario 7 is a case 
where self-deceiving crowds behavior is observed, and scenario 9 is the one in which 
misguided crowds behavior is observed. 
 
Since the cases only specify the ordering of the important parameters, but not their 
actual values, it is possible to create multiple instances of parameter values that are 
consistent with the case characteristics. Hence, we have created 50 different instances for 
each of these cases. These 50 cases are simulated on each model and the results are 
compared in order to check if our claim of equivalence of these two representations (i.e. 
aggregate and individual-based) is valid. What is different from the aggregate model is 
that the individual-based model has a probabilistic nature due to the way adoption 
decision mechanism at the individual level is implemented.  Due to this, it will be 
misleading to compare an individual run of the individual-based model with the 
aggregate model. Depending on the random number series generated during a run, it is 
possible to obtain slightly different output from the individual-based model. In order to 
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minimize the impact of this probabilistic process, for each instance individual-based 
model is run for 50 replications, using a different random number generator in each of 
these replications. Then we averaged out the adoption percentage at the steady state of 
the simulations. This average is compared with the adoption percentage obtained from 
the aggregate model for that case. 
 
The parameter values used in the 50 instances of case 7 are given in the Appendices. The 
following table summarizes the comparison of output from these two models. The first 
three columns are about the individual-based model. It gives the average of the number 
of adopters at the end of the run in 50 replications of the same instance.  The standard 
deviation of this indicator in the 50 replications is also provided in the second column. 
The number of adopters obtained by the aggregates model, which is deterministic in 
nature, is given in the fourth column. The final column gives the ratio of the difference 
between the average number of adopters obtained with two models, divided by the 
standard deviation calculated for the individual-based model output. As can be seen, 
most of the deviation is in the range of approximately 2 standard deviations, which 
allows us to conclude that statistically the output of the two models are not different5. 
 
 

Individual-based Model Aggregate 
Model  

Avg. No of 
Adopter 

Std Dev StdDev/Avg No. of Adopters 
Difference/StdDev 

1 183.50 8.68 0.05 178.75 -0.55 
2 286.20 9.09 0.03 281.00 -0.57 
3 369.74 11.37 0.03 364.41 -0.47 
4 161.82 8.65 0.05 156.86 -0.57 
5 291.98 13.30 0.05 267.55 -1.84 
6 185.14 9.56 0.05 180.95 -0.44 
7 319.14 13.82 0.04 306.48 -0.92 
8 195.92 7.03 0.04 187.03 -1.26 
9 203.82 8.65 0.04 191.95 -1.37 

10 405.14 15.07 0.04 394.50 -0.71 
11 240.78 10.66 0.04 231.83 -0.84 
12 254.28 10.74 0.04 244.04 -0.95 
13 242.90 9.44 0.04 238.88 -0.43 
14 178.98 9.36 0.05 169.21 -1.04 
15 164.46 6.80 0.04 165.88 0.21 
16 255.92 12.82 0.05 241.77 -1.10 
17 340.06 11.34 0.03 330.75 -0.82 
18 266.38 12.27 0.05 243.63 -1.85 
19 186.46 9.44 0.05 177.05 -1.00 
20 727.76 16.24 0.02 740.87 0.81 
21 285.60 11.87 0.04 279.22 -0.54 
22 382.16 11.16 0.03 374.86 -0.65 
23 336.02 8.06 0.02 316.61 -2.41 
24 271.14 9.83 0.04 259.81 -1.15 
25 261.04 9.31 0.04 254.29 -0.72 

                                                   
5 A systematic bias is recognized in the deviations Although the deviation between the output of the models is 
not significant, in almost of the instances, the number of adopters in the aggregate model is less than the 
number of adopters in the individual-based model. The cause of the bias is under inspection, and the 
manuscript will be revised in the light of findings in the future. 
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26 273.54 11.51 0.04 253.02 -1.78 
27 256.08 9.89 0.04 246.25 -0.99 
28 258.90 11.85 0.05 242.31 -1.40 
29 318.98 12.07 0.04 303.62 -1.27 
30 263.82 9.54 0.04 246.56 -1.81 
31 212.60 9.92 0.05 209.25 -0.34 
32 332.50 13.74 0.04 325.15 -0.53 
33 248.86 11.53 0.05 226.58 -1.93 
34 310.54 10.00 0.03 304.91 -0.56 
35 328.12 10.71 0.03 321.72 -0.60 
36 318.18 12.67 0.04 314.63 -0.28 
37 304.50 12.74 0.04 283.23 -1.67 
38 193.38 7.08 0.04 179.58 -1.95 
39 233.10 10.17 0.04 216.09 -1.67 
40 374.04 11.08 0.03 364.53 -0.86 
41 178.30 7.20 0.04 169.87 -1.17 
42 331.28 11.07 0.03 310.02 -1.92 
43 302.40 13.41 0.04 293.65 -0.65 
44 317.70 12.33 0.04 295.37 -1.81 
45 246.36 9.92 0.04 231.59 -1.49 
46 320.42 12.15 0.04 302.13 -1.51 
47 269.34 12.09 0.04 257.60 -0.97 
48 187.10 8.55 0.05 175.30 -1.38 
49 283.80 12.83 0.05 275.26 -0.67 
50 220.90 10.70 0.05 205.74 -1.42 

