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Abstract:  
This study uses parametric search to meet multiple goals in the behavior of dynamic 
systems. Parameters are searched using genetic algorithm. Main aim of this study is to 
discuss how multi-objective parameter search gives essential information about the 
system. A nonlinear electric circuit is one of the two dynamic models in this paper used 
for parameter optimization. The electric circuit model shows oscillatory behavior. A 
fitness function which evaluates period and amplitude and compares it with the desired 
oscillatory pattern is proposed. Genetic algorithm with the proposed fitness function 
gives satisfactory results. It is shown that time horizon for a simulation based 
optimization can be crucial. The second model is a generic System Dynamics model, the 
stock management problem with second order supply line. The policy parameters are 
weight of stock adjustment and supply line adjustment. A fitness function that evaluates 
the settling time, overshoot, and steady state error is proposed. The search results 
provide some insight on both the fitness function and the system. The obtained results are 
satisfactory and they show that the response time of the system can be decreased by small 
overshoot. The paper is a step towards simulation based parameter search becoming an 
essential support toolbox for model building and policy design in System Dynamics.  

 
 

1) Introduction 
 Policy design or improvement of the system behavior is the utmost role of a 
System Dynamics (SD) model. Despite the growing interest in SD, the field has not 
succeeded to provide strong and reliable support toolbox to aid the modeler in policy 
design process. The need for the integration of new optimization tools to SD in model 
identification, behavior analysis, sensitivity analysis and policy design, has been pointed 
by several authors (Richardson 1999; Coyle 2000; Yucel and Barlas 2007).  
 One of the most widely used approaches in policy design is the so-called 
traditional approach. Traditional approach to policy design is usually an informal process 
where the model builder or an expert who has an understanding of the system’s behavior 
applies parametric or structural changes to the system on a trial-and-error basis (Coyle 
1977).  The traditional approach is bounded by the model builder’s or expert’s intuitive 
ability to come up with acceptable and good enough policy alternatives. Though the 
traditional approach could not be abandoned, several studies have been proposed by SD 
researchers, which emphasize optimization methods to aid the model builder in 
generating acceptable policies efficiently. Some of these methods applied modal control 
theory methods (Mohapatra and Sharma 1985; Özveren and Sterman 1989) and others 
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made use of optimal control theory (Burns and Malone 1974; Keloharju 1982; Coyle 
1985). Optimal control theory methods often use heuristics to optimize policy parameters 
according to a certain objective function. In this sense, they can also be regarded as 
simulation based optimization methods. Other applications of similar methods to SD 
models, which make use of simulation based algorithmic search, have followed the early 
applications. Wolstenholme and Al-Alusi (1987) make use of DYSMOD package to 
optimize the strategy of an army in a defense model. Dangerfield and Roberts (1999) use 
hill-climbing search algorithm to fit the model to AIDS data to obtain the distribution of 
incubation period. Graham and Ariza (2003) present a real world consulting application 
of the policy design by parameter optimization using simulate annealing. One such 
algorithm, which has prospect in obtaining desired results efficiently and effectively, is 
Genetic Algorithm (GA). There are few studies in the SD literature that have also applied 
GA in policy design. (Grossman 2002; McSharry 2004; Yücel and Barlas 2007; Duggan 
2007)  
 One of the main reasons why such optimization methods are not well established 
in the literature is the difficulty to define a good objective function. Generally, the 
simulation based optimization applications to SD have been done via maximizing or 
minimizing the end value of a single parameter or a set of parameters in the system. 
(Wolstenholme and Al-Alusi 1987; Miller 1998; Grossmann 2002; McSharry 2004; 
Duggan 2007) Our study uses parameter search to obtain multiple goals in the behavior 
of dynamic systems. Parameters are searched using GA. This study shows that parameter 
optimization can cast doubt on the objective function which could be used as fruitful 
source of information to either obtain a better objective function or to gain insight about 
the system. One of the main aims of this study is to show that multi-objective parameter 
search according to a performance index can yield essential information about the 
system.  
 In the next section the GA applied will be explained. Section 3 will explain the 
application of the parameter search to nonlinear electric circuit where the definition of 
the objective function and results will be given. After these sections, the search will be 
applied to the generic Stock Management Model with second-order supply line. 
Parameter search will be applied with different versions of performance index to show 
that the parameter search can provide valuable knowledge about the system during the 
policy design process. In this final section before conclusion, there will be further 
analysis on the Stock Management Model. 
 
