
 1

Modeling Rework Cycle: Comparing Alternative Formulations

Hazhir Rahmandad, Kun Hu, Thanujan Ratnarajah

Virginia Polytechnic Institute and State University, Industrial and Systems Engineering

Department

Room 430, Northern Virginia Center, 7054 Haycock Road, Falls Church, VA 22043

Tel: +1 (703) 538-8434

hazhir@vt.edu, hukun@vt.edu, thanujan@vt.edu

Abstract

Rework cycle is at the heart of modeling projects, one of the major application areas of system

dynamics. In this paper we introduce a new formulation for rework cycle in which multiple

defects may exist in a task. We compare the performance of this model with three other

formulations, two adopted from system dynamics literature and one agent-based formulation.

This comparative study illustrates the impact of underlying assumptions about the nature of

defects and homogeneity of tasks in different formulations on model behaviors and provides

information needed for effective formulation selection decisions. The new formulation we

introduce allows for capturing significant schedule over-runs due to a few tasks, with multiple

defects, that may go through rework cycle multiple times. Its perfect mixing assumption,

however, limits its precision in terms of simulating the final project quality. Sensitivity analysis

informs the robustness of results to multiple projects parameters. We discuss the implications for

selecting robust formulations in modeling project dynamics.

Keywords: project dynamics, rework cycle, comparison, formulation, agent-based

1- Introduction and motivation

Projects are central to how work is done in organizations. From construction to software

development, systems engineering, and product development, projects are at the heart of

organization of work in modern societies. Despite their diversity, projects have in common a set

of pre-defined goals that are to be achieved by completion of a set of tasks within a defined

budget and schedule and with a given set of resources. Project performance is often measured on

multiple dimensions including time, costs, and quality. Performance is realized as a result of

evolution of project through its life time, thus it is a dynamic concept. The vast variation in

quality, timeliness, and cost performance of projects across different fields has provided ample

opportunities for consultants and academics to study dynamics of projects. In fact, project

dynamics has been one of the core areas of study in system dynamics which has produced much

academic research and ample consulting fees. Lyneis and Ford provide a comprehensive review

of the literature on applications of system dynamics to project management (Lyneis and Ford

2007).

 Majority of system dynamics studies that focus on project dynamics include a simulation

model of project evolution. These models vary in their level of complexity and the feedback

effects they capture. However, a core feature of all these models, building on the ground

breaking consulting project by Pugh Roberts Associates in the 70s, is the rework cycle (Cooper

1980). The basic insight in rework cycle formulation is the realization that tasks that are

completed as part of a project may be flawed and may need rework. Given the widespread

application of system dynamics in project modeling, the basic rework cycle idea is among the

mailto:hazhir@vt.edu
mailto:hukun@vt.edu
mailto:thanujan@vt.edu

 2

most widely used formulation concepts in the field. In fact, multiple alternative formulations

have been used to capture the rework cycle with different levels of complexity and different

conceptions of defects. Despite widespread use, very little is written about comparative

advantages and disadvantages of these formulations. Such understanding is needed for

practitioners and researchers who seek to use the best formulation at hand for the application at

hand. Moreover, a comparative study will inform the mapping of different parameters from one

formulation to another, and thus enables better accumulation of knowledge about typical model

parameterizations. This paper is an attempt to fill this gap by providing a comparison of multiple

formulations of rework cycle with different levels of complexity and detail. We also introduce a

new formulation of rework cycle that we think strikes a good balance between complexity and

precision for many applications.

 In the next section (1-1) we introduce the basic idea of rework cycle in more detail and

establish it in the context of modeling project dynamics. Section 2 discussed the study design and

the alternative formulations we are comparing in this paper, including a new formulation for

rework cycle. We introduce multiple model formulations in Section 3 followed by the analysis of

results in Section 4. Finally conclusions and implications are discussed in Section 5.

1-1- Rework Cycle at the Heart of Project Dynamics

Rework cycle may be the most important feature of system dynamics project models

(Lyneis and Ford 2007). It recognizes that completion of a project task may be flawed, resulting

in a need for rework. Rework can itself be flawed, requiring further rework in a recursive cycle

that can extend project duration and work load far beyond what is originally conceived. Thus

rework cycle captures some of the main mechanisms leading to projects going overtime and

budget and accumulating flaws.

Figure 1 provides a very simple conception of rework cycle, adopted from one of the

early models of projects (Chapter 4, Richardson and Pugh 1981). Here tasks, upon completion,

may flow into “Tasks Approved” (if they are correctly done and accepted), or “Undiscovered

Changes”, those tasks that have to be reworked, but not yet recognized as such. The completion

of tasks depends on available resources and their productivity, while quality of the work is

captured by defect rate. The schematic below is chosen to represent the simplest conception of

rework cycle which includes only two independent stocks. However, even this very simple

model can be used as the building block for capturing much more complex project dynamics. For

example effects of schedule pressure, morale, communication congestion, overtime, and

experience on error (defect) rate and productivity can be directly applied here (Cooper 1980;

Sengupta and Abdelhamid 1993). The changes in resource availability and speed of rework

discovery can also be easily accommodated. Multiple simple blocks, with similar structures, can

be connected in cascades that represent multiple phases of bigger projects and different feedback

effects between up-stream and down-stream phases (Repenning 2000). Other modelers have

expanded this basic formulation to include an explicit testing procedure (AbdelHamid and

Madnick 1991), and to keep track of changes (or defects) in a separate stock and flow structures

(Ford and Sterman 1998).

 3

Tasks not
completed

Undiscovered
Changes

Approve Task Rate

Rework
Generation Error Rate

Tasks
Approved

Completion

Resources

Productivity
Rework

Discovery

Figure 1- Overview of basic rework

cycle structure. Only most

important causal links are

demonstrated for simplicity. Tasks

are either correctly done and

approved, or incorrectly done,

moving to the “Undiscovered

Changes” stock. Rework discovery

brings those tasks back to stock of

“Tasks not completed”

In fact this framework can be used in exceedingly detailed levels, e.g. to represent small

homogeneous chunks of a project. In the extreme, one can envision a detailed agent-based model

of project in which separate entities represent each task, as well as each unit of resource

(typically individuals who will be assigned to tasks, but can also include machinery, money etc)

(Levitt, Thomsen, Christiansen et al. 1999). In such formulation each task can go through

multiple states, e.g. not worked on, worked on and pending testing, approved, or pending rework.

Moreover each task entity will include properties such as number of defects that have

accumulated in the process for working on that task. Growing computational power and software

availability have encouraged the application of disaggregated models. Detailed representation

improves external validity of the model (likeness to the real world) and thus potential precision

of the results. However, the additional disaggregation often also complicates a comprehensive

understanding of what model structures and processes are generating the observed behavior;

model development and bug fixing is harder in these models; and communication of the insights

to real-world decision-makers may prove more demanding. Moreover, typically detailed agent

based models are stochastic in nature and require more computational resources than simpler

differential equation representations, both to get a reliable view of the range of stochastic results

they generate, as well as for conducting a single simulation. These computational costs can lead

to reduced sensitivity analysis, longer turn around time for analysis, and smaller model boundary

(i.e. the range of feedback effects and sub-systems included in the analysis) (Rahmandad and

Sterman 2008).

In the context of these tradeoffs, two questions beg for an answer: 1) What kind of

tradeoffs do we face in terms of precision vs. complexity, when we choose different formulations

for rework cycle? 2) How do different formulations connect to each other? For example, if task

level data suggests that 20% of tasks have at least one defect in their first implementation, should

we use a defect rate of 0.2, or another number is more appropriate, in one specific formulation.

The current study is an attempt to address these questions by comparing four different

formulations for the rework cycle, with exceedingly higher levels of details. Our analysis sheds

light on the relationships between different formulations as well as the tradeoffs observed in

terms of performance, precision, and flexibility.

 4

2- Study design

 In this study we want to compare and analyze alternative formulations for the core

rework cycle structure common to most models of project management. For this purpose we

focus on analyzing a very simple project that consists of a pre-determined number of tasks. Tasks

are completed by fixed resources with constant productivity. Completed tasks are then tested,

and accepted or sent for rework. Rework is conducted by the same people who also do the initial

work. Testing is only limited by the time it takes to conduct the tests (no resource bottleneck for

testing phase). We keep the study manageable by including no feedback on productivity, quality

of completion and rework, testing quality, amount of resources, or scheduled finish date. These

feedbacks are central to important project dynamics however; therefore we conduct sensitivity

analysis to test the robustness of results with respect to different parameter values.

 Four different model formulations with different levels of detail are used to simulate the

simple project. These models are built in parallel so that similar concepts, variables, and

parameters are comparable across the models. On one extreme, the very simple model is used

(See Section 3). This model uses only two independent stocks to capture the rework cycle. It

does not distinguish testing from work completion, and the concept of defect is embedded in the

definition of undiscovered changes. This formulation is adopted from Richardson and Pugh’s

“Introduction to System Dynamics Modeling” (1981), and modified for the study at hand. The

second rework cycle structure is developed based on the work of Ford and Sterman (1998). In

this formulation changes and tasks are explicitly differentiated through a co-flow structure

(Sterman 2000) where tasks requiring change flow in a parallel structure to the tasks. We

introduce a third formulation here, which adapts the second formulation to include the number of

defects in the tasks, as the coflow, rather than the number of tasks which require a change

(Rahmandad 2005). This adaptation recognizes that many tasks may include more than one

defect that requires fixing during rework. Explicit testing formulations are developed here

accordingly. Finally, an agent-based model with explicit task entities and development resources

is used as the most detailed formulation. This latter formulation is much more complex than the

others and creates stochastic trajectories of project completion (where as the other formulations

are deterministic). In fact we use this formulation as the simulated “real-world” and see how the

different deterministic formulations closely replicated the behavior of this model.

 Parallel model development is achieved by starting from the agent-based model, and

deriving the parameters for the successively more aggregate models from this version. Through

the parallel model specification process we can see the relationship between parameter values at

different levels of aggregation, and thus answer one of the research questions that motivate this

study: How do different formulations connect to each other?

