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Many important risky projects are characterized by stochastic processes embedded in 

non-linear, feedback structures with delays. System dynamics models may be used to 

estimate the cash flow resulting from these projects. If these projects include managerial 

flexibility (real options), a correct financial evaluation of these cash flow requires the use 

of real options methodology. We adapt prior work on real options valuation in the 

decision analysis literature to develop a methodology that avoids the need to estimate a 

risk-adjusted discount rate for the project with options. We illustrate this approach with a 

model drawn from the wind power industry, which is characterized by numerous 

uncertainties and high managerial flexibility. We conclude with a discussion comparing 

this methodology to the previous methods and describe under what conditions each one 

might be a more appropriate choice.  
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1. Introduction 

 
It has been well recognized that the traditional discounted cash flow (DCF) 

methods of valuation fail to account for the value of managerial flexibility inherent in 
many types of projects. For instance, a simple net present value analysis does not capture 
the values of the options to delay, expand or abandon the project. The real options 
valuation approach is the state-of-the-art method to value capital investment projects that 
involve managerial flexibilities. It applies financial options theory to value options 
derived from managerial flexibility, which are called “real options” to reflect their 
association with real assets rather than with financial assets (Myers, 1987; Trigeorgis and 
Mason, 1987; Trigeorgis, 1988; Dixit and Pindyck 1994). 

 
Traditional real options solution approaches typically rely on models that are 

highly stylized closed-form formulations based on the assumption that the value of the 
real asset over time can be modeled as a stochastic process (e.g. McDonald and Siegel, 
1986; Paddock et al. 1988; Capozza and Li, 1994) or they are based on the use of a 
discrete dynamic programming approximation of a stochastic process (e.g. Trigeorgis, 
1991; Trigeorgis, 1993; Kogut and Kulatilaka, 1994).  Neither of these approaches can 
generally handle complex projects that include rework, learning curves or other stochastic 
processes embedded within nonlinear feedback structures characterized by delays 
(Forrester, 1961; Forrester, 1975).  

 
In this paper, we adapt prior work on real options valuation in the decision 

analysis literature to support the use of Systems Dynamics (SD) methodology to evaluate 
real options.  This work builds on a burgeoning stream of research extending the 
capabilities of SD methodology in modeling complex systems. Ford and Sobek (2005) 
built a product development project model that uses real options concepts to manage 
product design risk. Barghav and Ford (2006) examined the relationship between project 
management quality and the value of flexible strategies. Johnson et al. (2006) used an SD 
model to value flexibility in a large petrochemical project. These papers provide 
examples of how real options logic can be incorporated into SD models of projects; yet 
they analyze projects with a single option and they do not focus on formalizing an 
algorithm to estimate the market value of projects with complex option structures using 
SD models.  

 
Closest to our paper, Tan et al. (2009) proposed a formal, decision-tree based 

algorithm to evaluate SD models of projects that account for managerial flexibility. That 
paper develops a methodology to transform the data generated by Monte Carlo 
simulations of the SD model into a decision tree representation.  The decision tree is then 
evaluated using a risk-adjusted discount rate for the project. This is commonly called the 
“naïve approach” to modeling real options in the finance literature (Copeland and 
Antikarov, 2001) as it does not capture the changing risk characteristics of the expected 
future cash flows by adjusting the discount rate. Adding the options changes the expected 
future cash flows and thereby alters the risk characteristics of the project so that the risk-
adjusted discount rate for the project without options may not be appropriate after the real 
options have been included in the model.   
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In this paper we propose an approach (which we shall refer to as the diffusion 

approximation approach) which modifies the traditional decision tree approach by using 
concepts from Copeland and Antikarov (2001) and Brandao et al. (2005a) to overcome 
this flaw. The method avoids the problem of selecting an appropriate risk-adjusted 
discount rate for the analysis by using a “risk neutral”1 valuation and provides a more 
accurate estimate of the market value of the project.  Similar to the approach in Tan et al. 
(2009), the diffusion approximation approach is a decision-tree based method that relies 
on system dynamics simulations; hence, it takes advantage of the complementary 
strengths of system dynamics and decision analysis in representing stochastic models and 
decision processes (Tan et al. 2009).  However, unlike Tan et al. 2009, this paper 
espouses an approach that more accurately reflects the market value of the project. 