 
The final number of adopters obtained by these two models in different 50 instances are 
plotted in the following figure. 
 

 
Figure 6, Comparison of results obtained by individual-based and aggregate models (Scenario 7) 

 
As mentioned earlier, the same procedure is repeated for case 9. The tables and graphs 
summarizing the comparison are given below. As in the previous case, the deviation is 
evaluated to be insignificant to conclude against equivalence of these two models. 
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Individual-based Model Aggregate 
Model  

Avg. No of 
Adopter 

Std Dev StdDev/Avg No. of Adopters 
Difference/StdDev 

1 149.22 6.51 0.04 128.90 -3.12 
2 100.00 0.00 0.00 100.00 - 
3 176.84 8.41 0.05 148.25 -3.40 
4 209.76 10.06 0.05 175.62 -3.39 
5 875.74 9.95 0.01 981.19 10.60 
6 248.56 10.92 0.04 221.87 -2.44 
7 144.86 6.76 0.05 115.37 -4.36 
8 100.00 0.00 0.00 100.00 - 
9 233.54 9.26 0.04 202.00 -3.40 

10 100.00 0.00 0.00 100.00 - 
11 268.88 12.13 0.05 248.59 -1.67 
12 100.00 0.00 0.00 100.00 - 
13 100.00 0.00 0.00 100.00 - 
14 225.68 9.01 0.04 203.81 -2.43 
15 100.00 0.00 0.00 100.00 - 
16 226.74 11.04 0.05 207.09 -1.78 
17 233.36 10.26 0.04 215.15 -1.78 
18 126.36 5.18 0.04 100.64 -4.97 
19 253.68 10.08 0.04 234.13 -1.94 
20 100.00 0.00 0.00 100.00 - 
21 154.94 6.57 0.04 128.68 -4.00 
22 100.00 0.00 0.00 100.00 - 
23 165.26 5.47 0.03 127.78 -6.86 
24 100.00 0.00 0.00 100.00 - 
25 100.00 0.00 0.00 100.00 - 
26 100.00 0.00 0.00 100.00 - 
27 759.16 12.08 0.02 699.47 -4.94 
28 100.00 0.00 0.00 100.00 - 
29 285.32 10.13 0.04 238.53 -4.62 
30 178.80 8.15 0.05 146.12 -4.01 
31 100.00 0.00 0.00 100.00 - 
32 100.00 0.00 0.00 100.00 - 
33 134.86 5.57 0.04 100.11 -6.24 
34 100.00 0.00 0.00 100.00 - 
35 219.32 11.25 0.05 185.12 -3.04 
36 127.04 5.68 0.04 100.00 -4.76 
37 203.68 10.64 0.05 166.97 -3.45 
38 100.00 0.00 0.00 100.00 - 
39 884.16 9.82 0.01 953.81 7.09 
40 302.30 11.45 0.04 274.03 -2.47 
41 100.00 0.00 0.00 100.00 - 
42 100.00 0.00 0.00 100.00 - 
43 236.02 7.95 0.03 213.85 -2.79 
44 218.90 9.13 0.04 182.82 -3.95 
45 126.64 5.19 0.04 99.82 -5.17 
46 287.42 8.83 0.03 247.47 -4.53 
47 157.20 6.30 0.04 126.13 -4.94 
48 248.22 11.41 0.05 230.94 -1.51 
49 100.00 0.00 0.00 100.00 - 
50 100.00 0.00 0.00 100.00 - 
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Figure 7. Comparison of results obtained by individual-based and aggregate models (Scenario 9) 

 
Consequently, as a result of 100 simulations with different initial parameter values, we 
observed that empirical findings also support the claim of equivalence of the individual-
based and aggregate models. In other words, the two-stock adoption model with an 
aggregate adoption fraction variable imitates the behavior of a perfectly mixed system with 
individuals having a certain probability of adopting the innovation. These experiments 
provide some extra empirical support about whether one of the most common stock-
flow representations used in diffusion problems, as our aggregate model (see Figure 8), 
really imitates the behavior of a perfectly mixed system, as it is implicitly assumed. 
 