 We address the other question through comparing the different models on different

dimensions of costs and benefits of disaggregation. On the costs of additional detail we observe

model complexity in terms of the number of stock variables in each formulation. We measure the

benefits of disaggregation by comparing the flexibility and performance of different

formulations. Flexibility measures the different parameter settings and assumptions about the

nature of the work that can be changed in each formulation. It therefore informs the range of

applications that a formulation can support. Performance metrics compare the behavior of the

four alternative models on the quality and schedule dimension, as well as the difference between

different formulations in terms of project evolution. Specifically, the “Finish Time” for the

project is reported for different formulations (including both mean and standard deviation for the

agent-based formulation). Defect rate in completed work is reported for the three more complex

 5

models (the concept is not captured in the simplest formulation). Finally, average absolute error

compares the four formulations head-to-head in terms of the fraction of tasks approved at

different point of time in the project, and reports their difference. Figure 2 gives an overview of

two of the performance metrics.

F
ra

c
ti
o

n
 o

f
T

a
s
k
s
 A

p
p

ro
v
e

d

1

0

 Time
Figure 2- Finish time and average absolute error metrics. The results of hypothetical simulations

with two alternative formulations (M1 in solid line and M2 in dashed line) are reported for a project.

The two lines represent Fraction of Tasks Approved for M1 and M2 at different points in time

(FTA1 and FTA2). The Finish Times for two formulations (T1 and T2) are reported in months. The

average absolute error between M1 and M2 (AAE12) is calculated as:

AAE12=AAE21=)2,1(/|)21|(

)2,1(

0

TTMaxFTAFTA

TTMax

This metric is therefore normalized for project size and duration, thus allowing for comparison

across different projects.

 After describing the model formulations and deriving the parameter values from the most

detailed model (Section 3) we present the base case results where the performances of the four

models are compared using different metrics discussed above (Section 4). Next we will discuss

the sensitivity of the results to different parameter values including alternative defect rates,

project sizes, testing accuracy and speed, and different probability distributions for the stochastic

parameters of the agent-based model (Section 4-2). The conclusions and implications for

modeling project dynamics are provided in Section 5.

3- Model Formulations

 The four different models are introduced in this section. We name these models

according to their level of complexity, so the simplest model is “Model 1” or M1, etc. We first

briefly describe each model and then discuss the derivation of the parameters of the more

aggregate models based on the agent-based model (M4).

FTA1

FTA2
T1

T2

 6

Model 1- This formulation is adopted from an early model of project dynamics (Richardson and

Pugh 1981) because it includes the minimum number of independent stocks required to capture

the core idea of the rework cycle. Figure 3 presents an overview of the stock and flow structure

for this model. Basically the tasks are completed based on current Work Staff and Productivity.

The completion rate is also bounded by minimum time to complete a task. A fraction of tasks are

approved (either because they are done correctly, or because the quality assurance and testing

process have not flagged them as requiring change). The rest of the tasks are sent to the

“Undiscovered changes M1” where they remain until they are discovered as in need of rework,

and thus sent back to the stock of tasks not completed.

 It is important to note that testing process is not explicitly captured in this model.

Therefore the probability of generating changes relates both to the defect generation and the

quality of testing. Even with high real defect rates, a lousy testing procedure can reduce the

probability of generating changes because most those defects are not captured. Moreover, the

formulation does not distinguish between rework and initial work because it sends all the

discovered rework into the tasks not completed. This assumption implies that M1 formulation

does not have enough degrees of freedom to capture significant differences in the nature of work

between first time work and rework. These considerations therefore require us to derive the

parameters for “Probability of generating changes” and “Time to Discover Rework M1” from the

parameter values in the more detailed models. Finally, this model does not keep track of

potential problematic tasks that are approved, and therefore the quality of the final project. We

therefore can not report one of our performance metrics, average defect in approved tasks, for

this model. Standard and straight forward formulations are used in model one and complete

model is available in the online appendix along with the other formulations.

Tasks not
completed

M1

Undiscovered
changes M1

Approve Task
rate M1

Rework
Generation

Rework
Discovery M1

Potential Work
Rate

Completion
Rate M1

Completion rate
constraint M1

Time to Discover
Rework M1

Tasks
approved M1

Productivity Available
ResourcesMin Time to Do

Task

ProbabilityGenerating
ChangesM1

Figure 3- The structure of

Model 1. Model parameters

have no incoming arrow and

are highlighted in dark green.

Full documentation available

in the appendix. Complete

model can be downloaded with

supplementary material.

Model 2- Ford and Sterman (Ford and Sterman 1998) introduced a more comprehensive project

formulation for the rework cycle. While their paper focuses on feedbacks across multiple stages

of a product development process, their model also included a co-flow structure to track

defective tasks along with the tasks in the core rework cycle formulation. We adapted their

 7

rework cycle formulation for the study at hand, calling it model 2 or M2. Figure 4 provides and

overview of this model. Full model documentation is available from the original paper and in the

online model posted with the paper.

 This formulation includes 6 independent stock variables (the task stock and flow structure

is closed and thus the sum of all stocks remain constant, reducing the number of independent

stocks by one). Available resources are allocated between “Completion rate M2” and “Change

task rate M2” proportional to the desired completion rates. Desired rates depend on stocks of

“Tasks not completed” and “Known changes”, as well as time to do the tasks or rework.

“Probability of generating defect during completion” determines what fraction of completed

tasks potentially requires a change. Not all such tasks are however discovered through the testing

process. “Probability of missing a defect” informs what fraction of problematic tasks is

discovered and sent to “Known changes” stock and what fraction flows into “Tasks approved”

along with their “Changes approved.” For tasks with known changes, rework is not always

successful in removing the problem. While some of the problems are fixed in the rework process,

some defects remain and flow back into “Undiscovered changes.”

Tasks to be
changed M2

Tasks
completed but

not checked M2

Tasks
approved M2

Tasks not
completed

M2

Change task
rate M2

Completion
rate M2

Approve Task
Rate M2

Quality
Assurance M2

Probability change
required M2

Discover changes
fraction M2+

+

+

Discover change
rate M2

+Dev Resources to
New Dev M2

Feasible New
Dev Rate M2

+

Dev Resources to
Rework M2

Feasible Rwrk
Rate M2+

Dsrd New Dev
Resources M2

Dsrd Rwrk
Resources M2

+

+

Total Desired
Resources M2

Productivity
Testing time

Min Time to Do
Task

Min Time to Do
Rework

Probability of
missing a defect

Undiscovered
changes M2

Discover internal
changes M2

Approve
changes M2

Generate changes
during completion

activity M2

Known
changes M2

Generate changes
during change activity

M2

Correct
changes M2

Changes
approved M2

+

<Tasks to be
changed M2>

+
<Change task

rate M2>

-

+

-

+

+

+

+

-

Completion Defect
Probability M21

Defect Correction
Probability M2

Error probability in
approved tasks M2

<Productivity>

<Completion
rate M2>

Available
Resource

Figure 4- Complete structure of Model 2, adopted from Ford and Sterman, 1998. Model parameters have

no incoming arrow and are highlighted in dark green. One variable (“Discover Change Fraction M2”) is

highlighted in Red and discussed in more detail in the text (under Parameter Relationships section) because

it diverges from the original formulation by Ford and Sterman. Full documentation is available in the

appendix.

 8

 This formulation allows the modeler to account for problematic tasks and their required

changes. It therefore enables tracking of defects in approved tasks and therefore the quality of the

finished project. Nevertheless, the conception of defect (or change) in this model is binary: a task

is either defective, thus in need of change, or correct. The formulation therefore does not account

for different levels of defectiveness, e.g. having multiple defects per task. Therefore parameters

related to defect generation and correction probabilities (e.g. “Defect correction probability” and

“Probability of generating defect during completion”) should be calculated based on the detailed

defect generation process in more detailed models.

Model 3- The third formulation we introduce builds on model 2 and allows for multiple defects

per task. The basic stock and flow structure closely follow that of Model 2. Moreover, we

explicitly introduce a stock and flow structure for testing. This additional complexity is required

to consistently account for the testing process in presence of multiple potential defects per task.

The current formulation was first used to model software development processes (Rahmandad

2005). This paper introduces the formulation in the literature for the first time and compares it

with other alternatives.

 A good rework cycle formulation with co-flow for defects/changes (rather than tasks that

have a defect or need change, e.g. Model 2) should overcome some relatively complex modeling

issues. Specifically, the perfect mixing assumption of differential equation models means we can

only know about the average number of defects per task, but not the distribution of number of

defects. However, to decide what fraction of tasks are approved in the testing process and what

fraction are sent for rework, we need to know what fraction of tasks are defect-free. Finding that

fraction requires some additional distribution assumptions as for how the defects are distributed

among the tasks. Furthermore, if we consider the imperfections of testing process, we should

take into account that not only defect-free tasks, but also some of the tasks with one, two, or

more defects could be, by chance, accepted. Therefore a successful formulation should be able to

determine what the defect density is in both approved and rejected tasks.

Moreover, the testing process often includes tests that cover more than a single task. For

example consider integration testing in software development (vs. unit testing). Where unit

testing makes sure a specific piece of code (a small module or function) is working properly

given a set of inputs, the integration testing includes examination of interactions between

multiple modules, thus increasing the chance that a test fails because any of the components have

a defect. These larger tests could in fact be rejected more easily because a failure in one of many

components leads to sending all those components for further rework.

Figure 5 presents the conceptual framework we use to tackle this formulation problem.

Here we represent the tasks as the area of the rectangle in the figure: the larger the number of

tasks, the bigger the rectangle. The number of tasks at each stage can be followed in the

respective stock variable (See Figure 6 for a partial stock and flow diagram for Model 3).

Defects are the red dots distributed in this area. We can track the number of these defects in a

stock variable for “Undiscovered changes.”
1
 Perfect mixing nature of material in a stock means

these defects are randomly distributed in the area. That is, the location of each defect is

completely independent of the other defects, and all points in the area have the same chance of

including a defect. Finally, a test is represented as a larger oval that covers some area (a number

of tasks). A test is then rejected if at least one of the defects inside the test area are recognized in

1
 We use defect and change interchangeably for Model 3. While defect is conceptually more appropriate in this

context, we want to keep the parallelism with the Model 2 and therefore use similar names for the stock and flow

variables as used in Model 2.