 
The remainder of the paper is as follows.  Section 2 provides an overview of the 

traditional decision tree approach and discusses its limitations. Section 3 introduces the 
diffusion approximation algorithm.  Section 4 briefly presents the motivating example 
that was analyzed in Tan et al. (2009) and illustrates the steps of valuing this project 
using the diffusion approximation algorithm. A comparison of the two valuation 
approaches as well as a discussion of some limitations is provided in Section 5, followed 
by a short conclusion in Section 6.  
 

2. Overview of the Traditional Decision Tree Approach 

 
The traditional decision tree approach developed by Tan et al (2009) for linking to 

an SD model is based on transforming data generated by Monte Carlo simulations of the 
SD model of the project into a decision tree. The key virtue of the method is taking 
advantage of the system dynamics methodology in modeling the underlying uncertainty. 
Real options valuations traditionally model uncertainty by assuming an analytically 
tractable stochastic process. Yet, the simple stochastic processes that are often used to 
value financial options may not capture the complex real-world behavior of uncertainties 
associated with real options.  System dynamics, on the other hand, is a methodology 
developed to analyze and manage complex feedback systems. Consequently, it is 
powerful in handling nonlinearity and path-dependence. Modeling the structure that 
produces the complex dynamics associated with many risky projects using SD may 
improve the accuracy of the ultimate valuation. Yet, to incorporate the real options in the 
valuation of a project, one needs to model and optimize a sequential decision process, 
which is not an inherent capability of the SD simulation environment. To model the 
decision process, Tan et al. (2009) resort to decision tree analysis, which provides an 
intuitive approach in modeling managerial flexibilities and discrete approximations of the 
project uncertainty. Hence, the traditional decision tree approach aims to benefit from the 

                                                 
1 Risk Neutral Measure is an important concept in the context of mathematical finance and risk neutral 
valuation is an important general principle in option pricing (Hull 2006). A risk-neutral measure is a 
probability measure in which today’s arbitrage-free price of a derivative security is equal to the discounted 
expected value (under the measure) of the future payoff of the derivative. The measure is in general 
different than the “physical” measure of probability and is employed to determine the worth of derivative 
securities. Please refer to Dixit and Pyndick (1994) for further details.  
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complementary strengths of system dynamics and decision tree analysis. The steps of the 
algorithm are as follows:  

 
I. Identify the managerial flexibilities and decision sequences: The first step is 

identifying the “real options” in the project. At each period, the manager needs to 
decide whether or not to exercise the available options; hence there is a sequence 
of decisions to be made throughout the horizon of the project. Each possible 
sequence of these decisions is called a decision sequence.  

II. Build the deterministic SD model that captures the project dynamics 

III. Model the uncertainty by specifying the random variables and their distributions: 
In general, there are multiple sources of uncertainty to be specified in a project.  

IV. Run Monte Carlo simulations of the SD model for each decision sequence: A 
Monte Carlo run for a specific decision sequence gives a cash flow distribution 
for each period.  Hence, Step 4 results in TM ×  cash flow distributions, where T 
is the time horizon of the project and M is the number of possible decision 
sequences.  

V. Obtain the discrete distribution approximations for the first period cash flow 

distribution for each decision sequence: The bracket median approximation 
technique (Clemen 1997) is used to obtain a k-point discrete distribution 
approximation of the first period cash flow distributions.  

VI. Obtain the conditional discrete approximations for the remaining periods for 

each decision sequence: The cash flow distributions for period t are conditional 
on the cash flow distributions of period t-1, as well as on the decision sequence 
that is chosen. These conditional continuous distributions are discretized applying 
the bracket median method recursively.  

VII. Solve the decision tree by backwards induction using the risk adjusted discount 

rate: In practice, this step is handled easily by using decision analysis software 
such as DPL™. 
 
The major limitation of the traditional decision tree approach just described is that 

the risk-adjusted discount rate for the project without options is used as the discount 
factor for the entire decision tree (Teisberg, 1995). Essentially, the risk-adjusted discount 
rate that a financial analyst should choose to value the project with options may be 
different from the one he should choose to value the project without options because of 
the alternatives’ different risk levels.  