 
Figure 8. A common stock-flow structure used in diffusion models 

 
As previously mentioned, we aim to explore the potential impact of fundamental 
assumptions used in this type of models on the diffusion dynamics. Extending the 
individual-based model discussed in this section, we are able to formulate the same 
diffusion problem in a social system where contact between individuals is constrained by 
the social network structure. Using that extended version, we will explore the impact of 
network structure on aggregate diffusion dynamics, and what we are loosing by making 
the perfect mixing assumption about a social system. 
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In this part of the study, we studied the impact of network structure on the diffusion 
dynamics, and the difference caused by this structure compared to the case of perfect 
mixing, represented by aggregate models. Rahmandad and Sterman [8] conducted an 
extensive study on this same issue, where they explore the impact of different network 
structures as fully-connected, random, small-world and scale-free, and whether these altered 
dynamics can be represented by the aggregate model by some recalibration. As an 
addition to their extensive discussion, we explore the impact of network density (i.e. 
number of links in the network, or average number of connections per individual) on the 
aggregate dynamics, and also whether network models’ behavior converge to the 
aggregate models’ beyond certain network density levels. 
 
For that purpose, a set of individual-based models with differing network structures are 
constructed with NetLogo©. The difference between these models is the number of 
average links per individual (i.e. the number of social neighbors with which an individual 
communicates directly). With this set of models, we relaxed the perfect mixing 
assumption. This implies that for a potential adopter, the set of adopters acting as a 
source of word-of-mouth are only the ones directly connected to this potential adopter. 
In other words, the word-of-mouth mechanism works only in the local social 
neighborhood of the individuals, not on the global scale. An example of the way the 
social network structure is represented in these individual-based models is given in Figure 
9. While white circles represent potential adopters, red ones represent already adopted 
individuals. The lines connecting the circles indicate the social neighbors of an individual 
with whom it may communicate. 
 

 
Figure 9. Social network visualization in the NetLogo model (white: potential adopter, red: adopter) 

 
The experimental procedure we followed can be summarized by the following main 
points;  
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‐ 10 different individual-based models with different network densities (i.e. average 
link per actor ranging from 1 to 10) are created 

‐ 50 instances already created for the scenario 9 in the previous analysis simulated 
on these 10 different individual-based models 

‐ For each instance, 50 replications with different random number sequences are 
performed (i.e. 50 replications for 50 instances, 2500 simulations in total).  

‐ The levels of adoption at the steady state over 50 replications are averaged to 
find an average adoption level for a particular instance. 

‐ For each instance, the average levels of adoption obtained with different models 
are compared to see if there is a systematic relationship between the adoption 
levels and the network density. 

 
The outcome of these experiments is summarized in Figure 10. In the figure each line 
represents one of the 50 instances of scenario 9. Each instance is simulated on 10 
network structures with differing average connection per individual levels. The diffusion 
levels at the steady state for each network intensity is recorded, and the line for a 
particular instance is drawn by joining these points6. In short, the lines represent the 
change in the average final adoption levels over different network densities. 
 

 
Figure 10. Adoption levels (in % of total market) in steady state behavior of models with differing network 

densities 
 
 
Prior to the experiments, we had an intuitive expectations regarding outcome. 
Independent of the model instance (i.e. initial parameter values used), the behavior of 
the individual-based model is expected to converge to the behavior of the aggregate 

                                                   
6 Using continuous lines for each instance may initiate a misleading impression. Those curves are constructed 
by joining 10 individual points. In other words, the adoption level vs. network density observations we have 
are discrete in nature rather than continuous. However, representing the results in a discrete way by individual 
points without connecting them made the information on the graph very hard to follow. We chose this 
representation for the sake of clarity.  
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model as network density increases. Results confirmed our expectation in general, 
though surprising us about another expectation to be discussed later. 
 
In almost all of the instances, we can observe a convergent trend in the adoption levels as 
network intensity increases (independent on whether adoption level increases or 
decreases as network density increases). Based on the model used in this 
experimentation, in can be concluded that the models that have network densities above 
10 will have almost identical dynamics to each other, and also to the aggregate model 
representing the perfect-mixing case. From a practical point of view, the increased 
network density has significant influence on the performance of the simulation in terms 
of computational time. The observation made above provides a well-grounded 
assumption valuable in that sense. Based on this observation, it may be claimed that in 
cases where social network is highly dense (e.g. above 10 connections per individual), a 
model with density of 10 connections per individual, or even a simple aggregate model 
can be used with a reasonable level of precision, and the extra computational burden 
caused by network representation can be reduced or eliminated. However, this claim has 
to be tested on other models in which the main dynamics is about the diffusion of 
information/material among connected members of the social network prior to 
generalization7.  
 