 9

the testing process. Otherwise the test is approved, accepting some part of the tasks (according to

the test area) into the stock of “Tasks approved” (See Figure 6). The defects/changes that have

been missed in a test flow in parallel into the “Changes approved” stock.

Figure 5- The conceptual framework for modeling multiple

defects per task, used in Model 3. Here the area of the

colored rectangle represents the tasks in one stock, the red

dots represent the defects randomly distributed in this

space, and the blue oval is the representation of a test which

covers some tasks and potentially some defects. This

conceptualization allows us to calculate the probabilities

related to the number of errors in each area, e.g. the

probability of rejection of a test and the expected number

of errors per approved test.

The perfect mixing requirement proves to be very useful in this setting. The

independence of placement of defects in the task area results in the Poisson distribution of the

number of defects per any area (e.g. the area covered by a test). This is due to the fact that our

setting satisfies the Poisson distribution’s underlying assumptions: that probability of observing a

defect over an area does not change over different areas, and that probability of observing a

defect over an area is independent of the observation of defects in the rest of the space. We can

therefore find the probability of finding k defects in a test area of size a (unit: task), where the

defect density is d (unit: defect/task) based on the Poisson probability distribution:

!

)(
)(#

k

dae
kerrorsP

kda

 (1)

For example, the probability that no defect is present in the test area, and thus the test is

accepted (releasing the tasks in test area into the stock of approved tasks) is: e
-da

.

 Furthermore, we can calculate the impact of imperfect testing. A test is passed under this

setting if no defects are present in the test area, or a single defect is present but that is missed

with probability ε, or two defects are present and both are missed (which assuming independence

between different defects will have a probability of ε
 2

), and so on. Therefore the probability of a

test with area a passing can be calculated as:

)1(

0 !

)(
)(

 dak

k

kda

e
k

dae
TestPassP (2)

 The expected number of defects in a test that has passed is another variable we need to

calculate in order to determine the flow of defects from stock of “Undiscovered changes” to

stocks of “Changes approved” and “Known changes”. This expected value can also be

calculated:

)1(

0 !

)(
)(

 dak

k

kda

eda
k

dae
kassedTestDefectPerPE (3)

 Finally, this conceptualization allows us to consider lower-than-complete test coverage.

Testing can be imperfect not only because we may miss some defect in the task area that is being

tested, but also because we may not test all the tasks in the system. Under low test coverage, a

part of task area is released without testing, along with the area covered by each test. The defects

in the untested area are also released in the approved tasks with the average defect density for the

 10

task area in general. In order to consider such imperfect testing scenarios, it is helpful to

introduce explicit stocks and flows for the tests that are being run
2
.

In Model 3 presented in Figure 6 we use “Discover changes fraction” to measure what

fraction of tests fail. This is one minus the value found according to equation 2. We calculate the

number of tasks that are sent to be changed using this fraction and the total amount of tasks

covered by testing (“Quality assurance”). On the other hand, the tasks approved are potentially

more, if test coverage is lower than 100%. Therefore we calculate the “Approve task rate” by

subtracting the rejected tasks from the tasks that are either tested or approved without test. The

number of these tasks is calculated by using the fraction of total tests that are conducted at any

point in time (“Frctn Tst Running”) and extending that fraction to all the tasks pending testing

(“Totl Task to Tst”). For example if testing rate is conducted at 0.15 of tests per month, then 0.15

of tasks to be tested are flowing monthly out of the stock of “Tasks completed but not checked”,

out of which some are going to “Tasks to be changed” and the rest are approved.

Tasks
completed but
not checked

M3

Tasks
Approved M3

Tasks to be
changed M3

Approve Task
rate M3

Discovery
Change rate M3

Change Task
Rate M3

Undiscovere
d changes

M3

Known
Changes M3

Changes
Approved M3Generate changes

during completion
activity M3

Approved
Changes M3

Discover internal
changes M3

Correct
changes M3

Defect rate
completion M3

Task not
completed

M3 completion
Rate M3

Defects from
Dev UM3

+
+

+

<Change Task
Rate M3>

Probability change
required M3

+

-

Task Passing
Test UM3

Totl Task to
Tst UM3

+

+ +

-

<Tasks to be
changed M3>

+

Ave Dfct in Rwrk
Task M3

<Tasks to be
changed M3>

+

-

Discover changes
Fraction M3

+

<Approve Task
rate M3>

+

Task Covered by
Test UM3

Dfct Dnsty in
Accepted Task UM3

+

Ave Dfct in Tstd
Task UM3

+
+

+

<Ave Dfct in Tstd
Task UM3>

+

Tstd Task
Accptd UM3

+

-

-

+

Quality
Assurance M3

+

+

Generate
changes

during change
activity M3

+

+

Dfct from Rwrk
UM3

+

Defect Rate in
Rwrk M3

+

<Frctn Tst
Running UM3>

<Test Rate
UM3>

Probability of
missing a defect

Defect Fix
Rate M3

Defect Correction
Rate M3

Ave Dfct in
Approved Task M3

<Probability of
missing a defect>

<Task Passing
Test UM3>

<Initial Tasks to
Complete>

Figure 6- The structure of Model 3. For simplicity we do not show the variables determining “completion

Rate M3” and “Change Task Rate M3”. These concepts are formulated exactly as in Model 2. Moreover,

the testing sector is shown in the next Figure and includes the specification of shadow variables in this

view (highlighted by <> signs). Model parameters have no incoming arrow and are highlighted in dark

green. Full documentation available in the appendix.

2
 While the additional stocks are not required if the test coverage is unchanged throughout a simulation, we discuss

the additional structure for increased clarity and flexibility of formulation to be applied to dynamic test coverage.

 11

 We formulate the rate “Approved Changes” (see Figure 6) in the parallel defect co-flow

by calculating the defect density in the tasks being accepted (which depends on the defect

density of tasks tested and those approved without testing, properly weighted) and multiplying

that by the “Approve Task Rate”. Once the rate for approval of defects is determined, it is easy to

calculate the rate of discovery of defects: from all the defects that are either passed or passing

through testing (Task Passing Test* Probability Change Required) we subtract the approved ones

(“Approved Changes”) and let the rest flow into “Known Changes”. The Model 3 formulation

also allows us to consider the introduction of additional defects during the rework process (“Dfct

from Rwrk”) as well as the possibility that some defects are not corrected in the rework process

(“Generate changes during change activity”). All these defects flow into “Undiscovered

Changes”.

Tests to
Run M3

Frctn Tst
Running UM3

Frac Total Tst
Feasible UM3

-

Fraction Task
Finished UM3

<Total Tests to
Cover UM3>

Test Feasible
UM3

+

+

+

+

Test Ran
UM3

Test Rate UM3

Retest
Required UM3

<Tasks
Approved M3>

<Tasks completed but
not checked M3>

<Discover changes
Fraction M3>

Total Task

TestRate
Feasible UM3

Testing time

Tl Eff Available
Task on Test

Figure 7- The structure for testing sector

in Model 3. Table function for impact of

task availability on test feasibility is

highlighted in blue. Shadow variables,

specified by <> signs, are coming from

the main sector of the model shown in the

previous figure.

 Finally, the testing process starts with a fixed set of tests (in the stock “Tests to Run” (see

Figure 7)). The fraction of tasks that are finished determines, based on the nature of work, how

much testing can be done (through “Tl Eff Available Task on Test”). At one extreme all tasks

completed can be tested because different pieces of project are tested independent from each

other. Under these conditions the table function is the 45 degree line. At another extreme one

may need all the pieces of the project to come together before anything can be tested. Such

project has a table function that remains at 0 for all values but for input 1, which has an output of

1. Realistic projects are often somewhere between the two extremes, but we use the first case in

this study because Model 1 does not capture testing explicitly. Once tasks are run, they flow into

the “Test Ran” (see Figure 7) stock. On the other hand, the fraction of tasks that are rejected due

to discovered defects are cycled back to “Tests to Run” so that they can be administered again

later.

 Model 3 allows us to consistently account for multiple defects per task. It also ties the

testing process with alternative accuracy and coverage levels to the coflows of tasks and defects.

It achieves these by including one more independent stock than Model 2 (total of 7 stock

variables). However, by its nature, this structure continues to assume perfect mixing of tasks and

defects and thus misses on heterogeneity in tasks, defect probability per task, stochastic

variations in task completion, or interactions between different tasks. To account for some of

these considerations an agent-based model may be required.

 12

Model 4- The last model we compare the rest of structures with is an agent based model of

rework cycle. This model can release several of assumptions necessary in the first three

formulations and allow for more accurate simulations. A parallel project structure is used for this

model. However, the agent-based model requires tracking of each task, rather than stock

variables for different groups of tasks with similar characteristics. For example Model 2 included

only 6 independent stock variables. In Model 4 each task can be in one of 4 alternative states

(Not completed; completed but not tested; to be reworked; and approved). Moreover, each task

includes dynamic variable such as the number of defects in the task, as well as, static (potentially

stochastic) parameters including the completion or rework time for the task.

Figure 8 offers an overview of this model. Here the different stages of rework cycle along

with important parameters of the model are presented. Each process stage includes a process

(such as doing the work, testing, etc; similar to flow variables in SD models). Stages may also

include queues before the process is executed. At the beginning of simulation all the tasks (of

which there are “intialTasksToComplete”) are released into the queue for the “completion”. A

task waits there until a resource is free to work on that task (from a pool of “numResource”). The

“completion” process takes different amount of time for different tasks. For the base case

analysis we assume the time per task is exponentially distributed with the expected value of

“meanTaskSize”, which directly relates to the productivity concept in the first three models.

