
Complementing System Dynamics with Object-Role Modeling

P. (Fiona) Tulinayo1, Andreas Größler2, S.J.B.A. (Stijn) Hoppenbrouwers1,
P. (Patrick) van Bommel1

1Computer Science Department
Faculty of Science Radboud University Nijmegen

Heijendaalseweg 135
PO Box 9020

6525 GL Nijmegen
The Netherlands

F.Tulinayo@science.ru.nl, stijnh@cs.ru.nl, p.vanbommel@cs.ru.nl

2Institute for Management Research
Radboud University Nijmegen

PO Box 9108
6500 HK Nijmegen

The Netherlands
Tel +31 24 3616287, Fax +31 24 3611933

groessler@fm.ru.nl

Abstract:

In this paper we use Object-Role Modeling (ORM) to complement System Dynamics (SD). The
art of SD modeling lies in discovering and representing feedback processes and other elements
that determine the dynamics of the system. However, SD shows a lack of instruments for
discovering and expressing precise, language-based concepts in domains. At the same time, the
field of conceptual modeling has long since focused on deriving models from natural
expressions. We therefore, turn to ORM as a prime example to complement a strong natural
language based conceptual modeling approach into the creation of SD models. ORM is a formal
fact-oriented approach for modeling information at a conceptual level. In this paper we
investigate the basic building blocks of these methods using examples. Investigating the
foundation of the two methods helps us to better understand their underlying concepts and their
differences in update behavior due to state and decision changes. We use SD to capture the
dynamic, and ORM to capture the static aspect of a system.

Keywords: System Dynamics, Object-Role Modeling

mailto:F.Tulinayo@science.ru.nl
mailto:stijnh@cs.ru.nl
mailto:p.vanbommel@cs.ru.nl
mailto:groessler@fm.ru.nl

Introduction

The two methods we discuss in this paper differ in a number of ways but we use them to capture
the static (ORM) and dynamic (SD) aspects of a system. SD as a method has its focus on
capturing the structure and behavior of systems composed of interacting feedback loops. ORM
aims at modeling static objects, and pictures the world in terms of objects that play roles. It
includes procedures for mapping between conceptual and logical levels and was originally
conceived for data modeling purposes (Halpin 1998). To understand the structure of a system,
its domain needs to be well understood. This is why we introduce static ORM to enable modelers
to properly and systematically conceptualize the domain. ORM is comparable to Entity
Relationship (ER) Diagrams in use (Chen 1976). It is, however, a fact-oriented approach for
modeling information and querying the information content of a business domain at a conceptual
level (Halpin 2003). Fact-orientation means that it includes both types and instances in its
models; types are called “fact types”, instances “facts”. Including the instance level is crucial in
linking concepts with advanced SD modeling. We also use ORM because of its strong
verbalization and conceptualization facility and for its fully formal link to predicate logic. ORM
has a graphical constraint notation that is claimed to be far more expressive for data modeling
purposes than, for example, Unified Modeling Language (UML) class diagrams or industrial
Entity Relationships (ER) diagrams (Halpin and Wagner 2003). Basically, conceptual modeling
is concerned with identifying, analyzing and describing the essential concepts and constraints of
a domain with the help of a modeling language (Guizzardi et al., 2002). However, Halpin and
Wagner do state that `although ORM supports modeling of business terms facts, and many static
integrity constraints and derivation rules, it cannot model the reactive behavior of systems which
can be described using dynamic integrity constraints''. Clearly we use SD to capture the reactive
behavior of a system. Sharif (2005) further states that; ``....there is a strong case for starting to
apply systems dynamics methods more openly in the BPM and MIS research fields, as I feel the
tools and techniques available are vastly under-rated in terms of their applicability and
capability to provide novel representations of real-world situations.....''. These complementary
statements are the basis for our overall research direction: Complementing System Dynamics
with Conceptual and Process Modeling.