 
The classical approach to incorporating market information is based upon 

identifying a replicating portfolio for the project under consideration and using the 
volatility information of this replicating portfolio to obtain an appropriate discount rate 
for the project.  However, the replicating portfolio assumption is difficult to use in 
practice when evaluating individual corporate investments because it is hard to find a 
single replicating asset or even a portfolio of publicly traded assets with returns that are 
perfectly correlated with those from the project (Borison 2005), and the appropriate 
replicating portfolio may change if the risk of the project is changed by the addition of 
options.  
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This criticism can be overcome by using a decision tree based real options 
valuation method developed by Copeland and Antikarov (2002) and modified by 
Brandao, Dyer and Hahn (2005a). We will make some modifications to this method and 
call it the diffusion approximation approach.  Copeland and Antikarov (2002) suggest the 
use of a Monte Carlo simulation of a pro forma spreadsheet model to obtain an estimate 
of the risk associated with the project without options, which is then used to construct the 
required decision tree.  Instead we substitute simulation runs from an SD model and 
obtain a reliable, and theoretically correct (from the point of view of the finance 
literature) valuation of the investment projects. 

 

3. The Diffusion Approximation Approach 

 
In its simplest form, the diffusion approximation method assumes that the changes 

in the project’s value over time approximately follows a geometric Brownian motion 
(GBM) diffusion process, which is a standard assumption in the finance literature (e.g. 
Copeland and Antikarov, 2001). The method relies on the market asset disclaimer 
(MAD) assumption, which assumes that the value of the project without options is the 
best unbiased estimator of the market value of the project. Hence, the expected NPV of 
the project without options is taken as the market price of the project as if it were traded 
(Copeland and Antikarov, 2001).2  Then, the value of the project without options is 
assumed to change over time according to a GBM process, which is the same process 
used to model the changes in the price of a stock when the Black and Scholes (1973) 
option pricing model is used. The assumptions behind the GBM model may not hold for 
all projects, in which case other models of stochastic processes (e.g. mean reverting) may 
be used (Brandao et al 2005a, Hahn and Dyer 2008). 

 
 We use the GBM model because the use of a binomial lattice approximation to a 

GBM process is well established in the literature (Hull, 2003) and it is straightforward to 
build a corresponding decision tree to value the project once the parameters of the 
process are provided.  In the decision tree representation, the project values are 
discounted with the risk-free rate since the risk-neutral probabilities are used, which 
eliminates the need to estimate different risk-adjusted discount rates as options are added 
to the project.  

 
The first three steps of the diffusion approximation approach are exactly the same 

as the traditional decision tree approach: 1) Identify the decision variables and decision 
sequences 2) Build the deterministic SD model 3) Specify the distributions for the 
uncertain variables. The remaining steps that distinguish the diffusion approximation 
algorithm are as follows.  

 

                                                 
2 The MAD assumption is used in order to create a complete market for an asset that is not traded in the 

market. It is a strong modeling assumption made to justify the use of risk-neutral valuation. Nevertheless, it 
eliminates the reliance on the existence of a replicating portfolio. Instead, it uses the project itself as the 
twin security and is claimed to “make assumptions no stronger than those used to estimate the project NPV 
in the first place” (Copeland and Antikarov, 2001, p. 67). For further discussion of the MAD assumption, 
see also Borison 2005and Smith 2005.  
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The fourth step requires calculating the expected NPV of the project without 
options at time t=0 using a DCF analysis. To do that, we run Monte Carlo simulations of 
the project without options, obtain the NPV for each iteration using the WACC3 and use 
the mean value of these iterations as an estimate of the expected NPV.  