During the completion process defects are generated due to different reasons with a Poisson

process with mean rate of “errorRateCompletion”. Completed tasks are put into the queue for

“testing”. Testing resources are unlimited (for simplicity and keeping in parallel with other

models) thus testing time has an exponential distribution with mean of “meanTestTime”. During

this time each of the defects is missed with the probability of “probMissingDefect”. In absence

of defects, or if all defects are missed, the task is approved, otherwise, it is sent to the “rework”

stage. Here the task is reworked for some time (exponentially distributed with

meanReworkSize). We assumed in previous models that productivity of personnel in doing the

work initially or doing rework is the same, thus meanTaskSize= meanReworkSize. Defects can

be both added, and removed, during the rework process. The two Poisson processes have rates of

“errorCorrectionRate” and “errorRateRework”. While generally errorCorrectionRate is bigger

than errorRateRework (or otherwise the project does not finish in expectation), by chance some

tasks may end up with more defects at the end of rework process than how they started. After

rework tasks are sent back to the testing station for new tests. Resources are shared for

completion and rework stages and a first-come first-served allocation policy is put into effect.

 13

Figure 8- The structure of Model 4, the agent based formulation. Different parameters are shown in

circles with small triangle on the side. The clock figures represent stages of work (completion, testing,

and rework). The causal relationships are not specified in this graph, but are covered in the text.

 The complexity of Model 4 relates directly to the number of tasks tracked. Each

additional task requires keeping track of its state and defects and planning its related events,

linearly increasing the model complexity with task size. Model 4 includes 9 parameters that

govern its performance. In the next section we discuss how we derive the parameters for other

models from these nine parameters. Before that however, we summarize the main characteristics

and capabilities of the fours models discussed above. Table 1 provides this comparison. For each

model we discuss the level of complexity of the model and what it adds, in terms of capability, to

the previous model. We limit this summary to the capabilities of the models discussed here and

not their ultimate capability after addition of structure to them.

Table 1- The overall comparison between the different formulations discussed in this paper. For each

formulation its complexity (in terms of number of stocks or state variables) and the capabilities included in

that formulation are discussed. The capabilities are cumulative, so each model includes what is available in

the previous models, plus the items discussed here.

Model Complexity Capabilities (cumulative)
M1 (Richardson

& Pugh)

2 independent

stocks
 Basic rework cycle

 Can include feedbacks to productivity, quality, and

resources.

M2 (Ford &

Sterman)

6 independent

stocks
 Captures the quality of finished project

 Includes precision of testing

M3

(Rahmandad)

7 independent

stocks
 Can include multiple defects per task

 Can include different test coverage levels

 Can include different sizes for tests

M4 (Agent- Linearly Includes task heterogeneity

 14

based) increases with

number of tasks
 Includes stochastic behavior in completion and rework

 Can include different priorities for tasks or precedence

relationships

 Can include interactions in task quality (e.g. a defect in

task 3 increases the probability of defect in task 4)

 Appendix 1 provides detailed formulation for M1-M3, all models are available in

supplementary material for independent simulation and analysis. We first implemented all the

models in Vensim ™ but later switched to Anylogic ™ for the ease of use in case of M4. We

therefore report more user friendly graphs from Vensim, while the simulations are all completed

in Anylogic. We supply both of these models for interested researchers.

3-1- Parameter Relationships

 In this section we derive the parameters of the M1-M3 based on the micro level

parameters we defined for M4. The derivation of parameters allows us to have a better

understanding of the relationships between different formulations. It also enables building on

calibrated parameter values from previous work to inform new models with alternative

formulations.

The derivation of parameters for M3 is relatively straight forward. Most concepts remain

unchanged. Namely Initial Tasks to Complete, Available Resource, Testing Time, Probability of

Missing a Defect, and Error Correction Rate are equivalent conceptually and in their values, to

counter parts in the agent based model (See Table 2). In fact many of these concepts are shared,

without any change, across all models (thus no suffix included in parameter names). Productivity

in M3 (and other models) is the number of tasks a resource can complete in one unit of time (e.g.

month). This is therefore the reverse of the number of time units it takes to finish one task (or

meanTaskSize in M4). Similarly rework productivity would be the reverse of meanReworkSize.

In this study we assumed the productivity for rework and completion are equal, and thus the

mean sizes for a task and its rework are equal (in expectation, since M4 has a distribution for

task and rework sizes). Minimum time to do a task or to do rework also equals the meanTaskSize

and meanReworkSize parameters because those parameters determine how long a single task

will take to finish, which is the minimum time needed to finish the tasks.

Defect rates in rework and completion for M3 count the number of defects introduced per

task completed (or reworked). Therefore they should take into account both the average defects

created per unit of time (defectRateCompletion/Rework) and the length of time spent on each

task (meanTaskSize or meanReworkSize). Similarly “Defect Correction Rate M3” is equal to

defectCorrectionRate in M4 multiplied by the meanReworkSize. Finally, we introduced the

parameter “Task Covered by Test UM3”
3
 which is not used in any other model, because the

other models do not include the possibility of having different types of tests with different

numbers of tasks covered in each test. Such considerations are possible to implement in Model 4,

however, for simplicity we do not include them and assume that a single task is covered by each

test. We also assume all the tasks are included in the testing process, thus the initial number of

“Tests to Run UM3” equal the initial number of tasks.

Models 1 and 2 have several parameters similar to Model 3, which are similarly derived

from Model 4. The main conceptual difference between models 2 and 3 is the different

formulation and understanding of defect and change. In model 2 tasks can either be defective

3
 UM3 is used to distinguish a concept unique to model 3, where as M3 specifies a concept that has parallels in other

models.

 15

(have a corresponding change in the co-flow) or not, a binary choice. Where as in Models 3 and

4 tasks can be defective to different degrees, because they can have multiple defects. This

difference in conceptualization requires us to re-define the probability of introducing changes in

models 1 and 2, as well as the defect correction and discovery processes. Let us first consider

“Completion Defect Probability M21”. This parameter is shared between Models 1 and 2 and

specifies what is the probability a completed task is defective (in the binary conceptualization of

task quality). We can relate this probability to the conceptualization in the Models 3 and 4 by

finding what the probability that a task has no defect is, given the distribution of defects per task.

That probability, calculated as one minus the probability of having no defects in a Poisson

distribution, is
4
:

Completion Defect Probability M21= 1-e
(-Defect rate completion M3)

(4)

The same consideration comes into play for calculating the Defect Correction Probability

M2. Here, however, both fixing of defective tasks and making mistakes that can make the task

further defective come into play. We estimate this concept based on parallel parameters in M3

and M4 by assuming that a defective task is corrected if a)At least one defect is fixed in that task

(one minus probability of fixing no error), AND b)No error is added to the task. This formulation

is only an approximation. In fact the different concepts of task and error are not completely

consistent across Models 3 and 2, and thus a one to one relationship does not exist between the

two models. While in the Model 3 (and 4) a project can accumulate more defects in rework if

“Defect Rate in Rwrk M3” exceeds “Defect Correction Rate M3”, Model 2 does not include such

possibility. If tasks are always either correct or incorrect, we can not make them more incorrect,

and therefore the rework cycle ultimately finishes.

In light of the conceptual difference between Models 2 and 3, one of the equations in

Model 2 requires further elaboration. As Figure 4 shows, “Discover Changes Fraction M2” is a

function of “Probability of missing a defect” and “Probability change required M2”. The straight

forward, but incorrect, formulation may suggest multiplying “Probability change required M2”

by one minus “Probability of missing a defect” (Call it PM). However, note that we missed one

of the (possibility many) defects with the latter probability. If tasks are either correct or incorrect

(binary view of M2), then probability of missing a defective task is lower than the same concept

for a “defect” among many that can spoil a task in Model 3. Therefore we first find what the

expected number of defects embedded in a defective task (call it ED) is, based on the

“Probability change required M2” (call it PC). We then find what the probability of rejecting a

task (DC) is, given the expected number of defects in that task (ED):

PC=1-Probability No Error Present=1-e
-ED

 (from the Poisson distribution)

 ED=-ln(1-PC) (5)

DC=1-Probability No Error Detected=1-e
(-ED.PM)

 DC=1-e
(ln(1-PC)PM)

 (6)

Note that PC is a dynamic variable and therefore DC can also change dynamically in a

simulation. We use this latter formulation instead of the original formulation (Ford and Sterman

1998) to reduce the discrepancy between M2 and M3 performances due to different conceptions

of task and defect.

Finally, Model 1 does not include several of the parameters used in Models 2-4 because it

lacks formulations for testing, or separate stocks for rework and new work. The only parameter

introduced by Model 1 is “Time to Discover Rework M1” which is somewhat similar to the

delay involved in testing (though not exactly the same concept), and therefore we use the Testing

4
 For a Poisson distribution with mean M defects per task, the probability that no defect exists is e

-M
.

 16

Time as an approximation for it. Table 2 summarizes the relationship between different

parameters across different models.

Table 2- The summary of parameters in different models and their relationships. For Model 4 only

parameters are listed, while for other models their values in terms of Model 4 parameters is also included.

Detailed discussion is available in the text.

Model 4 Model 3 Model 2 Model 1

initialTasksToComplete
Initial Tasks to Complete=

initialTasksToComplete

Initial Tasks to Complete=

initialTasksToComplete

Initial Tasks to Complete=

initialTasksToComplete

numResource
Available Resource=

numResource

Available Resource=

numResource

Available Resource=

numResource

meanTaskSize

Productivity=1/meanTaskSize Productivity=1/meanTaskSize
Productivity=

1/meanTaskSize

Min Time to Do Task=

meanTaskSize

Min Time to Do Task=

meanTaskSize

Min Time to Do Task=

meanTaskSize

defectRateCompletion

Defect rate Completion M3=

defectRateCompletion*

meanTaskSize

Completion Defect Probability M21= 1-e
(-Defect rate completion

M3)

meanTestTime Testing Time= meanTestTime Testing Time= meanTestTime NA

NA NA NA
Time to Discover Rework

M1~ meanTestTime

probMissingDefect
Probability of missing a

defect= probMissingDefect

Probability of missing a

defect= probMissingDefect
NA

Each test is assumed

to cover a single task

(no parameter)

Task Covered by Test UM3
Each test is assumed to

cover a single task
No explicit testing

meanReworkSize Rework productivity assumed to be equal to completion productivity (=1/meanTaskSize)

NA

Min Time to Do Rework=

meanReworkSize=

meanTaskSize

Min Time to Do Rework=

meanReworkSize=

meanTaskSize

Min Time to Do Rework=

meanReworkSize=

meanTaskSize

errorCorrectionRate

Defect Correction Rate M3=

defectCorrectionRate*

meanReworkSize
Defect Correction Probability

M2= (1-e
(-Defect Correction Rate

M3)
)*e

(-Error Rate in Rwrk M3)

NA

errorRateRework

Defect Rate in Rwrk M3=

defectRateRework*

meanTaskSize
NA

4- Simulation Analysis

 In this section we report the simulation results comparing the four alternative models of

rework cycle. We will first report the results of the base case analysis in which the models are

simulated used the parameter values reported in Table 3. Given the stochastic nature of M4, 100

different simulations with different streams of random numbers are generated in this case and the

statistics from this sample is reported. We will then conduct a comprehensive sensitivity analysis

to understand how the alternative models compare under different parameter settings and what

are the underlying structures that derive their differences.