Another expectation of the authors was that the relation between the network density 
and the adoption levels would be a unidirectional one (i.e. adoption level changes in the 
same direction as a function of network density in all instances). However, experiment 
results showed otherwise. Two distinct clusters of instances can be seen in Figure 10. In 
the first group, the adoption level increases as the social network becomes denser. For 
the second group, the opposite holds. This is interesting in the sense that the 
relationship between the network density and the adoption levels is not a straightforward 
and unidirectional one. Hence, further investigation is needed to understand the 
underlying factors of this difference. 
 
In order to understand what is going on, it is crucial to comprehend the implication of 
increasing network density (i.e. increasing average node degree) on the mechanisms 
influencing the adoption process (e.g. learning-by-experience, word-of-mouth, etc.). 
Consider an individual in the network. Increasing the number of social connections of 
this node (i.e. increasing the degree of the node) changes the probability of having at 
least one adopter in the social network of this selected individual. The probability for a 
selected individual increases as its node degree increases.  
 
For example, consider a node with degree n 

Pr(Having at least 1 adopted neighbor) = 1 – Pr(Having all neighbors potential 
adopters)  

which is equal to; 
Pr(Having at least 1 adopted neighbor) = 1 - rn  

                                                   
7 It is worthwhile to mention an important issue visible on the figures. An abnormality is observed during the 
experiments, which is about the difference between the fully-connected model and the other network models. 
In theory, we expect the adoption levels to converge to the fully-connected level as network density increases. 
Although there seems to be a convergence, the convergence level is slightly lower than the level obtained with 
the fully-connected model. This point needs further investigation.  
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where r is the initial ratio of potential adopters in the whole network (<1 by definition). 
Hence as n (i.e. degree of the node) increases, probability of having at least 1 adopted 
neighbor increases. 
 
As discussed earlier about the output of the aggregate model, the mechanism responsible 
for the dynamics observed in scenario 9 is the competition among word-of-mouth and 
learning-by-experience. Their relative strength determines the final adoption levels to be 
observed. Based on the simple probabilistic reasoning given above, increasing the average 
number of connections reduces the probability of having individuals without any 
adopters in their neighborhood. For these individuals, the word-of-mouth mechanism is 
not active due to lack of adopters connected to them. Following this reasoning, Hence, if 
we can increase the chance of having at least one adopted neighbor for each individual in 
the network, it implies that word-of-mouth mechanism will be active for more nodes, 
and this means that at the aggregate level the mechanism will be stronger or more active. 
This is one of the key points in understating the surprising outcome. 
 
For the second important point, we have to go over how word-of-mouth mechanism 
works in this model. Contrary to the way word-of-mouth effect is formulated in most of 
the diffusion models (i.e. assumed to be favoring diffusion), the word-of-mouth 
mechanism has a dynamic character in this model; it may slow down an adoption 
process, as well as speeding it up. When the information of the adopters (InfoAd) is higher 
than the information known by potential adopters (InfoPAd), word-of-mouth supports the 
adoption process by yielding an increase in the information of the potential adopters. In 
cases where adopters’ information is lower than the potential adopters’, then it works in 
the opposite way. In the scenario 9, we observe both of these characteristics of the word-
of-mouth mechanism in a single run; it first reinforces adoption by promoting the 
innovation, and later counteracts it. By definition of the scenario, initially the 
information of the adopters is higher than the potential adopters. Hence, first they 
broadcast a positive message, supporting the adoption (i.e. positive word-of-mouth). Also 
by definition, adopters’ information is higher than the actual utility of the artifact, so by 
experience they learn about this and their information gets lower continuously 
throughout the simulation, and converges to the actual level.  At a certain point, the 
information known by both groups become equal. After that point on, adopters start 
broadcasting a negative word-of-mouth, slowing down the adoption. Their information is 
always lower than the potential adopters’ and due to this they pull down the average 
information level of the potential adopters.  
 