 
Step 5 of the diffusion approximation algorithm is to obtain the cash flow payout 

rate tδ  in each period, which is defined as the ratio of the expected cash flow in period t 

to the remaining value of the project in period t. Let 
t

V�  and 
t

C�  be random variables 

representing the uncertain project values and cash flows in period t, and tV  and tC  be 

their corresponding means. The project value at time t is simply the present value of the 
remaining project cash flows.  Hence, the cash flow payout rate in period t is defined as 

ttt VC /=δ . The cash flow payout rate is used to calculate the cash flows that are paid out 

at the end of each time period as a function of the project value.  This implies that the 
cash flows will vary over time reflecting the uncertainty in the project value, but that they 
will remain a constant fraction of the residual value of the project in each time period 
(Copeland and Antikarov 2001).                                                       
 

Step 6 is to estimate the volatility (σ ) of the project returns. Smith (2005) 
suggests an approach to estimating this volatility that can be used in the SD simulation 
environment. First, we model the GBM approximation of the project cash flows using the 
present value computed in Step 4 and the cash flow payout rates computed in Step 5. 
Then, we search for a volatility that best mimics the uncertainty in the original SD model; 
i.e., that minimizes the difference between the cash flow distributions generated by the 
original SD simulation model and the cash flow distributions obtained by the GBM 
approximation.  

 
Step 7 is calculating the parameters of the binomial approximation of this GBM 

diffusion process. A binomial lattice is a probability tree with binary chance branches that 
go up (u) or down (d) with the unique feature that the outcome resulting from moving up 
and then down is the same as the outcome from moving down and then up. In particular, 

the binomial lattice model assumes that with probability p the value of the project V will 

go up to Vu , and with probability p−1  it will go down to Vd  at the end of one period. 

The parameter u is greater than 1 (reflecting a proportional increase), whereas ud /1=  
(reflecting a proportional decrease).  

                                                 
3 See Brandao et al (2005) for a discussion on the choice of the discount rate for this step. 
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Figure 1: A Binomial Lattice 

 
In order to calculate these three parameters u, d and p, it is sufficient to know the 

volatility σ of the GBM process, which is estimated in Step 6, and the risk-free discount 

rate r since t
eu

∆
=

σ , ud /1= , and 
du

dtr
p

−

−∆+
=

1
 where t∆ is the time period used in 

the binomial lattice. The probabilities p and p−1  are the probabilities that a risk-neutral 

investor would assign to the two outcomes; therefore they are often called “risk-neutral” 

probabilities. Finally, we need the initial value V of the project to build the binomial 
lattice, which is approximated by the expected NPV of the project without options 
determined in Step 4.  

 
The lattice may also be “unfolded” and represented as an equivalent binomial 

tree, which increases the number of endpoints in the model decreasing computational 
efficiency, but allows these problems to be solved using “off the shelf” decision tree 
software with an intuitively appealing visual representation.  Brandao et al (2005a, b) and 
Smith (2005) discuss the pros and cons of this transformation of the problem. 

 
Once the project without options is modeled with a binomial decision tree 

approximation (Step 8) of the GBM process, options can be added to the decision tree by 
using decision nodes. For example, an abandon option can be modeled by adding a 
decision node without any subsequent chance nodes (i.e. no further cash flows), whereas 
simple expansion and contraction options can be modeled as percentage changes in the 
cash flows (for details, see Brandao et al. 2005a).    

 
These eight steps are summarized in Table 1. 
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Steps of the Algorithm 

Step 1 Identify the managerial flexibilities and decision sequences 

Step 2 Build the deterministic SD model that captures the project dynamics 

Step 3 

Model the uncertainty by specifying the random variables and their 

distributions 

Step 4 

Run Monte Carlo simulations of the SD model for the project without options 

and calculate the expected NPV 

Step 5 Obtain the cash flow payout rates for each period 

Step 6 Estimate the volatility of the project returns 

Step 7 

Calculate the parameters of the binomial approximation to the GBM process 

(i.e. u, d and p) 

Step 8 Build the binomial lattice 

Step 9 Add the options and  solve the decision tree by using the risk free rate 
Table 1: Summary of the Algorithm 

4. Illustration of the Solution Approach with a Motivating Example 

 
We will use the same hypothetical wind power project described in Tan et al. 