Table 3- All important parameters used in all models, with their initial, low and high values, units and

description

Parameter Base (Low,

High)

Unit Description

 17

probMissingDefect 0.3 (0.1, 0.9) Dmnl This parameter represents the quality of testing, as

captured by probability of missing an error that

exists in the task, while doing the testing.

meanTaskSize 0.2 (0.1, 0.4) Month.Person/Ta

sk

This parameter defines the average size of tasks

when doing work and test, as well as, the

productivity of initial work and rework of the

workers in M1-M3.

meanTestTime 0.1 (0.05, 0.2) Month.Person/Ta

sk

This parameter defines the average time for doing

the testing.

defectRateCompletion 2 (0.5, 8) Defect/Month The rate of creation of defects in initial work

errorRateRework 2 (0.5, 3.5) Defect/Month The rate of creation of defects while doing rework

errorCorrectionRate 4 (2.5, 8) Defect/Month The rate of correction of defects in the rework

process

initialTasksToComple

te

100 (20, 400) Task Total number of tasks included in the project

Distribution of

Testing Time (M4)

Fixed,

Exponential(1)

The base case includes no distribution, exponential distribution is used

for the sensitivity analysis, where it is multiplied by mean value of the

parameter

Distribution of Task

Size (M4)

Fixed,

Exponential(1)

The base case includes no distribution, exponential distribution is used

for the sensitivity analysis, where it is multiplied by mean value of the

parameter

Distribution of

Rework Size (M4)

Fixed,

Exponential(1)

The base case includes no distribution, exponential distribution is used

for the sensitivity analysis, where it is multiplied by mean value of the

parameter

numResource 5 Person No sensitivity analysis on the number of people

4-1- Base case

In the base case we investigate a project with 100 tasks which is taken up by five resources who

can each complete five tasks per months. In absence of any errors, therefore, this project could

be finished in four months. However, task completion is accompanied by introduction of defects,

which can activate the rework cycle and lead to longer times for completion of the project. In

fact models from M1 to M4 take exceedingly longer times to finish the project under these

settings (see Table 4). Where as M1 is finished in 5.53 months, M4 takes in average 9.08 months

to finish, and includes a relatively high standard deviation in this measure. Overall, the behavior

modes are familiar for modelers: a smooth increase in the tasks approved, slowed down towards

the end by the last iterations inside the rework cycle. Figure 9 presents the base case simulations

for M1-M3 and a single random simulation for M4.

 18

Figure 9- The time line of task

approval for M1-M4. A single

random run is shown for M4,

while the statistics reported in

the next tables and graphs are

based on 100 simulations in

each parameter setting. The

finish time for different

formulations in this case are:

M1:5.53, M2: 6.47, M3: 8.04,

M4: 7.78.

As the graph shows, M1 and M2 are very close in their base case behavior. M3 tends to

better resemble the M4, specially in its longer finish time. The reason for significantly longer

finish times for M3 and M4 is in the conception of errors in these models where a few tasks with

multiple defects remain in the rework cycle and go through multiple cycles of rework before they

are fully corrected, or incorrectly accepted. M2, with its binary conception of defective tasks,

does not allow for such outliers.

In terms of final quality, the average defect in approved tasks can be calculated directly

for M4 and M3, in terms of defects per approved task. For M2 a transformation is needed

because the change coflow is conceptualized in a binary fashion. Therefore the Error Probability

in Approved Tasks is telling us what fraction of tasks have some defect, but not the average

number of defects. The latter quantity can however be calculated. Given Poisson distribution for

the number of errors, the probability that a task is not defective can be calculated based on the

density of defects in the tasks: Probability of Having No Defet=1-e
Ave Dfct in Approved Task M2

, thus:

Ave Dfct in Approved Task M2=-ln(1-Error Probability in Approved Task M2) (7)

Having calculated this metric parallel to the similar concepts in M3 and M4, we can now

compare the quality of resulting projects across different models. The second row in Table 4

report these results. In this case, somewhat surprisingly, M2 does a better job in replicating the

results of the agent based model. M3 under counts the defect density in the approved work more

significantly (0.116 in M3 vs. 0.164 in M2 and 0.185 defects per task in M4).

The reason behind this counter-intuitive behavior is that M3, based on perfect mixing

assumption in differential equation models, assumes the distribution of errors remain Poisson in

the tasks cycling through rework process. This assumption is in fact incorrect and consequential.

Tasks with no errors are accepted in the testing process and go through without any problem.

The remaining tasks therefore do not include any task with no defect, where as M3 assumes

many of these tasks are indeed flawless (based on imposing the Poisson distribution). Given the

same average number of defects per task in tasks cycled through rework process, M3 will also

include more tasks with several defects, compared to M4. In short, M3 increases the

heterogeneity of number of defects per task by assuming a Poisson distribution. The increased

heterogeneity leads to lower number of problems that pass through the testing process in the next

M4

M2

M3

M1

 19

round of tasks getting to testing. This is because the assumed flawless tasks have no defect to

contribute to low quality accepted tasks.

An example illustrates this mechanism better. Consider two sets of four tasks with same

average number of defects per task, which is one. First set includes two tasks with no defects and

two tasks with two defect (higher heterogeneity, more similar to M3). Second set includes four

tasks with one defect each (lower heterogeneity, more similar to M4). If these two sets go

through a testing process with probability of p for missing a defect, then first set will have an

expected number of errors equal to 2p
2
, while this number is equal to 4p for the second set. For

all feasible values of p (between 0 and 1), the defect density will be lower for the first set, which

resembles M3. This comparison also suggests the main reason why M2 does better in capturing

the quality metric: the binary definition of task correctness in M2 makes a clear distinction

between tasks with no defects and those defective, and follows that distinction throughout the

testing and acceptance processes. It therefore does not suffer, as acutely, from the problem

discussed for the M3.

Table 4- Values of Finish Time and Average Defect in Approved Tasks for all 4 models gotten under Base

case. Results for 100 simulations are summarized for M4.

 M1 M2 M3 M4 (Mean) M4 (Stdev)

Finish Time 5.528 6.468 8.044 9.081 2.576

Average Defect in Approved

Tasks

Not

Applicable
0.164 0.116 0.185 0.041

The differences in the time evolution between the four models are reported in the first

row of Error! Reference source not found.. This graph reports the AAE metric we defined

before (Figure 2) for comparison of different models (six different comparisons). Overall, M2

and M3 have the closest trajectory over time. After that M1 and M2 are most close, followed by

M1-M3, M3-M4, M2-M4 and M1-M4. These results are consistent with the process of building

the models, where M1 was the simplest, M2 and M3 followed, and M4 was the most detailed

model. The differences between the models are not so significant and range between 1% (M2-

M3) and 8% (M1-M4).

 The standard deviations for M4 metrics are relatively large (e.g. 20-30 percent of the

mean values), and therefore are not negligible. This suggests that variation in project evolution

created through rework cycle, even in the absence of any other feedback structure, could still be

significant. Given the significant costs associated with extremely late or low quality projects, this

may suggest that having more detailed models are warranted for many practical problems where

risk assessment is part of the problem definition.

 In selecting among different aggregate formulations, M1 is the most aggregate, and the

least precise model. It is most useful if a quick and simple insight model is needed to capture the

basic idea of rework cycle. Selecting between M2 and M3 is less clear cut. While M2 offers

more accurate quality estimates of the final project, M3 provides a more accurate evolutionary

pathway for how long the project takes.

4-2- Sensitivity of results to different project types

We conduct additional sensitivity analysis to understand the scope and robustness of initial

results and the level of difference between different models under alternative conditions. We

change the model parameters from the base case values as reported in Table 3. Parameters are

varied on a large interval to see how the models compare under relatively extreme conditions. In

 20

each case we repeat 100 simulations for M4 and calculate the metrics similar to how we

conducted the base case analysis. The detailed results of this analysis are reported in Table 5 and

Error! Reference source not found.. The following conclusions emerge.

 Increasing (decreasing) probability of missing an error decreases (increases) the finish

time and has the reverse effect on average defect in accepted work. By reducing simulation time

and the stochasticity induced by the rework cycle, poor testing procedure also brings the four

models closer to each other. In fact in the extreme when no testing is done and every task is

accepted, rework cycle is no more active, and thus it can not introduce randomness into M4.

Consequently as the quality of testing process improves, the value of M4 increases in terms of

stochastic behavior different from M1-M3. An improved testing process also increases the

relative value of M3 over M2 because it leads to longer projects and higher quality, where as

with poor testing, the two models become almost identical.

 Besides the obvious impact on project length, increasing the task size has the effect of

increasing the defect hazard for each task, leading to more significant impacts of rework cycle

and the quality of tasks in the cycle. As a result for higher task sizes M4 becomes a more reliable

model. Moreover, given the better performance of M2 than M3 in capturing project quality,

larger task sizes tend to promote M2 over M3.

 Increasing testing time increases the length of the rework cycle and thus its impact on the

stochastic behavior of M4. Lack of explicit testing process in M1 leads to larger discrepancies

between M1 and other modes as we increase testing time. The other comparative results are not

changed significantly by testing time and impact on average quality is negligible.