Combining these two key points, it can be said that having a stronger word-of-mouth 
mechanism may be both good and bad in terms of adoption levels. It is good in the sense 
that it speeds up the adoption more during the positive word-of-mouth period, and bad in 
the sense that it slows down adoption during the negative word-of-mouth period. At the 
end, the relative durations of these two phases is crucial regarding the final adoption 
levels. In other words, for a given case, if the impact of changing the intensity of the 
word-of-mouth mechanism is greater on the positive word-of-mouth phase, then we may 
expect an increase in the final adoption levels. However, if the impact is greater on the 
negative word-of-mouth phase, the same alteration may yield a decrease in the adoption 
levels. 
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The explanation will become clear by visually presenting it. We used the aggregate model 
for the sake of simplicity, without losing generality. Figure 11 and Figure 12 correspond 
to two specific instances of scenario 9, namely number 4 and 46. Based on our previous 
observation, the adoption level decreases as network density increases in instance 4. In 
instance 46, the opposite holds. Since the information possessed by potential adopters is 
the main driver of adoption behavior, we analyze the change in this information as a 
consequence of changing the intensity of the word-of-mouth effect. For each, case we 
conducted 5 runs, by changing the intensity of the word-of-mouth (i.e. changing the 
delay constant)8. In these figures, the positive word-of-mouth phase corresponds to the 
period until the peak point of the information curves, and the rest is the negative phase. 
 

 
Figure 11. Information dynamics for potential adopters in scenario 9, instance 46 

 
 

                                                   
8 In the figures, (+) sign is used to indicate a case where word-of-mouth mechanism is more intense. (++) 
indicates stronger. Opposite applies to cases where (-) sign is used. 
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Figure 12. Information dynamics for potential adopters in scenario 9, instance 4 

 
 
The impact of network intensity during the first phase can be traced through the change 
in the peak information levels achieved. The higher you can take the perceived 
information of the potential adopters, the more additional adoption you may expect (e.g. 
compare WoM++ and WoM-- runs). On the other hand, during the negative phase, the 
impact is dependent on the pace with which information levels go down; if it goes below 
threshold level sooner, it means the adoption process stops sooner. 
 
In the light of this explanation, let us compare the two cases. As can be seen, when the 
word-of-mouth process gets faster (or more intense), the change in the positive phase of 
case 46 is significant compared to case 4. The opposite can be said for the negative 
phase. As a result, for case 46 we can say that marginal impact of increasing network 
intensity on positive word-of-mouth phase is stronger than the impact on negative phase. 
Hence, as network intensity increases, we observe increasing adoption rates in case 46. 
The opposite reasoning holds for case 4.  
 
This observation reveals one important conclusion; the density of the network may work 
in both ways in terms of supporting a diffusion process; it may reinforce or counteract. 
Based on this, it is seen that overall impact of the network structure on the diffusion 
dynamics, among other factors, will depend on the initial situation in terms of the gap 
between what is known by the potential adopters and adopters. Hence it is not possible 
to make a case-independent generalization about this impact. An extension of this 
conclusion is related to using aggregate levels. It will be misleading to conclude that 
explicitly representing network structure always causes a change in the results obtained 
in the same direction. The change may be in both directions depending on the specific 
instance being represented by the models.  
  
 
5. Impact of Network Structure on Individual-level Dynamics 
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In the previous section, we investigated the impact of social network structure on the 
diffusion dynamics at the aggregate level. Having the individual-level models, it is also 
possible to investigate a similar issue from individuals’ point of view. What kind of 
insight can we expect from such an investigation?  
 
During the previous sections of this paper, we conducted some experiments based on a 
scenario, which results in a poor innovation being adopted by a significant number of 
potential adopter by misperceived expectations. To be more specific, scenario 9 is a 
setting in which if adoption takes place, then that is a misguided adoption since the 
actual utility of the artifact is less than the acceptance threshold of the actors in the 
system. Departing from this point, we also explored the impact of the network 
connectivity of an actor (i.e. how many neighbors it has) on the probability of adoption 
of that actor. In other words, if we assume that adopting this innovation is a wrong 
choice made due to poor information, we aim to study the vulnerability of individuals 
differing based on the number of social connections they have in the social system. This 
is the insight we aim to develop based on this investigation. 
 
In order to study this we conducted the following experiment; 

‐ Grouped the nodes in terms of number of links they have in the network. 
‐ Monitored the percentage of nodes from each group who adopted the artifact 

during the simulation (the nodes that are initially defined as adopted are 
excluded)  

‐ For each of the 50 instances of scenario 9, plotted the adoption fractions 
observed in each node group (e.g. adoption fraction for nodes having 5 links) 

‐ The lines draw by connecting these points give the change in adoption fraction as 
a function of number of links for an individual, in a particular case 

‐ These plots are produced with all of the 10 models used in the previous analysis 
(i.e. models with differing densities) 

 
The results reveal a clustering very similar to the one we have observed in the previous 
section; in some instances individuals with a higher number of neighbors were more 
vulnerable to misguided adoption, whereas in some other cases the opposite was true. 
The instances in each cluster were also the same as the clusters in the former analysis. 
Hence, it indicates that a similar reasoning for also holds for the relationship of number 
of links (i.e. node degree) and adoption vulnerability. As an example, observations related 
to two cases of scenario 9 are plotted in Figure 13 and Figure 14. Figure 13 is obtained 
by using the model, which has 4 links per individual, on average. The average number of 
links in the model used in generating the data in the Figure 14 is 5. As can be see, in case 
4 individuals have a higher probability of adopting the poor innovation if the number of 
their social links is less. On the other hand, the opposite holds in case 46. This can be 
observed in both plots. 
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Figure 13. Adoption fractions for individuals with differing number of links (Average no. of links 4) 