(2009) to illustrate the diffusion approximation algorithm. For convenience, we directly 
quote their description of the project: A hypothetical firm needs to evaluate an investment 
opportunity to build a 40-MW wind farm with the option to add 50 MW within the first 4 
years. The firm can also delay the beginning of the project by up to 2 years. The 
expansion option may be considered after the 40-MW wind farm comes online, which 
takes a year. The option can be distributed over the remaining 2 years, but due to 
economies of scale, the firm does not want to have less than 25 MW built at a time. So, 
the firm can either expand high (build all 50 MW at once) or expand low (build 25 MW 
one year) with the option to build another 25 MW in the successive year or suspend 
investment, i.e. continue operating the wind farm at its current capacity. Given these 
managerial flexibilities, the list of decision sequences can be constructed as follows:  

 

Strategy  ID Decision in 2008 Decision in 2009 Decision in 2010 Decision in 2011 

1 I N/A S S 

2 I N/A S L 

3 I N/A S H 

4 I N/A H S 

5 I N/A L S 

6 I N/A L L 

7 D I N/A L 

8 D I N/A H 

9 D I N/A S 

10 D D I N/A 

Table 2: Strategies for the Example Problem 

 
The next step is building the SD model that captures the project dynamics. Figure 

2 is a sector diagram of the SD model for evaluating the wind-power project. The most 
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important sectors of the model are the natural gas price sector and the supplier sector in 
which the learning curve is modeled. A more detailed description of the model is 
provided in Tan et al. (2009).  

 
Step 3 is adding the uncertainty by specifying the random variables and their 

distributions. Three major uncertainties are captured by the model: natural gas price, the 
learning curve and the expiration date of the production tax credit4. Each uncertainty has 
several components, making the project harder to evaluate with most traditional methods.  

 

REGULATION

ELECTRICITY 

PRICE

CASH FLOW

•Generation Revenue

•Operating  and 
Maintenance Cost

INVESTMENT 
DECISION

•Discount factor

•Risk preference

GAS PRICE

•Unit Exploration Cost

•Reserves/Production Ratio

•Supply/Demand Ratio

SUPPLIER

•Learning Curve

FIRM

•Total Capacity

•Capacity factor

•Generation

Revenue

•PTC

•PTC expiration date

Fuel Cost Effect

Generation by unit capacity

Expected profit

Expected cost

Global capacity acquisition

Firm’s capacity acquisition

•Availability

•Construction time

Firm’s capacity 

acquisition

 
Figure 2: Sector Diagram of the SD Model 

 

At Step 4, the expected NPV of the project without options at time t=0 is 
calculated using a DCF analysis. To do that, we use the Monte Carlo simulation of the 
strategy “invest-suspend-suspend”, which reflects the project without options. Then, we 
calculate the NPV of each simulation iteration using the WACC5 and estimate the mean 
value of these iterations to obtain an estimate of the expected NPV. In the example 
project, the expected NPV of the project without options is found to be $7.79 million. 
Then, as the next step, cash flow payout rates are to be estimated for each time period. To 
do that, the present value of the remaining cash flows is calculated for each sample path 

generated by the Monte Carlo simulation, which yields the random project values 
t

V�  at 

                                                 
4 Renewable energy producers currently receive a 1.9 cent benefit for each kilowatt-hour of generation, 
known as the production tax credit (PTC). The uncertain expiration date of the PTC has been a major 
consideration in wind capacity investment decisions 
5 See Brandao et al (2005) for a discussion on the choice of the discount rate for this step. 
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period t. Then, the average cash flow at period t, 
t

C , is divided by the of average project 

value 
t

V  to obtain the following cash payout rates:  

 

Period  tδ  Period  tδ  

1 0.027 11 0.183 

2 0.107 12 0.162 

3 0.128 13 0.180 

4 0.132 14 0.195 

5 0.139 15 0.218 

6 0.136 16 0.246 

7 0.148 17 0.302 

8 0.152 18 0.369 

9 0.157 19 0.530 

10 0.169 20 1.000 

Table 3: Cash Flow Payout Rates 

 
The PV and the cash flow payout rates are used to estimate the volatility of the 

GBM approximation. First, using this PV and the cash flow payout rates, and assigning 
an arbitrary value for volatility, a GBM approximation is modeled (Hull, 2003). Then, we 
search for the volatility that best mimics the uncertainty in the original SD model. One 
way of doing this is comparing the 10th, 50th and 90th percentiles of the cash flow 
distributions obtained through the GBM approximation for a given volatility to the 