 Completion defect rate has a significant impact on the behavior of the models. Increasing

this parameter activates rework cycle significantly and leads to longer project times, increased

discrepancy of M4 and M2, and increased quality difference between M4 and M3. Interestingly,

the M3 remains very close in its evolutionary time line to M4, despite the fact that it

underestimates the defects that pass through the testing process and are in approved work.

 The impact of rework defect rate is somewhat more subtle. It has very limited impact on

M2 and no impact on M1. Yet an increase in this parameter significantly increases the finish

times for M3 and M4 because by introduction of more defects during rework these models will

often include a few tasks which will accumulate multiple defects and will lengthen the project

for a long time. Nevertheless, this process does not increase the gap (AAE) between M4 and M2

or M1 significantly, because for the majority of project life the models remain close to each

other, and only the long final few tasks are extended. By this final stage all projects are largely

completed and therefore the AAE measure remains small. In fact the impact of error correction

rate is also very similar to the impact of defect rate in rework, but only in the opposite direction.

This should come as no surprise since both processes of rework defect introduction and defect

correction impact the outflow of stock of tasks with known changes.

 Changing the number of tasks in the project scales the projects without changing the

strength of underlying processes and therefore does not impact the mean performances of the

models significantly. However, it has a major impact on the variations across different

simulations for M4. With increased project size, the law of large numbers washes the variations

away and leads to standard deviation values not so far from base case for both finish time and

average defects (in fact standard deviation for average defect reduces for larger projects).

Therefore increased project size actually reduces the relative value of M4, given the lower

divergence in the behavior of the model from its mean performance.

 21

 Having distributions, rather than fixed values, for testing time, task size, and rework size

have some minor impacts on M4 performance. Heterogeneous testing time slightly reduces finish

time and has limited impact otherwise. Distributed task size increases finish time for M4 slightly

because a few lengthy tasks may delay the project, and leads to slightly lower defect density in

the approved tasks. The reason for these observations is similar to the mechanism underlying the

difference between M3 and M4 in the average defect accepted. Higher heterogeneity in task size

increases the heterogeneity in defect per task and thus leads to higher-quality final projects

because more tasks are flawless (the smaller tasks) and the bigger containing many defects are

more likely caught and recycled in the testing process. This mechanism also explains the slightly

lengthier projects, as more rounds of rework cycle are needed for large, problematic, tasks.

B
a

s
e
 C

a
s
e

P
ro

b
a
b

il
it

y
 o

f
M

is
s
in

g

a
n

 E
rr

o
r

(0
.3

)

M
e

a
n

 T
a

s
k
 S

iz
e
 (

0
.2

)

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

1

M1-M4

M2-M4

M3-M4

M1-M2

M1-M3

M2-M4

probMissErr=0.1
probMissErr=0.9

meanTaskSize=0.1 meanTaskSize=0.4

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

1

AverageAbsoluteErrorM1M4 (Mean)

AverageAbsoluteErrorM2M4 (Standard Deviation)

AverageAbsoluteErrorM3M4 (Standard Deviation)

AverageAbsoluteErrorM1M2

AverageAbsoluteErrorM1M3

AverageAbsoluteErrorM2M4 (Mean)3

 22

M
e

a
n

 T
e

s
ti

n
g

 T
im

e

(0
.1

)

0.000

0.020

0.040

0.060

0.080

0.100

1

M1-M4

M2-M4

M3-M4

M1-M2

M1-M3

M2-M4

E
rr

o
r

R
a
te

 W
o

rk
 (

2
)

E
rr

o
r

R
a
te

 R
e
w

o
rk

 (
2
)

E
rr

o
r

C
o

rr
e

c
ti

o
n

 R
a
te

(4
)

meanTestingTime=0.05 meanTestingTime=0.4

errorRateWork=0.5
errorRateWork=8

errorRateRework=0.5 errorRateRework=3.5

errorCorrectionRate=2.5 errorCorrectionRate=8

 23

N
u

m
b

e
r

o
f

T
a
s

k
s
 (

1
0
0
)

D
is

tr
ib

u
ti

o
n

 o
f

te
s
ti

n
g

ti
m

e

O
ri

g
in

a
l

T
a
s

k
 S

iz
e

R
e

w
o

rk
 S

iz
e

Figure 10- The average absolute error (AAE) for differences between different models in base

case and different sensitivity analysis settings. For sensitivity cases each parameter is identified

with its base value in parentheses and the sensitivity values on the respective graphs. For AAE

between M4 and other models (the first 3 bars on charts), 95% confidence intervals are also

graphed based on mean and standard deviation from the sample of 100 simulations.

numberOfTasks=400 numberofTasks=2
0

Distribution of testing time
meanTestTime*exponential(1)

OriginalTaskSize=meanTaskSize*
exponential(1)

Rework Size=
meanTaskSize*exponential(1)

 24

Table 5- Detailed results of sensitivity analysis based on the change of each parameters listed in Table 3. Results for M4 are reported based on 100 simulations.

Metrics

Simulation Parameters

Finish
Time
M1

Finish
Time
M2

Finish
Time
M3

Finish
Time
M4,
Mean

Finish
Time M4,
Std
Deviation

Ave Dfct in
Approved
Task M2

Ave Dfct in
Approved
Task M3

Ave Dfct in
Approved
Task M4,
Mean

Ave Dfct in
Approved
Task M4, Std
Deviation

Base Case 5.528 6.468 8.044 9.081 2.576 0.164 0.116 0.185 0.041

probMissingDefect=0.1 6.005 7.641 8.924 10.822 3.088 0.059 0.034 0.069 0.032

probMissingDefect=0.9 4.300 4.441 4.454 4.423 0.167 0.376 0.380 0.396 0.068

meanTaskSize=0.1 2.416 3.134 4.315 4.743 1.971 0.103 0.081 0.126 0.037

meanTaskSize=0.4 14.574 15.816 15.374 18.259 2.823 0.269 0.141 0.246 0.047

meanTestTime=0.05 5.485 6.296 7.643 8.601 2.124 0.164 0.116 0.194 0.043

meanTestTime=0.4 5.999 7.900 10.960 12.182 4.984 0.164 0.115 0.185 0.040

defectRateCompletion=0.5 4.438 4.875 4.914 5.570 1.681 0.048 0.043 0.047 0.023

defectRateCompletion=8 13.046 9.938 20.984 20.575 4.139 0.361 0.142 0.523 0.088

errorRateRework=0.5 5.528 6.015 6.187 6.573 0.876 0.142 0.104 0.162 0.047

errorRateRework=3.5 5.528 7.013 26.742 31.756 28.907 0.186 0.119 0.223 0.060

errorCorrectionRate=2.5 5.528 7.085 26.742 32.375 28.921 0.189 0.119 0.251 0.057

errorCorrectionRate=8 5.528 5.920 5.648 6.101 0.569 0.136 0.091 0.128 0.038

initialTasksToComplete=20 20.976 23.531 26.528 29.682 3.563 0.164 0.117 0.188 0.024

initialTasksToComplete=400 1.795 2.485 4.011 3.093 2.215 0.164 0.115 0.179 0.087

Distribution of Testing Time (M4) 5.528 6.468 8.044 8.788 2.386 0.164 0.116 0.185 0.046

Distribution of Task Size (M4) 5.528 6.468 8.044 9.189 2.408 0.164 0.116 0.166 0.044

Distribution of Rework Size (M4) 5.528 6.468 8.044 9.084 2.442 0.164 0.116 0.203 0.047

 25

5- Discussion and conclusions

In this paper we develop and compare four alternative formulations for modeling rework

cycle dynamics. We show how to derive the parameters from models at different levels of

aggregation and detail, and how their overall behaviors compare to each other. The basic mode

of behavior for all models is the typical growth in the number of tasks approved. The final stages

of the project can however be significantly slower for M3 and M4, because a few tasks with

multiple defects may cycle through rework process for a long time. As a result M3 and M4 are

much closer in their finish time and overall fit. However, the heterogenizing effect of perfect

mixing assumption in M3 leads to higher quality levels for M3 compared to M4 (and M2).

Overall, similar modes of behavior are observable across different formulations. The major

difference is the increased finish time for M3 and M4, due to existence of a few tasks with

multiple errors. This difference, however, may be of important theoretical and practical

significance. Previous research has attributed 90% syndrome, the long-time continuation of

projects that are almost finished, to managerial responses to schedule pressure that increase the

error rate (Ford and Sterman 2003). Our results suggest that a more basic process, the iteration of

a few tasks with multiple defects, may create similar symptoms, without requiring any change in

the defect rate, or other parameters of the system. In fact, the common formulations used in

system dynamics for modeling projects hides this effect because they do not allow for multiple

defects per task. Both M3 and M4 models introduced in this paper can capture these effects.

A detailed agent based model is also more informative in providing a range of behaviors not

otherwise observable from deterministic models. Given the significant impact of extreme

performances on expected costs and benefits of projects, a realistic cost-benefit analysis can

benefit from the additional detail that allows for capturing stochastic variation endemic to project

evolution. However, we show that the major modes of behavior and relationships between mean

values remain largely similar across different formulations and therefore basic insights and high-

level conclusions can be derived from simpler, more aggregate formulations. In fact, for larger

projects with many tasks, the stochastic effects are more likely to be washed out, at least for

projects with a common pool of tasks and no strict precedence relationship. Inclusion of

precedence relationships is feasible both through introducing multiple phases of project (in

differential equation models) and by explicit inclusion in agent-based models. If such precedence

relationships are important and wide-spread in a project, the complexity of agent-based models

may not exceed the multi-staged differential equation ones.

Sensitivity analysis offers additional insights on the extent of applicability and similarity of

different formulations. In absence of defects or with very poor testing, rework cycle is largely

removed and all models behave in very similar patterns. Moreover, very effective rework process

(high error correction rate) reduces the impact of rework cycle and the differences across models.