Compared with the concepts of ORM, whose roots can be traced back to the 1970’s, the
scientific concept of feedback (Richardson 1991), which is at the core of system dynamics
modeling, is significantly older. SD is well known for improving the understanding of complex
dynamic systems (Bollen et al., 2002). There have been earlier comparative studies, concerning
methods potentially complementary to SD, for example SD and Discrete-event system
(Brailsford and Hilton 2000; Borshchev and Filippov 2004), and SD and Petri nets (Duggan
2006). In these comparisons the main differences between SD and these methods have been
highlighted. In 1996, Richardson identified a number of issues for the future of system dynamics
one of which was “understanding model behavior”. To understand the behavior of a model one
needs to understand its domain, the connections between the model structure, and behavior in a

sequential manner (i.e. from simpler models to more complex models). This explains why in this
paper we present the basic concepts for investigations in the behavior of the two methods as a
basis for carrying out more complex modeling.

We carry out this study because it is hard to define complex dynamic models in complex
organizational settings therefore, we need support based on ontology (conceptual structure).
Secondly, for transferability purposes that's incases where information from one organization
need to be reused by another. Lastly to be able to have a basis for the development of a tool that
will aid in understanding model behavior.
To achieve this we will take a stepwise approach that’s: Identifying the conceptual link between
SD and ORM and later with Petri nets (Tulinayo et al., 2008), Identify the key concepts as used
in different methods, Map their constructs, Derive transformations (Tulinayo et al., 2009), Create
their syntax and semantics, and develop requirements specifications on which a tool can be
based.

Discrete
 Flow

Conceptual
 Structure

Quantity
 Flow

Meta-Model
Integrated

In
ter

-V
iew

 P
oin

t M
ap

pi n
g

Int er -View Poi nt M
apping

Inter-View Point Mapping

View Point Meta

M
odel M

appingV iew P
oint M

et a

M
ode l M

apping

V
ie

w
 P

oi
nt

 M
et

a
M

od
el

 M
ap

pi
ng

ORM

Petri Nets System Dynamics

Figure-1: Abstract View of the overall structure

We include Fig-1 to depict an abstract view of the overall structure of what our longer term
project is (of which this paper is only part). Two types of mappings are shown: mappings
between viewpoints are what we refer to as inter-viewpoint mappings and the mappings between
specific viewpoints and integrated meta-model are refereed to as viewpoint meta-model
mappings. This project intends to entail the use of three different methods (SD, ORM and Petri
nets1) to develop a tool that will enable stakeholders (simulation modelers, users and domain
experts) to view and manipulate/interact with the integrated models on a common platform. In

1 A Petri net (also known as a place/transition net or P/T net) is one of several mathematical modeling languages
for the description of discrete distributed systems. A Petri net is a directed bipartite graph, in which the nodes
represent transitions (i.e. discrete events that may occur) and places (i.e. conditions).

the current study we only use ORM, as a graphical representation for conceptual structure. Petri
nets will be introduced later to model a discrete flow, and SD to model a quantitative flow. We
use these methods because ORM adds high quality formal conceptualization to SD modeling;
Petri Nets will serve to bridge the gap between static ORM and Dynamic, flow-like aspects of
SD. We note that both Petri nets and SD are dynamic methods and have commonalities between
them, unlike ORM that deals with static conceptualization of the system.

The structure of this paper is as follows. In section 2 we give a summary of the results of earlier
papers (Tulinayo et al., 2008 and Tulinayo et al., 2009) where we explored the conceptual link
between the two methods, identified commonly used variables, and mapped their constructs. In
section 3 we investigate the basic building blocks of these methods using examples. Investigating
the foundation of the two methods helps us to better understand their underlying concepts and
their differences in update behavior due to state and decision changes. By so doing, we will have
a clear guide as we construct more complex models in the future for good foundations giving
strong and lasting constructions.

2. Mappings between Methods

In this section we start by identifying the key variables (elements) in ORM and SD. We try to
make explicit the relationships between the two methods as illustrated in (Tulinayo et al., 2009).
This helps us in charting and comparing the different concepts as used in the methods. Apart
from identifying the connections or justifiable similarities between the two methods, we also
note the transitional statements against each pair of concepts. The similarities concern ways in
which the concepts interact amongst themselves, or the roles they play in the process of
modeling systems. First we illustrate some of the basic underlying concepts of the two methods,
on which we base our study.