corresponding values given by the original SD model. Note that this results in T×3  pairs 
to be compared, where T is the number of periods. We take the sum of squared errors 
between these pairs to obtain a measure of fit for the GBM approximation under the 
given volatility. We repeat this procedure for a predetermined set of candidate values for 
volatility. Then, we choose the value that minimizes the sum of squared errors. We find 

that when 06.0=σ , the GBM approximation mimics the cash flow distributions given by 
the original SD model quite closely (Figure 3). In this case, we limited the search to a 
predetermined set of candidate values for volatility; however, when more precision is 
required one can solve a stochastic optimization problem to determine the volatility that 
minimizes the difference between the original and the approximated cash flows.  

 
 As the next step (Step 7), we calculated the parameters of the binomial 

approximation of this GBM diffusion process. We set 5.0=∆t  years to increase the 

accuracy of the binomial approximation, and we obtained 04.1=u , 96.0=d  and 

78.0=p .  We also need the initial value V of the project to build the binomial lattice, 

which is approximated by the expected NPV of the project without options.   
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Figure 3: GBM Approximation vs. the Original Model Cash Flows 

 
The final step is adding the options to the decision tree by using decision nodes 

(for details, see Brandao et al. 2005a). For the example project, the cash flows change 
proportionally with the changes in the capacity. For example, the option to expand by 25 
MW (“Expand Low”) increases the capacity by 62.5%. The revenues from electricity 
generation are proportional to the capacity; hence, the increase in revenue when the 
option is exercised can be modeled by simply increasing the cash flows by 62.5%. Yet, 
this scheme does not directly allow for incorporating the uncertainty in the cost of 
capacity (the learning curve uncertainty) because the cost of capacity is a one time 
payment at the exercise time of the option, which does not affect the cash flow stream 
afterwards. To handle this issue, we modeled the learning curve uncertainty as a private 

risk.  
 
In many projects, there are project-specific risks that cannot be hedged by trading 

securities, such as technological risks. In view of that, real options studies make the 
distinction between public (market-priced) risks and private (project-specific) risks 
(Smith and Nau. 1995). When the investment under concern is dominated by private 
risks, dynamic programming based approaches (such as decision tree analysis) should be 
preferred rather than the traditional option pricing techniques that were developed mainly 
for market-priced risks (Dixit and Pindyck, 1994).  Many projects have both kinds of 
risks, though; in which case the recommended strategy is to separate the public and 
private risks and use the appropriate risk adjustment for each one (Borison, 2005, 
Brandao et al. 2005a, Smith and Nau, 1995).  

 
Fortunately, treating different types of risks separately is straightforward once a 

decision tree is created.  Public and private risks may be represented with separate chance 
nodes. Risk-neutral probabilities are used for the former and subjective probabilities are 
used for the latter.  For the example project, the cost of capacity is discretized so that at 
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any period t, it is high, nominal or low. The values for each of these branches were 
obtained by discretizing the Monte Carlo simulation data for the cost of capacity.  This is 
done the same way as the cash flow distributions are discretized: A three-point bracket 
median method is used while preserving the path-dependence of the learning curve 
uncertainty by carefully computing the conditional probabilities of the branches. For 
example, chance nodes HighC, NominalC and LowC in Figure 4 discretize the learning 
curve uncertainty for the first period. Note that the uncertainty in the cost of capacity 
does not affect the volatility of the subsequent cash flows.  

The decision tree was built and solved using DPL™ (Figure 4). The expected PV 
of the project is estimated to be $57.48 million. The optimal policy suggests that the 
investment should be undertaken and it is optimal to expand high afterwards. Note that 
the traditional decision tree approach in Tan et al. (2009) results in an expected PV of 
$55.386 million and suggests investing immediately and expanding afterwards, the 
amount depending on the cash flow realization (Tan et al. 2009).  