 
 

 
Figure 14. Adoption fractions for individuals with differing number of links (Average no. of links 5) 

 
 
In order to explain the existence of two clusters of cases in which the adoption fraction 
behaves different as a function of connectivity of an individual, it is sufficient to go over 
the discussion given in the previous section. The only difference is the fact that the 
former discussion was at the aggregate system level (i.e. stronger word-of-mouth at the 
aggregate level). However, in this case the discussion should be interpreted for each 
individual in the network. The dual direction of impact of number of links on adoption 
vulnerability is again due to the two key points discussed before. 
 
 
6. Discussion and Conclusions 
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The starting point of this study is about the impact of information dynamics that 
accompany the diffusion process of an innovation. Using a simple generic model, we have 
conducted an extensive experimental study in order to comprehend the dynamic 
interactions of a number of mechanisms related to how information changes on adopters’ 
and potential adopters’ sides (i.e. learning-by-experience and word-of-mouth). Although 
the basic scenarios with this aggregate model are described elsewhere [7], in this paper 
we provided a couple of interesting diffusion scenarios observed during those experiments 
(i.e. self-deceiving crowds and misguiding front-runners), which explain how a poor 
innovation may diffuse to a significant portion of the total market due to imperfect 
information. 
 
The main motivation of this study is more focused on representational assumptions made 
during diffusion studies as the one summarized in the beginning of in this paper. As a first 
step, we questioned if one of the most commonly used stock-flow representations (see 
Figure 8) in diffusion models represents what we believe it represents, i.e. perfectly mixed 
population, in which the probability of individuals adopting the innovation is equal to 
the adoption fraction. Building an individual-based version of the same system, we 
conducted an empirical comparison, and concluded that the behavior of the aggregate 
model demonstrates a very precise fit to the behavior of the individual-based model, in 
which every body communicates with everybody (i.e. perfectly-mixed). 
 
Later we explored the impact of social network structure, or more specifically the density 
of the network, on the aggregate diffusion dynamics. We can talk about two interesting 
findings in this phase of the experiments. The first of these is about the convergent 
behavior of the systems as their network density increases. Especially, the diffusion 
dynamics of systems having 10 or more links per individual on average differed only 
insignificantly. In addition, they converge to the dynamics obtained by the aggregate 
model assuming perfect-mixing. Such an observation provides some empirical grounding 
for relying on the simplifying assumption of perfect-mixing in representing systems with 
dense network structures.  
 
The second interesting point was regarding the impact of network density on diffusion 
dynamics. As expected, the change in diffusion levels as a consequence of changing 
network densities was monotonic. However, direction of change was different for 
different groups of scenarios tested. In other words, in some cases diffusion levels increase 
as the network gets denser, while in some other cases the opposite is observed. A further 
investigation revealed the cause of this duality; without repeating the detailed discussion 
given previously, in cases where word-of-mouth changes character, i.e. initially acts in 
favor of diffusion, and later against it, the relative change in positive and negative word-
of-mouth phases of the diffusion process yields such a diversity. A general conclusion of 
this observation is that it is not possible to make generalization like “as network gets dense, 
the diffusion levels decrease”, since such a conclusion can be made specific to a case having 
particular conditions. We conducted another round of experiments in order to observe 
the changes in the individual level adoption tendencies as a function of number of 
neighbors an individual has. These observations also revealed a similar duality in the 
response of individuals’ adoption chances to changing number of links. 
 
One future step following the observation given above is to study the profile of cases in 
which increased network density yields increased diffusion, or vice versa. Although we 
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found a set of cases, in which we observe the same behavior, it is difficult to find the 
common characteristics that are important in this observed phenomenon. For example, it 
can be the gap between the information levels of potential adopters and adopters, as well 
as the gap between the information of the potential adopter to their acceptance 
threshold. Determination of characteristics that determine the direction of the impact of 
increased network intensity may help in transferring this insight into real cases, and see if 
there is real empirical data to support such an experimental observation. 
 
 
Appendix A. Specifications of the Aggregate Model 
The differential equation set used in the model and the initial values of the parameters 
that are not altered during experimentation are given below; 
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f (.)  is specified using the special interface of the modeling software used (i.e. Vensim). 
The specification of the function is presented below on the interface of the software, on 
which range and input-output values of the function can be seen along its visual 
representation. 
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Figure 15. Graphical function used for adoption fraction formulation 
 
 
The stock-flow representation of the given differential equation system on the simulation 
software is also given below. 
 

