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System dynamics models are built to assist people in understanding and solving 
complex and dynamic problems. However, the actual outreach of the models is limited 
as there is still no effective way identified to present dynamic problems and the 
associated models to a broader audience. Experimental data as well as cognitive load 
theory suggest that learning about and performance in complex dynamic systems could 
be improved by enhancing problem descriptions with simulation elements facilitating 
interactive exploration of dynamic features of the problem. We replicate experiments by 
Moxnes (2004) on management of reindeer lichen winter pastures, extending the task 
instructions by an interactive applet featuring dynamics of non-linear growth rate of 
lichen. In contrast to previous observations when the subjects misperceived gravely the 
system’s dynamics at the outset, our results suggest that with the interactive applet the 
misperceptions of dynamics can be reduced already in the first trial. 
 

Introduction 
Both theoretical and experimental literature (Forrester 1961, Dörner 1989, Sterman 

1994) indicate that people should use computer simulation models to manage dynamic 

systems successfully. With the introduction of interactive learning environments (ILEs) 

in the system dynamics (SD) field (Machuca, Ruiz et al. 1998, Spector and Davidsen 

1997), the hopes have been raised high that such applications will facilitate 

dissemination and take up of models. Still, thus far evidence on effectiveness of ILEs is 

rather mixed (see e.g. Sawicka and Rydzak 2007 for a review, see also Großler and 

Maier 2004). The group model building remains the most effective way to disseminate 
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the models and their insights (e.g. Andersen et al. 2007, Andersen and Richardson 1997; 

Luna-Reyes et al. 2006a; Rouwette 2003; Vennix 1996 and 1999; Zagonel 2002). 

However, given the limited outreach of this approach, there is an urgent need in trying 

to identify ways in which other dissemination channels may be made more effective. 

Most of research on ILEs has focused on design of decision-making interface: The 

results indicate that ILE interfaces to effectively support learning should go beyond 

letting the learner input decisions and observe an outcome of the simulation. They need 

also to support exploration of model structure, and facilitate appreciation of its 

relationship with the generated behaviour (Spector and Davidsen 1998). Furthermore, 

ILEs should follow basic usability guidelines (Vicente 1996, Howie, Sy et al. 2000). 

Still, despite these preliminary principles, one still struggles with development of 

successful learning environments based on system dynamics models. Although many of 

the ILEs that provide direct access to the model structure and are developed according 

to the usability guidelines seem to yield an improved performance and learning, the 

overall results are mixed (see e.g. Bois 2002, Großler and Maier 2004, or Sawicka and 

Rydzak 2007 for reviews). 

In this paper we report on a pilot experiment where we have modified the initial 

presentation of the problem rather than the decision making interface, by enhancing it 

with an interactive simulation applet featuring the key dynamics of the problem 

situation. In the following section we lay down a brief theoretical rationale for 

introducing such modification. Next, the experimental study design and results are 

presented. Its implications and future research directions are discussed in the final 

section. 

The need for augmented descriptions of dynamic 
problems 
Research on problem solving suggests that the main difference between experts and 

novice problem solvers is in their ability to identify an appropriate solution path: experts 

are able to classify accurately problems, choosing quickly the best solution strategy; 

novices, on the other hand engage in general search techniques such as trial-and-error, 

or means-ends analysis, taking more time to find a solution and being less successful 

(Chi et al. 1982, Larkin et al. 1980). A tendency to rely on the basic problem solving 
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strategies, such as trial-and-error, or fall a prey various decision biases and simplified 

heuristics has been frequently observed in the context of dynamic problem solving 

(Dörner 1989, Sterman 1989, Paich and Sterman 1993, Diehl and Sterman 1995, 

Brehmer 1992, Moxnes 1998; Jensen and Brehmer 2003, Moxnes 2004), indicating that 

in the context of dynamic decision making most people do not have expert capacities. 

The cognitive structures that allow experts to perform a prompt categorization of a 

problem, that normally would require several steps, are called schemes (Sweller 1988). 

Schemes, stored in a long-term memory, are developed through learning. Cognitive load 

theory (CLT, Chandler and Sweller 1991) provides a convenient theoretical framework 

for conceptualizing the learning process and designing instructional process so that 

development of schemes is supported in an efficient way. According to CLT learning 

process is supported by a short-term memory that has a limited capacity (Miller 1956). 