As we increase the defect rate and testing precision, and reduce rework effectiveness, the rework

cycle is strengthened, and potential for divergence of the model behaviors increase. The simplest

model, M1, is often the most apart from the more realistic M4 model. This is not surprising given

that M1 does not include explicit testing process or defects. The difference between M2 and M4

also increase, specially in comparison of their finish times. M3 and M4 remain close in finish

time under different parameter settings, yet a persistent bias is observed in that M3 gives higher

quality estimates for approved work, than M4 does. This is due to perfect mixing assumption of

M3 that counts tasks waiting for rework to include many with no defect, and thus in the next

round of testing accepts them as flawless. The binary conception of errors in M2 is actually

 26

closer to M4 formulation in this case, and thus leads to more precise quality levels in finalized

projects. Note that we have reformulated M2 from the original concept offered by Ford and

Sterman (Ford and Sterman 1998), to make it consistent with the conception of tasks and defects

that allow for multiple defects per task. The original formulation indeed further diverges from

M4. Nevertheless, this observation suggests that neither of M2 and M3 dominates the other for

practical purposes. An open research question is to find a simple model formulation that captures

both the quality and the finish time for a project more precisely than M2 or M3.

The four formulations in this paper provide slightly different opportunities for expansion and

inclusion of alternative feedbacks. M1 can include feedbacks to quality and productivity, as well

as defect discovery rate. M2 has additional flexibility to capture feedbacks to testing quality. M3

allows for different test sizes (testing one or multiple tasks, e.g. unit testing vs. integration

testing) and changes in rework quality. Finally M4 is the most flexible model in terms of

possible feedback and additional effects that it can capture, including precedence relationships,

task priorities, heterogeneity of task size, resource productivity, and testing and rework size,

among others. Benefiting from these flexibilities in M4 however requires more detailed

modeling and coding.

In this research we focused on a central, but narrow, project conception and compared

multiple formulations. We hope these results provide a set of contingency rules of thumb for

selection of appropriate formulations for specific problems. Depending on the shape and amount

of available data, computational and modeling resources at hand, the level of quantitative

precision required, and the client’s main goals, we think all four formulations could be the best

option to be used in a setting, and none is dominated by others. Future research can offer new

formulations that build on this comparative analysis to address the short-comings of models M1,

M2, and M3 without the need to disaggregate to the agent-based level. One can also study the

effect of different precedence relationships and task priorities, as well as feedback effects, on the

comparative performance of these and other formulations. Despite these shortcomings, we hope

this research provides interested scholars with a better map of available formulations and more

appropriate assumptions for modeling project dynamics.

References:

AbdelHamid, T. and S. Madnick (1991). Software project dynamics: An integrated approach.

Englewood Cliffs, NJ, Prentice-Hall.

Cooper, K. G. (1980). "Naval Ship Production: A Claim Settled and a Framework Built."

Interfaces 10(6).

Ford, D. N. and J. D. Sterman (1998). "Dynamic modeling of product development processes."

System Dynamics Review 14(1): 31-68.

Ford, D. N. and J. D. Sterman (2003). "Overcoming the 90% syndrome: Iteration management in

concurrent development projects." Concurrent Engineering-Research and Applications 11(3):

177-186.

Levitt, R. E., J. Thomsen, T. R. Christiansen, J. C. Kunz, Y. Jin and C. Nass (1999). "Simulating

project work processes and organizations: Toward a micro-contingency theory of

organizational design." Management Science 45(11): 1479-1495.

Lyneis, J. M. and D. N. Ford (2007). "System dynamics applied to project management: a

survey, assessment, and directions for future research." System Dynamics Review 23(2-3):

157-189.

 27

Rahmandad, H. (2005). Three essay on modeling dynamic organizational processes. Sloan

School of Management. Cambridge, Massachusetts Institute of Technology. Ph.D.

Rahmandad, H. and J. D. Sterman (2008). "Hetergeneity and network structure in the dynamics

of contagion: Comparing agent-based and differential equation models." Management Science

Forthcoming.

Repenning, N. P. (2000). "A dynamic model of resource allocation in multi-project research and

development systems." System Dynamics Review 16(3): 173-212.

Richardson, G. P. and A. L. Pugh (1981). Introduction to system dynamics modeling with

DYNAMO. Cambridge, Mass., MIT Press.

Sengupta, K. and T. K. Abdelhamid (1993). "Alternative Conceptions of Feedback in Dynamic

Decision Environments - an Experimental Investigation." Management Science 39(4): 411-

428.

Sterman, J. (2000). Business Dynamics: systems thinking and modeling for a complex world.

Irwin, McGraw-Hill.

 28

Appendix 1- Complete Model Formulations

Model 1
Approve Task rate M1 = (1 - Completion Defect Probability M21) * Completion Rate M1

 Units: Task/Month

Available Resources = 5

 Units: dmnl

Completion Rate M1 = MIN (Completion rate constraint M1 , Potential Work Rate

)

 Units: Task/Month

Completion Defect Probability M21 = 1 - EXP (- Defect rate completion M3)

 Units: dmnl

Completion rate constraint M1 = Tasks not completed M1 / Min Time to Do Task

 Units: Task/Month

Cumulative Work Done = INTEG(Rate of Doing Work , 0)

 Units: Task

Defect rate completion M3 = Error Rate Initial Work * Mean Task Size

 Units: dmnl

Initial Tasks to Complete = ELMCOUNT(Task)

 Units: Task

Mean Task Size = 0.2

 Units: Month

Min Time to Do Rework = Mean Task Size

 Units: Month

Min Time to Do Task = Mean Task Size

 Units: Month

Potential Work Rate = Available Resources * Productivity

 Units: Task/Month

Probability of missing a defect = 0.2

 Units: dmnl

Productivity = 1 / (Mean Task Size)

 Units: Task/(Month*Person)

Rate of Doing Work = Rework Generation + Approve Task rate M1

 Units: Task/Month

Rework Discovery M1 = Undiscovered changes M1 / Time to Discover Rework M1

 Units: Task/Month

Rework Generation = Completion Defect Probability M21 * Completion Rate M1

 Units: Task/Month

Tasks approved M1 = INTEG(Approve Task rate M1 , 0)

 Units: Task

Tasks not completed M1 = INTEG(Rework Discovery M1 - Rework Generation - Approve Task

rate M1

 , Initial Tasks to Complete)

 Units: Task

Testing time = 0.1

 Units: Month

 29

TIME STEP = 0.015625

 Units: Month

Time to Discover Rework M1 = Testing time

 Units: Month

Undiscovered changes M1 = INTEG(Rework Gene

Model 2
Approve changes M2 = (Quality Assurance M2 * Probability change required M2

) - Discover internal changes M2

 Units: Task/Month

Approve Task Rate M2 = Quality Assurance M2 * (1 - Discover changes fraction M2

)

 Units: Task/Month

Available Resource = Available Resources

 Units: Person

Available Resources = 5

 Units: dmnl

Ave Dfct in Approved Task M2 = - ln ((1 - Error probability in approved tasks

))

 Units: **undefined**

Change task rate M2 = Feasible Rwrk Rate M2

 Units: Task/Month

ChangeDensity UM2 = ZIDZ (Known changes M2 , Tasks to be changed M2)

 Units: dmnl

Changes approved M2 = INTEG(Approve changes M2 , 0)

 Units: Task

Completion Defect Probability M21 = 1 - EXP (- Defect rate completion M3)

 Units: dmnl

Completion rate M2 = Feasible New Dev Rate M2

 Units: Task/Month

Correct changes M2 = XIDZ (Known changes M2 , Tasks to be changed M2 , 0)

 * Defect Correction Probability M2 * Change task rate M2

 Units: Task/Month

Defect Correction Probability = 1 - EXP (- Defect Correction Rate M3)

 Units: dmnl

Defect Correction Probability M2 = Defect Correction Probability * EXP (-

 Defect Rate in Rwrk M3)

 Units: dmnl

Defect rate completion M3 = Error Rate Initial Work * Mean Task Size

 Units: dmnl

Defect Rate in Rwrk M3 = Error Rate Rework * Mean Task Size

 Units: dmnl

Dev Resources to New Dev M2 = Dsrd New Dev Resources M2 * MIN (1, ZIDZ (Available

Resource

 , Total Desired Resources M2)) * (1 - SW Project Finished M2

 30

)

 Units: Person

Dev Resources to Rework M2 = Dsrd Rwrk Resources M2 * MIN (1, ZIDZ (Available

Resource

 , Total Desired Resources M2)) * (1 - SW Project Finished M2

)

 Units: Person

Discover change rate M2 = Discover changes fraction M2 * Quality Assurance M2

 Units: Task/Month

Discover changes fraction M2 = 1 - EXP (ln (1 - Probability change required M2

) * (1 - Probability of missing a defect))

 Units: dmnl

Discover internal changes M2 = Discover change rate M2

 Units: Task/Month

Dsrd New Dev Resources M2 = Tasks not completed M2 / Min Time to Do Task /

 Productivity

 Units: Person

Dsrd Rwrk Resources M2 = Tasks to be changed M2 / Min Time to Do Rework / Productivity

 Units: Person

Error probability in approved tasks = ZIDZ (Changes approved M2 , Tasks approved M2

)

 Units: dmnl

Feasible New Dev Rate M2 = Dev Resources to New Dev M2 * Productivity

 Units: Task/Month

Feasible Rwrk Rate M2 = Dev Resources to Rework M2 * Productivity

 Units: Task/Month

Generate changes during change activity M2 = (XIDZ (Known changes M2 , Tasks to be

changed M2

 , 0)) * (1 - Defect Correction Probability M2) * Change task rate M2

 Units: Task/Month

Generate changes during completion activity M2 = (Completion rate M2 * Completion Defect

Probability M21

)

 Units: Task/Month

Initial Tasks to Complete = ELMCOUNT(Task)

 Units: Task

Initial Tasks to Complete M2 = 10000

 Units: Task

Known changes M2 = INTEG(Discover internal changes M2 - Correct changes M2

 - Generate changes during change activity M2 , 0)

 Units: Task

Mean Task Size = 0.2

 Units: Month

 31

Min Time to Do Rework = Mean Task Size

 Units: Month

Min Time to Do Task = Mean Task Size

 Units: Month

Probability change required M2 = ZIDZ (Undiscovered changes M2 , Tasks completed but not

checked M2

)