 
Figure 16. Stock-flow diagram of the model 
 
Appendix B. Specifications of the Individual-based Network Model 
The code of the NetLogo model is given below; 
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  countAdop   
  percUtilAvgPotAdop 
  percUtilTotPotAdop 
  countPotAdop 
  willingnessAvg 
] 
turtles-own 
[ 
  adopted?      ;; if true, the turtle is already adopted the innovation 
  threshold     ;; acceptance threshold of the turtle 
  percUtil      ;; perceived level of the innovation utility 
  percUtilNew   ;; new information about the utility of the innovation 
  percUtilNeighAggr ;; an intermediate variable needed to calculate new info 
  LbEDelay       ;; learning delay of the turtles. For now equal for WoM and LbU 
  WoMDelay 
  willingness 
] 
 
to setup 
  clear-all 
  random-seed Seed 
  setup-nodes 
  setup-network 
  ask n-of initial-adopted-population turtles 
    [ adopt-ini] 
  ask links  
    [ set color white] 
  update-stat 
  update-plot 
end 
 
 
to setup-nodes 
  set-default-shape turtles "circle" 
  crt number-of-nodes 
    [ 
      setxy (random-xcor * 0.9) (random-ycor * 0.9) 
      set adopted? FALSE 
      set color white 
      set threshold threshold-avg 
      set percUtil percUtil-potential-avg 
      set LbEDelay DelayLbE 
      set WoMDelay DelayWom 
      set willingness 0 
    ]       
end 
 
to setup-network 
  let num-links (average-node-degree * number-of-nodes) / 2 
  while [count links < num-links ] 
  [ 
    ask one-of turtles 
    [ 
      let choice (min-one-of (other turtles with [not link-neighbor? myself]) 
                   [distance myself]) 
      if choice != nobody [ create-link-with choice ] 
    ] 
  ] 



  26 

  ; make the network look a little prettier 
  repeat 10 
  [  
    layout-spring turtles links 0.3 (world-width / (sqrt number-of-nodes)) 1  
  ]   
end 
 
to adopt-ini 
  set adopted? TRUE 
  set color red 
  set percUtil percUtil-adopted-avg 
end 
 
to update-plot 
  set-current-plot "Network Status" 
  set-current-plot-pen "potential" 
  plot (count turtles with [not adopted?]) / (count turtles) * 100 
  set-current-plot-pen "adopted" 
  plot (count turtles with [adopted?]) / (count turtles) * 100 
   
  set-current-plot "Averages Status" 
  set-current-plot-pen "potential" 
  plot percUtilAvgPotAdop 
  set-current-plot-pen "adopted" 
  plot percUtilAvgAdop 
   
  set-current-plot-pen "willingness" 
  plot (willingnessAvg * 100) 
   
end 
 
to update-stat 
    set percUtilAvgAll 0 
    set percUtilAvgAdop 0 
    set percUtilAvgPotAdop 0 
    set percUtilTotAll 0 
    set percUtilTotPotAdop 0 
     
    if (count turtles with [adopted?]) > 0 
    [set percUtilTotAdop (sum [percUtil] of turtles with [adopted?])  
    set countAdop (count turtles with [adopted?]) 
    set percUtilAvgAdop (percUtilTotAdop / countAdop) 
    ] 
     
    if (count turtles with [not adopted?]) > 0 
    [set percUtilTotPotAdop (sum [percUtil] of turtles with [not adopted?]) 
    set countPotAdop (count turtles with [not adopted?]) 
    set percUtilAvgPotAdop (percUtilTotPotAdop / countPotAdop) 
    ] 
     
    set percUtilTotAll (sum [percUtil] of turtles) 
    set countAll (count turtles) 
    set percUtilAvgAll (percUtilTotAll / countAll)    
     
    ;set fracAdop (countAdop / countAll)    
     
    let willingnessTot (sum [willingness] of turtles with [ not adopted?])  
    set willingnessAvg (willingnessTot / countPotAdop) 
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end 
 
to go 
  ask turtles [ update-info ] 
  ask turtles [ update-status ]   
  update-stat  
  update-plot 
  tick 
  if (ticks > RunLength) [stop] 
end 
 
to update-info 
  ifelse (not adopted?) 
  [   
    let fracAdop 1 
    let countNeighAll (count turtles with [(link-neighbor? myself)]) 
    let countNeigh (count turtles with [(link-neighbor? myself) and (adopted?)]) 
    if (countNeighAll > 0)  
    [ set fracAdop (countNeigh / countNeighAll) ] 
    if (countNeigh > 0)  
    [ 
      let percUtilTotNeigh ( sum [percUtil] of turtles with [(link-neighbor? myself) and (adopted?)]) 
      let percUtilAvgNeigh (percUtilTotNeigh / countNeigh) 
      let percGap (percUtilAvgNeigh - percUtil) 
      let delay (WoMDelay / (5 * fracAdop)) 
      let percUpd ( percGap / delay) 
      set percUtil (percUtil + percUpd) 
    ] 
  ] 
   