To utilize this scares resource in a most effective way, the learning material should be 

designed in such a way so that it induces primarily the so-called germane cognitive 

load, i.e. cognitive load directly associated with development of schemes. For this to 

occur, care should be taken to reduce as much as possible the so-called extraneous 

cognitive load (induced by structure and format of the learning material) and to adjust 

the so-called intrinsic cognitive load (caused by the inherent difficulty of the learning 

material) to the knowledge and abilities of the learners. Sawicka and Molkenthin (2005) 

develop a preliminary system dynamics model of the interplay between the various 

cognitive loads (for the most updated implementation of the model see Sawicka in 

press), pointing out how the cognitive load theory guidelines could guide development 

of system dynamics based learning environments. In a similar way, one could revisit 

structure and format of tasks used for testing people’s ability to manage dynamic 

systems, probing the question of whether the observed misperceptions of dynamics are 

due to the inherent inability of people to understand dynamic problems as suggested by 

many of the studies in the area (e.g., Dörner 1989, Sterman 1987, Sterman 1989, 

Brehmer and Allard 1991, Paich and Sterman 1993, Diehl and Sterman 1995, Moxnes 

1998, Jensen and Brehmer 2003, Moxnes 2004) or whether this misperceptions could be 

alleviated by a re-design or re-formulation of the task. 

Several experiments suggest that both the re-design and re-formulation of the task or the 

decision making interface may lead to an improved performance and understanding (see 
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e.g., Sengupta and Abdel-Hamid 1993, Howie, Sy et al. 2000, Bois 2002). Still, the 

results are not consistent, and similar changes made to other tasks fail to yield similar 

results (see e.g., Moxnes 1998, Jensen and Brehmer 2003, Sawicka and Rydzak 2007). 

What seems however consistent is the fact that subjects tend to improve their 

performance as they gain experience through the multiple trials (see e.g., Paich and 

Sterman 1993, Moxnes 1998; 2004, Jensen and Brehmer 2003, Sawicka, Gonzalez et al. 

2005, Sawicka and Rydzak 2007). This suggests that despite the fact that initial 

instructions always provide all the necessary information about the system, for most 

subjects the hands-on trial is vital to develop a fuller understanding.  

In the context of cognitive load theory, these results suggest that the instructions used 

for presenting the dynamic tasks fail to support germane processing effectively. This 

may be either due to insufficient cognitive resources, suggesting that the instructions 

impose excessive intrinsic and extraneous cognitive loads, or to the fact that the 

instructions do not stimulate sufficiently germane processing. Such processing seems to 

be elicited only during the first trials in a simulated environment, when most of the 

experimental subjects develop their understanding of the system. The main 

disadvantage of such experience-based learning, is that it frequently leads to simplified, 

erroneous mental models (Forrester 1961, Sterman 1994). Hence, it is essential that the 

learning process is facilitated and guided. Drawing on the cognitive load theory 

recommendations, one should than revisit the initial instructions and make sure that the 

intrinsic cognitive load they impose is appropriate to the level of prior knowledge that 

could be expected of learners, that the extraneous cognitive load is minimized and that 

the germane cognitive load is stimulated (Sweller and Chandler 1994).  

Most of the dynamic task instructions consist of textual, written descriptions of the 

dynamic problems. Given the observation that people acquire understanding of the 

dynamics through the interaction with a simulator, we suspect that a textual format is 

not likely to stimulate germane processing for development of schemes about the 

dynamic issue at hand. Following this intuition, we conducted a pilot experiment to 

explore how performance in a dynamic task would change if the subjects were 

presented with instructions enhanced with a simulation-capacity.  
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Experimental design 
For the purpose of our study we use a one-stock reindeer rangeland management task by 

Erling Moxnes. The task is to restore a highest sustainable reindeer herd size as quickly as 

possible on an overgrazed lichen pasture. The instructions provide a description of lichen 

growth dynamics, indicating that the growth rate is a non-linear, inverse U-shape function 

of lichen density, and a 15-year long historical record on lichen and reindeer herd size 

levels. Despite this full information, experiments yield a consistently poor user 

performance, especially in the first trial. This is illustrated in Figure 1 a) and b) where the 

results from both experiments by Moxnes 2004 are presented.  
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Figure 1: Average performance in experiments from 2002 and 2003 by Moxnes 2004. 
 
The performance was not found to improve greatly when the learners were presented with 

an explicit illustration of the assumed growth curve (Moxnes 1998). It also remained 

literary the same when the task was adopted to a different context (Sawicka, Gonzalez et al. 

2005, see also Figure 2). 
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Figure 2: average CSIRT performance 
 
The optimal solution, marked with light grey line in Figure 1 and Figure 2, requires the 

subjects first derive the lichen growth curve from the historical data, and identify 

correctly the maximum sustainable growth rate and density and derive the associated 

maximum sustainable herd size, see Figure 3. To achieve the maximum sustainable 

condition as quickly as possible in their decision making they need to aim at eliminating 

the discrepancy between the current and optimal lichen density. The 3 steps in which 

the maximum sustainable lichen density can be restored are presented in Table 1. 
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Figure 3: lichen growth curve and optimum conditions 
 
Table 1: calculation of the optimal solution 

Decision period: I II III 

D : Current lichen density [g/m2] 488 584,5 600 
∆D : deviation of the current lichen density from the 
optimum density (Dopt =600 [g/m2]) 
∆D = | D – Dopt |[g/m2] 

112 15,5 0 

Desired grazing rate (g) should equal gmax (gmax = 100 
[g/m2/year]).  