 Units: dmnl

Probability of downstream phase discovering changes = 0.2

 Units: dmnl

Probability of missing a defect = 0.2

 Units: dmnl

Productivity = 1 / (Mean Task Size)

 Units: Task/(Month*Person)

Quality Assurance M2 = Tasks completed but not checked M2 / Testing time

 Units: Task/Month

Quality Assurance rate in downstream phase = 1

 Units: dmnl

Release package size = 0.2

 Units: dmnl

SW Project Finished M2 = if then else (Initial Tasks to Complete M2 * Threshold Finish Task

 < Tasks approved M2 , 1, 0)

 Units: dmnl

Tasks approved M2 = INTEG(Approve Task Rate M2 , 0)

 Units: Task

Tasks completed but not checked M2 = INTEG(Change task rate M2 + Completion rate M2

 - Discover change rate M2 - Approve Task Rate M2 , 0)

 Units: Task

Tasks not completed M2 = INTEG(- Completion rate M2 , Initial Tasks to Complete

)

 Units: Task

Tasks to be changed M2 = INTEG(Discover change rate M2 - Change task rate M2

 , 0)

 Units: Task

Tasks to be changed M3 = INTEG(Discovery Change rate M3 - Change Task Rate M3

 , 0)

 Units: Task

Testing time = 0.1

 Units: Month

Total Desired Resources M2 = Dsrd New Dev Resources M2 + Dsrd Rwrk Resources M2

 Units: Person

Threshold Finish Task = 0.99

 Units: dmnl

Undiscovered changes M2 = INTEG(Generate changes during change activity M2

 + Generate changes during completion activity M2 - Approve changes M2

 32

 - Discover internal changes M2 , 0)

 Units: Task

Model 3

Approve Task rate M3 = Task Passing Test UM3 - Discovery Change rate M3

 Units: Task/Month

Approved Changes M3 = (Tstd Task Accptd UM3 * Dfct Dnsty in Accepted Task UM3

 + (Approve Task rate M3 - Tstd Task Accptd UM3) * Probability change required M3

)

 Units: Task/Month

Available Resource = Available Resources

 Units: Person

Available Resources = 5

 Units: dmnl

Ave Dfct in Approved Task M3 = ZIDZ (Changes Approved M3 , Tasks Approved M3

)

 Units: **undefined**

Ave Dfct in Rwrk Task M3 = ZIDZ (Known Changes M3 , Tasks to be changed M3

)

 Units: dmnl

Ave Dfct in Tstd Task UM3 = Task Covered by Test UM3 * Probability change required M3

 Units: dmnl

Change Task Rate M3 = Feasible Rwrk Rate M3

 Units: Task/Month

Changes Approved M3 = INTEG(Approved Changes M3 , 0)

 Units: Task

completion Rate M3 = Feasible New Dev Rate M3

 Units: Task/Month

Correct changes M3 = Change Task Rate M3 * Defect Fix Rate M3

 Units: Task/Month

Defect Correction Probability = 1 - EXP (- Defect Correction Rate M3)

 Units: dmnl

Defect Correction Rate = 4

 Units: Error/Month

Defect Correction Rate M3 = Defect Correction Rate * Mean Task Size

 Units: Error/Month

Defect Fix Rate M3 = MIN (Ave Dfct in Rwrk Task M3 , Defect Correction Rate M3

)

 Units: dmnl

Defect rate completion M3 = Error Rate Initial Work * Mean Task Size

 Units: dmnl

Defect Rate in Rwrk M3 = Error Rate Rework * Mean Task Size

 Units: dmnl

Defects from Dev UM3 = completion Rate M3 * Defect rate completion M3

 33

 Units: Task/Month

Dev Resources to New Dev M3 = Dsrd New Dev Resources M3 * MIN (1, ZIDZ (Available

Resource

 , Total Desired Resources M3)) * (1 - SW Project Finished

)

 Units: Person

Dev Resources to Rework M3 = Dsrd Rwrk Resources M3 * MIN (1, ZIDZ (Available

Resource

 , Total Desired Resources M3)) * (1 - SW Project Finished

)

 Units: Person

Dfct Dnsty in Accepted Task UM3 = EXP (- (1 - Probability of missing a defect

) * Ave Dfct in Tstd Task UM3) * Ave Dfct in Tstd Task UM3

 * Probability of missing a defect

 Units: dmnl

Dfct from Rwrk UM3 = Change Task Rate M3 * Defect Rate in Rwrk M3

 Units: Task/Month

Discover changes Fraction M3 = 1 - EXP (- Ave Dfct in Tstd Task UM3 * (1

 - Probability of missing a defect))

 Units: dmnl

Discover internal changes M3 = Task Passing Test UM3 * Probability change required M3

 - Approved Changes M3

 Units: Task/Month

Discovery Change rate M3 = Quality Assurance M3 * Discover changes Fraction M3

 Units: Task/Month

Dsrd New Dev Resources M3 = Task not completed M3 / Min Time to Do Task / Productivity

 Units: Person

Dsrd Rwrk Resources M3 = Tasks to be changed M3 / Min Time to Do Rework / Productivity

 Units: Person

Error Rate Initial Work = 2

 Units: Error/Month

Error Rate Rework = 2

 Units: Error/Month

Feasible New Dev Rate M3 = Dev Resources to New Dev M3 * Productivity

 Units: Task/Month

Feasible Rwrk Rate M3 = Dev Resources to Rework M3 * Productivity

 Units: Task/Month

Frac Total Tst Feasible UM3 = Tl Eff Available Task on Test (Fraction Task Finished UM3

)

 Units: dmnl

Fraction Task Accepted UM3 = ZIDZ (Tasks Approved M3 , Total Task)

 Units: dmnl

 34

Fraction Task Finished UM3 = ZIDZ (Tasks Approved M3 + Tasks completed but not checked

M3

 , Total Task)

 Units: dmnl

Frctn Tst Running UM3 = ZIDZ (Test Rate UM3 , Tests to Run M3)

 Units: 1/Month

Generate changes during change activity M3 = Change Task Rate M3 * (Ave Dfct in Rwrk Task

M3

 - Defect Fix Rate M3)

 Units: Task/Month

Generate changes during completion activity M3 = Defects from Dev UM3 + Dfct from Rwrk

UM3

 Units: Task/Month

Initial Tasks to Complete = ELMCOUNT(Task)

 Units: Task

Known Changes M3 = INTEG(Discover internal changes M3 - Generate changes during change

activity M3

 - Correct changes M3 , 0)

 Units: Task

Mean Task Size = 0.2

 Units: Month

Min Time to Do Rework = Mean Task Size

 Units: Month

Min Time to Do Task = Mean Task Size

 Units: Month

Probability of missing a defect = 0.2

 Units: dmnl

Probability change required M3 = ZIDZ (Undiscovered changes M3 , Tasks completed but not

checked M3

)

 Units: dmnl

Productivity = 1 / (Mean Task Size)

 Units: Task/(Month*Person)

Quality Assurance M3 = Task Covered by Test UM3 * Test Rate UM3

 Units: Task/Month

Retest Required UM3 = Test Rate UM3 * Discover changes Fraction M3

 Units: Task/Month

SW Project Finished = if then else (Initial Tasks to Complete * Threshold Finish Task

 < Tasks Approved M3 , 1, 0)

 Units: dmnl

Task Covered by Test UM3 = 1

 Units: dmnl

Task not completed M3 = INTEG(- completion Rate M3 , Initial Tasks to Complete

)

 Units: Task

 35

Task Passing Test UM3 = Totl Task to Tst UM3 * Frctn Tst Running UM3

 Units: Task/Month

Tasks Approved M3 = INTEG(Approve Task rate M3 , 0)

 Units: Task

Tasks completed but not checked M3 = INTEG(completion Rate M3 + Change Task Rate M3

 - Approve Task rate M3 - Discovery Change rate M3 , 0)

 Units: Task

Tasks to be changed M3 = INTEG(Discovery Change rate M3 - Change Task Rate M3

 , 0)

 Units: Task

Test Feasible UM3 = Max (0, Frac Total Tst Feasible UM3 * Total Tests to Cover UM3

 - (Total Tests to Cover UM3 - Tests to Run M3))

 Units: Task

Test Ran UM3 = INTEG(Test Rate UM3 - Retest Required UM3 , 0)

 Units: Task

Test Rate UM3 = TestRateFeasible UM3

 Units: Task/Month

Testing time = 0.1

 Units: Month

TestRateFeasible UM3 = Test Feasible UM3 / Testing time

 Units: Task/Month

Tests to Run M3 = INTEG(Retest Required UM3 - Test Rate UM3 , Initial Tasks to Complete

 / Task Covered by Test UM3)

 Units: Task

TIME STEP = 0.015625

 Units: Month

Time to Replan = 1

 Units: Month

Tl Eff Available Task on Test ([(0,0)-(10,10)],(0,0),(1,1))

 Units: dmnl

Total Desired Resources M3 = Dsrd New Dev Resources M3 + Dsrd Rwrk Resources M3

 Units: Person

Total Development = completion Rate M3 + Change Task Rate M3

 Units: Task/Month

Total Task = Tasks Approved M3 + Totl Task to Tst UM3

 Units: Task

Total Tests to Cover UM3 = Test Ran UM3 + Tests to Run M3

 Units: Task

Totl Task to Tst UM3 = Tasks completed but not checked M3 + Task not completed M3

 + Tasks to be changed M3

 Units: Task

Threshold Finish Task = 0.99

 Units: dmnl

Tstd Task Accptd UM3 = Task Covered by Test UM3 * (1 - Discover changes Fraction M3

) * Test Rate UM3

 36

 Units: Task/Month

Undiscovered changes M3 = INTEG(Generate changes during completion activity M3

 + Generate changes during change activity M3 - Approved Changes M3

 - Discover internal changes M3 , 0)

 Units: Task

Model 4

Given the complexity of presenting model 4 in equations similar to Models 1-3, we only provide

it as part of the online supplementary material for the paper.