 

 
Figure 4: The Optimal Policy Obtained Using the BDH method 

5. Benefits and Limitations  

 
For the example project, the traditional decision tree approach and the diffusion 

approximation approach yielded similar results.  However, this will not always be the 
case. The diffusion approximation algorithm overcomes the major flaw of the traditional 
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decision tree approach (Tan et al. 2009), which is the use of the same risk-adjusted 
discount rate for the project with and without options regardless of the changing risk 
character. In general, for projects with long lives or for projects whose risk-profiles 
change significantly, the errors caused by using the wrong discount rate are magnified, 
and the differences between the two approaches become larger (Smith and McCardle 
1998, Teisberg 1995).  

 
Nonetheless, diffusion approximation algorithm has some limitations of its own.  

The algorithm makes two strong assumptions.  One is that the cash flow of the project 
without options can be represented by a GBM (or other similarly tractable) stochastic 
process.  This implies that the algorithm will only yield a reasonably accurate valuation if 
each period’s cash flow from the project without options has an approximately lognormal 
distribution.  Fortunately, because of the numerous influences upon the individual cash 
flows that one can represent in a system dynamics model, this is often the case.   

 
A second restriction is that the diffusion approximation approach assumes the 

cash flows of the project with an option are proportionate to the cash flows of the project 
without the options. For example, if the firm exercises an expansion option to increase its 
capacity by x %, the revenues should change by a linear function of x.  If this is not the 
case, then the diffusion approximation approach may not be an appropriate modeling 
approach. In such cases, the traditional decision tree approach might be a better 
alternative since it provides a greater fidelity to the details of the modeled project and is 
not subject to the assumptions associated with the use of the GBM diffusion 
approximation.  Still, for a reliable valuation the analyst needs to make sure that the 
valuation results are not highly sensitive to the choice of discount rate.  

 

6. Summary and Conclusion  

 
Smith (1999) makes the observation that when evaluating risky projects, there has existed 
a fundamental trade-off between what he terms “detail complexity” and “dynamic 
complexity.”  He suggests that financial theory has tended to sacrifice detail complexity, 
the fidelity of a model at a detailed level, to better capture market information to 
appropriately discount risky cash flows.  On the other hand, he suggests that decision 
analysis has often focused on detail complexity at the expense of keeping some model 
dynamics unrealistically simple, for example by using a single risk-adjusted discount rate 
to value future cash flows even if the risks of these cash flows change when different 
project options are selected.  In this paper, we have attempted to show that by using a 
system dynamics model as an input to evaluating managerial flexibility it is possible to 
improve this trade-off between dynamic and detail complexity.  
 

We proposed a method that relies on an SD model of the project to model the 
project uncertainty and a binomial tree approximation of the uncertainty to employ risk 
neutral valuation. The former brings high fidelity to model details due to the unique 
capabilities of SD in modeling complex feedback systems, whereas the latter avoids the 
need to estimate a risk-adjusted discount rate for the project with options ensuring better 
fidelity to dynamic complexity compared to traditional decision tree methods. Hence, our 
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method potentially improves the trade-off between dynamic and detail complexity 
especially for evaluating projects whose viability is determined by the interaction of 
stochastic processes within a complex nonlinear feedback structure.  
 

 
References 

Black, F., Scholes, M. 1973. The Pricing of Options and Corporate Liabilities. Journal of 

Political Economy, 81 (3): 637-654.  
Brandao, L. E., Dyer, J. S., Hahn, W. J.  2005a. Using Binomial Decision Trees to Solve 

Real-Option Valuation Problems. Decision Analysis, 2 (2): 69-88.  
Brandao, L. E., Dyer, J. S., Hahn, W. J.  2005b. Response to: Alternative Approaches for 

Solving Real Options Problems: A Comment on Brandão, Dyer and Hahn (2005), 2 
(2): 103-109.  

Brandao, L. E., Dyer, J. S.  2005. Decision analysis and real options: A discrete time 
approach to real option valuation. Annals of Operations Research, 135(1): 21-39. 

Brennan, M. J., Schwartz, E.S. 1985. Evaluating Natural Resource Investments. The 

Journal of Business, 58 (2): 135-157.  
Borison, A. 2005. Real Options Analysis: Where Are the Emperor’s Clothes?. Journal of 

Applied Corporate Finance 17 (2): 17-32.  
Clemen, R.T. 1997. Making Hard Decisions: An Introduction to Decision Analysis.  