0 84,5 100 
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Current desired grazing rate g [g/m2/year]: 
IF ∆D> gmax   THEN g=0 [g/m2/year] 
ELSE g = gmax – ∆D 

Current desired herd size R considering constant grazing per 
reindeer per year (gR) 
R = g/gR [reindeer] 

0 1056 1250 

 

As reported in Moxnes 2004 and Sawicka, Gonzalez et al. 2005 subjects rarely find the 

optimal solutions. Their performance is especially poor in the first trial: many increase 

rather than reduce the initial herd size; many deplete their lichen resource significantly. 

A common observation is also that the performance improved over the trials. This is 

consistent with the observations made during other experiments on dynamic decision 

making (see p. 3), and in the light of the cognitive load theory indicates that a 

simulation capacity is important for gaining the command of the dynamic system. 

Consequently, to achieve a satisfactory command of the system, simulation capacity 

seems to be vital for the phase when the subjects learn about the system. This 

observation was confirmed by the interview data gathered in Sawicka and Rydzak 2007 

where the majority of subjects managing a production-inventory system indicated 

explicitly that it was the hands-on experience that helped them to understand the 

system’s dynamics.  

Building on these observations we believe that it is fundamental that descriptions of 

dynamic problems are enhanced with simulation capacity. To test whether such 

enhancement could lead to an improved performance we introduce an interactive 

explorator allowing the subjects to investigate the dynamics of lichen growth and 

grazing. Figure 4 presents both the original and the exploration-enhanced conditions.  
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Figure 4: Experiment conditions with traditional design and exploration-enhanced condition 
 

The interactive explorator allows subjects to test out their assumptions about strategies 

for solving the task described in the instructions. It also allows them to develop some 

understanding of lichen dynamics and of the problems caused by the nonlinear lichen 

growth curve. Subjects experience the effects of variations in the herd size on lichen 

density and lichen growth in situations where the pasture is over- and undergrazed.  

As the exploration-enhanced condition differs only with respect to the explorator, and 

the original design has been shown to yield consistent results (Moxnes 2004, Sawicka, 

Gonzalez et al. 2005), we pursued a single sample design for this study and will 

compare the results with those collected earlier by Moxnes (2004, see also Figure 1). In 

the remainder of this paper we will refer to these results as the control group. With the 

exploration enhanced condition (in the remainder of the paper referred to as test group) 

we expect an improved performance already in the first trial.  

Subjects and procedure 
The pilot experiment reported in this paper was conducted with 8 students taking a 

course on applied methods in agricultural and regional policy at ETH Zurich in March 

2008. The experimental session lasted 2 hours. At the start of the experiment, the 

subjects were ensured that all collected data would remain confidential and that their 

performance during the experiment would not have any impact on their course grade. 
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They were also promised that the person who performed best would receive a symbolic 

prize. This incentive is analogous to the one used by Moxnes (2004, see p. 144).  

The experimental session was divided into three stages: First, the subjects read the 

original task instructions as used in the control group study by Moxnes (2004), and 

answered a post-instructions questionnaire probing how much mental effort they 

invested in reading the task and eliciting their current understanding of the task. Next, 

the subjects explored the lichen growth and grazing dynamics with the explorator. The 

explorator was provided in three initial states: starting at the maximum sustainable 

point, starting in an under-grazed situation, and over-grazed situation, see Figure 5.  
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Figure 5: Explorator starting at optimal (step 1), under-grazed (step 2) and over-grazed situations 
(step 3) 
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After using the explorator, the subjects performed 15-years long trials using the original 

simulator by Moxnes (2004), see Figure 6. This was followed by a final questionnaire 

probing subjects’ background as well as their intrinsic motivation in performing the 

task. All the subjects moved at self-paced speed through the stages. The experimental 

session was then followed by a short individual interview to clarify any issues 

outstanding after the initial data review, and the plenary debriefing session where the 

study background and the subjects’ results were discussed.  

 
Figure 6: Original simulator 

Preliminary results 
Table 2 shows individual subject results per trial. All the subjects who decrease their 

herd size considerably in the first years and built it up again to the maximum sustainable 

level were classified as successful. As we can see already in the first trial 50% subjects 

performed the task very well, and by the third trial all the subjects were successful. All 

but one subject seemed to have understood the task correctly. The one subject 

misperceived the goal to be reindeer herd maximisation for the period of 15 years only. 