  [ 
    let percGap ( util - percUtil) 
    let delay  LbEDelay 
    let percUpd (percGap / delay) 
    set percUtil (percUtil + percUpd) 
  ]   
end 
 
 
to update-status 
  if (not adopted?) 
  [   
    let x (percUtil / threshold) 
    let adopProb (adopProbFunc x ) 
    set willingness adopProb 
    let dice ((random 100) / 100) 
    if (dice < adopProb) [ adopt ] 
  ] 
end 
 
 
to-report adopProbFunc [ x ] 
  ifelse x > 1.25  
    [ report (2 * adopProbNorm) ] 
    [ ifelse x < 0.75  
      [ report 0 ] 
      [ 
        let y (53.862 * x ̂  3 - 161.59 * x ̂  2 + 162.31 * x - 53.6) 
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        report (y * adopProbNorm)  
      ] 
    ] 
end 
 
to adopt 
  set adopted? TRUE 
  set color red 
end 
 
 
Appendix C. Parameter values in the instances of Scenario 7 and 9. 
 

Table 1. Parameter values for the 50 instances of Scenario 7 
# InfoAct InfoPAd InfoAd Thold  # InfoAct InfoPAd InfoAd Thold 
1 17 39 24 39  26 17 65 32 49 
2 1 30 15 19  27 3 45 19 32 
3 8 25 9 14  28 5 36 18 27 
4 7 24 10 24  29 15 42 25 30 
5 14 27 19 23  30 12 30 20 25 
6 0 25 12 22  31 6 39 13 31 
7 18 58 29 39  32 17 56 35 37 
8 16 43 29 42  33 18 47 32 41 
9 15 45 27 42  34 0 33 19 19 

10 9 28 13 15  35 2 11 3 6 
11 11 44 17 34  36 7 37 16 22 
12 6 43 11 30  37 19 61 38 45 
13 10 46 20 35  38 4 27 23 27 
14 10 26 10 25  39 11 26 23 25 
15 1 19 9 18  40 6 24 6 12 
16 19 31 25 30  41 3 32 11 29 
17 2 33 11 16  42 18 44 32 33 
18 19 40 33 36  43 15 53 15 34 
19 2 35 14 31  44 7 18 9 13 
20 14 19 18 18  45 13 25 22 24 
21 9 41 9 26  46 18 52 36 38 
22 13 42 24 24  47 8 41 26 31 
23 13 32 14 22  48 2 34 12 30 
24 11 49 20 35  49 4 48 11 29 
25 6 47 24 34  50 10 19 15 19 

 
 

Table 2. Parameter values for the 50 instances of Scenario 9 
# InfoAct InfoPAd InfoAd Thold  # InfoAct InfoPAd InfoAd Thold 
1 6 15 23 20  26 17 26 46 43 
2 13 25 56 43  27 10 13 27 13 
3 6 25 35 31  28 9 18 32 29 
4 14 22 29 27  29 19 19 41 28 
5 18 18 21 19  30 12 21 29 27 
6 7 11 34 17  31 14 19 45 37 
7 16 28 40 38  32 5 10 36 28 
8 14 29 44 43  33 3 8 28 16 
9 13 22 35 27  34 1 20 53 36 

10 3 7 30 24  35 18 31 49 39 
11 3 3 19 7  36 11 30 65 48 
12 2 5 24 17  37 2 12 33 18 



  29 

13 2 16 34 28  38 4 14 43 33 
14 7 18 29 21  39 17 19 28 20 
15 7 7 28 24  40 15 19 28 22 
16 8 22 47 28  41 19 20 42 37 
17 18 34 50 39  42 10 15 38 29 
18 1 19 27 26  43 0 5 12 6 
19 17 27 36 30  44 12 19 29 24 
20 3 20 41 37  45 10 25 48 38 
21 18 33 56 46  46 14 15 31 21 
22 4 17 26 26  47 4 13 23 18 
23 18 19 54 35  48 17 28 46 33 
24 4 13 31 27  49 13 27 53 43 
25 9 12 48 29  50 2 7 14 12 
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