(A) (B)

STOCK A

Inf low A

STOCK B

Flow B

CONVERTER

Connector Connector

Figure-2: Informal example of SD and ORM

X Y
 P1 P2

f2f3

f4f5

f1

Fig-2 depicts the key concepts that we use/ discuss in this paper; System Dynamics under (A)
and Object Role modeling under (B). In SD we use Stocks (Stock A and Stock B). These act as
reservoirs containing quantities describing the state of the system. Flow rates (Inflow into stock
A and Outflow from Stock A into stock B) can be imagined as pipelines with a valve that
controls the rate of accumulation in the stocks. Exogenous variables (Converters) feed new
information into the flow rate causing it to change. Information links (Connectors) are defined as
links that relay information (in the vector sense) from a converter and stock into or out of flows.

In ORM we use object types (X, Y) to denote entities (at type level) and fact types (f1, f2, .…., f5)
as predicate-like relationships between object types. Object types are a collection of objects with
similar properties, in the set-theoretical sense. Fact types represent associations between object
types, consisting of a number of roles denoting the way object types participate in that fact type.
We can have, for example, unary fact types (f2, f3, f4, f5) and binary fact types (f1). Semantically
fact types correspond to predicates in predicate logic.

In Table.1 we identify the commonalities or relationship that the basic concepts have among
them comprising of SD with ORM plus their transitional statements (a way to tie perceptions in
different areas and modeling techniques together) and elements.

System
Dynamics

ORM Transitional Statement Elements

Stock Unary fact
types

They all contain “things”. Containers

Quantity Objects These can be looked at as the things that
flow within the system.

Contents

Flows
(Inflow and
Outflow)

Object types They all connect items: Stocks (SD),
Unary fact types (ORM).

Homogeneous
connectors

Connectors Fact types They are all active and involve activities
that cause a change to the recipient /
destination.

Heterogeneous
connectors

Table 1: SD, ORM plus transitional statements

In Table-1 we find connections between different concepts used in the methods. Stocks in SD are
similar (though not identical) to unary fact types in ORM because they both contain ``things'' and

we call their elements containers because of their purpose. Quantity in SD is similar to counting
Objects (i.e. instances of objects types) in ORM. This is because we look at them as quantities
that flow within the system or process. We have the Quantities (SD) and Objects (ORM) which
we consider to be related because they all flow within the system/process and their elements are
contents. We use the term ``quantity'' in SD to represent the items or quantifications that flow
within the system. Next we link flows (inflows and out flows) in SD to Object types. This is
because they connect different stocks (SD) and Unary fact types (ORM). Hence, we refer to their
elements as homogeneous connectors because they all connect similar concepts. Finally we link
connectors with fact types because they are both active and have activities involved that cause a
change to the recipient/ destination hence their elements being heterogeneous connectors.

3. Basic Concepts for ORM-SD investigation

3.1 Foundations

Richardson (1996) states that “understanding connections between model structure and behavior
comes from a sequential modeling process that is from simpler formulations to complex
structures”. That is why in this paper we start by presenting the basic building blocks as a basis
on which to build more complex models later.

In ORM semantic connections between entity types are depicted as combinations of boxes and
are called fact types. Each box represents a role and must be connected to an entity type, a value
type or a nested object type. A fact type can consist of one or more roles. The number of roles in
a fact type is called fact type arity. The semantics of the fact type are put in the fact predicate.
More details of ORM symbols can be found in (Halpin 1998) where he explains their exact
meaning.