Duxbury Press, Belmont, CA. 
Copeland, T., Antikarov, V. 2001. Real Options. Texere LLC, New York. . 
Dixit, A.K., Pindyck, R.S. (1994). Investment under Uncertainty.  Princeton University 

Press, Princeton, NJ. 
Feinstein, S. P., Lander, D. M. 2002. A Better Understanding of Why NPV Undervalues 

Managerial Flexibility. The Engineering Economist, 47 (4): 418-435.  
Ford , D., Sobek, S. 2005. Adapting Real Options to New Product Development by 

Modeling the Second Toyota Paradox. IEEE Transactions on Engineering 

Management, 52 (2): 175-185.  
Ford, D.N., Bhargav S. 2006. Project management quality and the value of flexible 

strategies, Engineering, Construction and Architectural Management, 13(3): 275–
289. 

Forrester, J. W. 1961. Industrial Dynamics. M.I.T Press, Cambridge. 
Hahn, W. J., Dyer, J. S. 2008. Discrete time modeling of mean-reverting stochastic 

processes for real option valuation. European Journal of Operational Research, 184 
(2008): 534-548.  

Hull, J. 2006. Options, Futures and Other Derivatives, Prentice Hall, New Jersey. 
Johnson, S. T., Taylor, T., Ford, D. 2006. Using System Dynamics to Extend Real 

Options Use: Insights from the Oil and Gas Industry. Proceedings of the System 

Dynamics Conference, Nijmegen, Netherlands, 2006.  
Longstaff, F. A., Schwartz, E. S. 2001. Valuing American Options by Simulation: A 

Simple Least-Squares Approach. The Review of Financial Studies 14 (1): 113-147.  
McDonald, R., Siegel, D. 1986. The Value of Waiting to Invest. Quarterly Journal of 

Economics, 101: 707-727.  
Nau, R., McCardle, K. 1991. Arbitrage, rationality and equilibrium. Theory and Decision 

31 (2-3):199–240. 



 15 

Paddock, J.L., Siegel, D. R., Smith, J. L. 1988. Option Valuation of Claims on Real 
Assets: The Case of Offshore Petroleum Leases. Quarterly Journal of Economics, 
103: 479-508   

Roberts, E. B. 1974. “A Simple Model of R&D Project Dynamics.” In E. B. Roberts, 
(ed.), Managerial Applications of System Dynamics, 293-314. Cambridge, MA: 
Productivity Press. 

Schwartz, E., Smith, J. 2000. “Short-Term Variations and Long Term Dynamics in 
Commodity Prices”. Management Science 46 (7), 893-911.  

Smith, J. 1999. Much Ado about Options? Decision Analysis Newsletter 18(2): 4-8.  
Smith, J. 2005. Alternative Approaches for Solving Real-Options Problems. Decision 

Analysis 2 (2): 89-102.  
Smith, J., McCardle, K. 1998. Valuing Oil Properties: Integrating Option Pricing and 

Decision Analysis Approaches, Operations Research 46 (2), 198-217.  
Smith, J., McCardle, K. 1999. Options in the Real World: Lessons Learned in Evaluating 

Oil and Gas Investments. Operations Research, 47, 1-15.   
Smith, J., Nau R. 1995. Valuing Risky Projects: Option Pricing Theory and Decision 

Analysis. Management Science 14(5): 795-816.  
Sterman, J. D. 2000. Business Dynamics: Systems Thinking and Modeling for a Complex 

World. McGraw-Hill/Irwin: New York. 
Tan, B., Anderson, E. G., Dyer, J., Parker, G. 2009. Evaluating System Dynamics Models 

of Risky Projects Using Decision Trees: Alternative Energy Projects as an Illustrative         
Example. Under Revision in System Dynamics Review.  

Teisberg, E. O. 1995. Methods for Evaluating Capital Investment Decisions under 
Uncertainty. Real Options, in Capital Investment: New Contributions (ed. Lenos 
Trigeorgis). Praeger Publishing: Westport, CT.  

Triantis, A. 2005. Realizing the Potential of Real Options: Does theory meet practice?. 
Journal of Corporate Finance. 17(2):8-16.  

 
 