The subject therefore consistently opted for a herd size of nearly 0 animals towards the 

end of the trials in order to prepare for 5000 animals in the final year 15.  
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Table 2 Overview of individual subjects results. Performance of successful subjects is tracked with thicker lines. 
 

 

Reindeer herd size Lichen Subjects’ classification 

  

Trial 1

successful performers
over utilizers
under utilizers
failed performers

 

  

Trial 2

successful performers
over utilizers
under utilizers

 

  

Trial 3

successful performers
over utilizers under
utilizers
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Figure 7 shows 95 percent confidence intervals for average herd sizes and lichen density 

for trial 1 in the test and control groups. The grey, dashed line shows the optimal paths.  

The widening range of the confidence intervals towards the end of the trials is caused by 

the subject who misperceived the task and maximized the herd size at year 15, see also 

Table 2 and the associated discussion. For herd sizes in the test group the optimal 

solution lies within the confidence interval starting from year 2. In the control group, on 

the other hand, the average herd size is significantly higher than the optimal in the early 

years, and in late years, it is significantly lower. Average lichen density is below the 

optimal level in all years after the initial one in the control group, but reaches the 

optimum level in year 12 in the control group. This indicates that the subjects in the 

control group are, on average, not successful in reaching the maximum sustainable herd 

size and lichen density within 15 years, while the opposite holds true for the test group, 

i.e. an average subject in the exploration enhanced condition reaches the maximum 

sustainable herd size within 15 years, and is also more likely to arrive at the maximum 

sustainable lichen density level. 

 
a) exploration enhanced condition – test 
group 

b) original experiment design – control 
group 
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Figure 7: Optimal solution (dashed lines) and 95 percent confidence intervals for the average first 
trial in the exploration enhanced condition (test group) and the traditional experiment design 
(control group) 
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To see if the differences between the test group and the control group are statistically 

significant at the 10 percent level, we compare lichen thicknesses relative to optimal 

lichen thicknesses for the two groups. Figure 8 shows confidence intervals for trial 1 in 

the test group (black, thick lines) and the control group (black, thin lines). Comparing 

the results year by year we find the p-values shown by the grey, dashed line. The p-

value indicates the probability of committing a Type I error (Gujarati 1995). In other 

words, with higher p-value the more the probability that there is no difference between 

the results of the test group and the control group. At a ten percent level, the two 

datasets are, according to Figure 8, significantly different starting from year four.  
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Figure 8: 90 percent confidence intervals for average lichen thicknesses for T1 test group (thick 
lines) and T1 control group (thin lines)  
 

Discussion 
Results of this pilot study indicate that the exploratory-enhanced instructions may 

facilitate understanding of the reindeer rangeland management task. As illustrated in 

Figure 7 and Figure 8, there is a significant difference between the way our subjects 

dealt with the problem in the first trial. Their performance is comparable to the 

performance typically observed in the second or third trials in previous experiments. 

This may suggest that the explorator helped the subjects to acquire the understanding of 

the system that they otherwise had to develop during the initial trials with the test 

simulator.  

This initial result needs however to be taken with caution: First, most of our subjects, as 

subject majoring in agricultural economics, did have a substantial background in 
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renewable resource management. Indeed, many of them commented that the experience 

from their coursework was quite useful in tackling the experimental task. This prior-

knowledge could have contributed to the outstanding performance observed already in 

trial 1. On the other hand, previous research by Moxnes indicates that even the subjects 

with substantial professional experience tend to fail at first trials (Moxnes 1998). 

Second, the performance data need to be analyzed in the context of qualitative data 

gathered through the questionnaires administered during the experimental session as 

well as during the interviews. In these further analyzes we will focus on identifying all 

factors beyond the explorator that could have contributed to the superior first trial 

performance. We will also conduct the analyzes of the mental effort measurements 

gathered throughout the experimental session to see whether these data support our 

initial intuition that the instructions impose a substantial cognitive burden and the 

explorator may assist in stimulating the learning process, leading to an improved 

understanding of the task. 

Future directions 
The initial analyses of the results of our pilot study indicate that people may be able to 

better grasp dynamic problems if their descriptions are augmented by simulation-based 

explorators featuring critical dynamic elements. Wary of the need of further analysis of 

the current data and replication with a larger, possibly more representative, sample, we 

still believe that these early results are encouraging. In our future studies we intend to 

modify further the task instructions so that the explorator becomes an integral part of 

the problem presentation. It would also be interesting to replicate the results in a 

different context, for example using the adapted version of the task to the context of 

management of computer information security response teams presented in Sawicka, 

Gonzalez et al. 2005.  
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