 (A)

Stock X

Inf low A Outf low B

(B)

Y A

Figure-3: Basic building blocks

Fig-3 depicts the basic building blocks of SD and ORM. Fig-3A is the ORM representation
where objects in A play a role Y (unary fact type). The population instances of object type A are
refered to as objects. When this is applied to SD we get Fig-3B where inflow A is the depiction of
when an instance starts to play a role and outflow B represents when that instance stops to play
that role. The instances that exist within stock X are what we refer to as quantities. The quantity
of a stock is equal to the number of instances of object type A playing role Y

3.2 Differences in update behavior

There are significant differences in the way populations of fact types are updated which we refer
to as update behavior. In ORM the roles are ordered, which corresponds to the inflow-outflow in
SD where quantities flow into a stock and then out of the stock on completion of a task/role. The
inflow represents an action of starting to play a role and an outflow action of stopping to play
that role. In the examples below we focus on the decision whether instances of object type
person play that role or not.

3.2.1 Single state change with a single decision

The single state change with single decision occurs when an event is triggered once and never
again. For example: Person was born in EU (single state change with a single decision) A
person can only be born once therefore the decision needs to be made once when he/she is born.

 (A) (B)

Born
in EU

was born
in EU

EU Birth

born‐in‐EU

 Person

Figure-4: Single state change with single decision

In the ORM model (Fig-4A) we have person as the object type and born-in-EU as the Unary fact
type. The object type person plays a role born-in-EU. If the person is not born in EU then he
does not play that role. In the SD model we have a converter/exogenous variable feeding new
information into the inflow (EU birth) which is activated every time a person plays the role born-
in-EU. This will cause a change to the stock (born in EU) as represented in Fig-4 B. In this case
the SD model will not have an outflow because once a person starts to play that role the state
never changes.

3.2.2 Single state change with multiple decisions

A single state change with multiple decisions exists when there is an occurrence of the event that
is likely to appear again in the system. For example; person has visited EU. Once a person starts
to play the role has-visit-EU he never stops. This person may decide to play this role again and
when he does play this role again after a period of time, multiple decisions are made. This leads
to updates in existing information hence, the latest visits and frequency of the visitor are
captured. In Fig.5B there is no outflow because once a person starts to play that role he never
stops.

(A)

Has
v isited EU

Visitor

Visiting rate

Already v isitedNew v isitor

(B)has‐visited‐EU

 Person

Figure-5: Single state change with multiple decisions

In the single state change with multiple decisions, the ORM model will not differ from the one in
Fig-4A although the information changes; yet for the SD model there is a significant change
because of the multiple decisions made as reflected by the converters and connects. The
converters (new visitor and has visited) represent the new information that is to be fed into the
inflow (visitor) through the visiting rate, causing a change to has visited EU.

3.2.3 Multiple state changes

For multiple state changes, a number of state and decision changes occur, for example: person
Lives in EU. A person can decide to live in EU for a period of time and then get out of EU or
decide to move back and forth if need be.

(A) (B)
EU

Population

Incoming
population

Outgoing
population

Incoming
rate Outgoing rate

lives‐in‐EU

 Person

Figure-6: Multiple state changes

The ORM model will not differ from the previous models because object type person will play
the role lives-in-EU, but for the SD model there is a difference because it has to capture all the
decisions made. There are information links from the stock (EU population) indicating that EU
population influences both the incoming and outgoing population. Here we notice that the SD
model has an outflow which reflects the population moving out of EU. The SD model captures
this information which enables analysis of the total EU population and the rate at which persons
move in and out of EU. For the three given examples we notice that there is no difference in the
way the ORM model appears, yet in the SD model there are changes in appearance depending on
the decisions made.

In summary, in Fig.4-6 we show the difference in SD and ORM model update behavior. We
notice that through all the three examples the ORM model does not change. This is because it
does not capture the decisions as they occur, instead it captures the instances of object types as

playing a role (which shows its static aspect) In SD all decisions made are captured (dynamic
aspect). Hence, the SD model change depends on the number of decisions made.

Conclusion and further work

The ORM methodology equips the modeler with strong conceptualization of the domain, which
is key in developing any model. In this paper we have identified the basic building blocks of both
methods, enabling us to understand how these methods differ in their update behavior as a result
of state and decision changes. This will enable us to devise better clarifications as we build more
complex models in the future.

This research is part of a larger project aiming to improve SD modeling by deploying methods
and techniques from system development. We expect that the SD models produced this way will
be better understood, with fewer errors, than is currently the case. This will have to be
empirically confirmed. With higher quality SD models in place, decision makers and
stakeholders should, for example, be able to make better decisions concerning their enterprise
and its processes. We will apply the approach presented above in the context of various case
domains within the discipline of enterprise engineering. We will further develop and refine the
method (its models as well as the stepwise modeling process), by devoting more attention to
formalizing its syntax and semantics, but also to the operationalization of the modeling
procedures. In addition, we intend to use the techniques suggested in this paper in collaborative
settings (Group Model Building; Rouwette and Hoppenbrouwers, 2008), which is a sub-
discipline within the field of SD. Finally, we intend to explore further links between SD and
process modeling (already initiated by the Petri net involvement), in particular with the YAWL
method (Aalst and Hofstede, 2005).

References

1. Aalst, W.M.P.v.d., Hofstede, A.H.M.t. (2005) YAWL: Yet Another Workflow Language.
Information Systems, 30(4), 245-275

2. Bollen, L., Hoppe, H.U., Milrad, M., Pinkwart, N. (2002). Collaborative Modelling in
Group Learning Environments. In Davidsen, Mollona, Diker, Langer & Rowe (eds),
Proc. Of System Dynamics Society, Palermo (Italy), July 2002,

3. Borshchev. A and Filippov.A. (2004) From System Dynamics and Discrete Event to
Practical Agent Based Modeling: Reasons, Techniques, Tools. The 22nd International
Conference of the System Dynamics Society. Oxford, England

4. Brailsford, S.C. and Hilton, N.A. (2000) A Comparison of Discrete Event Simulation and
System Dynamics for Modeling Healthcare Systems. Proceedings of ORAHS, Glasgow
Caledonian University, pp. 18-39

5. Chen, P.P. (1976). The entity-Relationship model-Towards a unified view data. ACM
Transactions of database systems 1(1), 9-36

6. Duggan, J. (2006) A Comparison of Petri Net and System Dynamics Approaches for
Modelling Dynamic Feedback Systems. 24th International Conference of the Systems
Dynamics Society, Nijmegen, The Netherlands, July

7. Forrester, J.W. (1961) Industrial Dynamics. The MIT Press, Cambridge
8. Guizzardi, G., Pires, L. F., Sinderen, M. J. v. (2002) On the role of Domain Ontologies in

the design of Domain-Specific Visual Modeling Languages. In: Proc. 17th ACM
Conference on Object-Oriented Programming, Systems, Languages and Applications
OOPSLA

9. Halpin, T. (1998) Object-Role Modeling (ORM/NIAM), Handbook on Architectures of
Information Systems, Springer, Heidelberg, Ch. 4

10. Halpin. T and wagner G. (2003) Modeling reactive Behavior in OR. LNCS 2813, 567--
569. Springer-Verlag Berlin Heidelberg

11. Richardson G. (1996) Problems for the future of system dynamics. System Dynamics
Review 12: 141-157

12. Richardson G. P. (1991) Feedback thought in social science and systems theory.
Philadelphia: University of Pennsylvania Press.

13. Rouwette, E., Hoppenbrouwers, S.J.B.A. (2008) Collaborative systems modeling and
group model building: a useful combination? 26th International Conference of the System
Dynamics Society

14. Sharif, A. M. (2005) ‘Industrial Viewpoint’ can systems dynamics be effective in
modeling dynamic business systems? Business Process Management Journal 11(5): 612--
615 q Emerald Group Publishing Limited

15. Tulinayo, P.F, Hoppenbrouwers, S.J.B.A., and Proper, H.A.E. (2008) Integrating System
Dynamics with Object-Role Modeling. IFIP International Federation for Information
Processing. J. Stirna and A. Persson (Eds.): PoEM, LNBIP 15: 77-85

16. Tulinayo, P.F, Hoppenbrouwers, S.J.B.A., van Bommel Patrick and Proper, H.A.E.
(2009) Integrating System Dynamics with Object-Role Modeling and Petri nets.
Technical paper, ICIS, Radboud University Nijmegen.