2) Genetic Algorithm (GA) 
 The GA, as the name implies, mimic the biological evolution process to find the 
‘fittest’ set of parameters. This application of biological process, named as GA was first 
introduced by John Holland in 1975 (Holland, 1975). GA searches the solution space in 
multiple and random directions. GA is observed to be an effective algorithm for highly 
nonlinear solution spaces since it is not typically trapped in local optima. Below is a 
pseudo-code for a general GA algorithm.  
choose initial population 
 evaluate each individual's fitness 
 Scale every individual according to their fitness 
 repeat 
        select individuals based on their scaled fitness values 
        mate pairs at random 
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          apply crossover operator with certain probability 
          apply mutation operator with certain probability 
         evaluate each individual's fitness 
until terminating condition (e.g. until at least one individual has  
          the desired fitness or enough generations have passed) 

 As the pseudo-code implies each of these steps could be done with various 
different operators, functions, or values. GAs have many options which provide high 
flexibility in coming up with an appropriate algorithm for the search space. The reader 
may refer to (Goldberg 1989) for a detailed description on GAs. For our study, we utilized 
the “Genetic Algorithm and Direct Search Toolbox” of MATLAB®. 
 
The specifications of the GA 
 The initial population is chosen randomly. The population number is set to 50. 
Each individual has p genes where p is the number of policy parameters. The fitness 
values of individuals are scaled proportionally. The individuals for candidate parents are 
chosen by roulette wheel. In roulette wheel selection, each of the individuals is assigned a 
share at the roulette wheel proportional with its fitness value. Then the individuals are 
selected randomly with the individuals with higher share having a greater chance to carry 
their genetic information to the next generation. For the minimization of the fitness 
function, the lower the fitness value of the individual, the greater is its share on the 
wheel. The best individual is always carried to the next generation without any alteration. 
After the selection, the 70% of the next generation are created using single point 
crossover and the rest of the next generation is created using mutation. Each gene of a 
parent has a 0.05 probability of going through mutation. The single point crossover 
chooses a random integer n between 1 and the number of policy parameters. It takes the 
values of 1 to n from the first parent and n+1 to the number of policy parameters from the 
second parent to form the child. The mutation operator selects each gene of an individual 
and replaces it by a uniform random number with probability 0.05. The terminating 
condition is a fixed number of generations. It is chosen as 200. The fitness function for 
each model is different and will be explained with the corresponding models.  
 
3) Application to Nonlinear Electric Circuit 
 
The Model 
 The equations of the model are as shown below where I is the current and V is 
the voltage of the RLC circuit connected series.  
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Figure 1: Stock-Flow diagram for the electric circuit model 

 
Figure 2: Behavior of the voltage with C = 2, L = 2.  Initially I=0, V=1. 
  
 The search parameters are capacity (C) and inductance (L) values. The system 
shows constant oscillatory behavior.  
 
Fitness Function for the Electric Circuit Model 
 The desired behavior is chosen as a cosine wave with certain period and 
amplitude for the voltage. The fitness function calculates the average period, and the 
amplitude. To obtain average period, first the times where oscillation reaches maximum 
values throughout the simulation time are marked (t1, t2, …, tn). Then the spotted times 
are subtracted consecutively starting from tn to obtain periods. The initial period where 
the system starts from one at time zero to t1 is not calculated to omit transitory behavior. 
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 Finally the average period is calculated from these n-1 periods. To calculate the 
amplitude, max and min values of the voltage is subtracted.  The calculated period and 
amplitude values are compared with the target period and amplitude of the cosine.  
Penalty for the period and amplitude difference is equal which means both goals are 
given equal importance. The desired cosine function is cos(�/10) which has a period of 
20 and oscillates between of -1 and 1. Note that this fitness function could easily be 
applied to any model which has potential to show constant oscillation where the desired 
behavior is oscillatory. 
 
Results 
 The parameter boundaries are given to be between 0.001 and 5 for both capacity 
and inductance. Initially the simulation time is set to be 100. The best L and C values and 
their fitness values obtained after 200 generations by the algorithm for three runs of the 
algorithm show that the algorithm generally finds near optimum solutions. Since the ideal 
optimum value can be zero. Additionally, the behaviors of the best sets of parameter 
values show that the fitness function is well defined.  
 
Table 1: Best policy parameters and their fitness values, time horizon 100 
 

Best three individuals 1 2 3 

Fitness Value  0.0114 0.0044 0.2449 

L 2.187381755 2.182040847 2.580582881 

C 3.860666912 3.875191806 3.423580426 
 

 
Figure 2: Runs of three best parameter sets, time horizon 100 
 
 In these three runs the simulation time was set to be 100 (see Figure 2). When the 
simulation time is set to 110, the fitness values of the best individuals increase (see 
Figure 3 and Table 2). This increase is due to the fact that the period is 20 and when t1, t2, 
…, tn are marked tn is generally equal to 100 where the time the real maximum value is 
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reached could be greater than 100. Hence, the average period calculated is affected by the 
run time. 
 
Table 2: The same best policy parameters in table 1 and their fitness values with 110 as 
the simulation time 
  

Best three individuals 1 2 3 
Fitness Value  0.1555 0.2505 0.3559 

L 2.187381755 2.182040847 2.580582881 
C 3.860666912 3.875191806 3.423580426 

 

 
Figure 3: Runs of three best parameter sets, time horizon 110 
 
 When the algorithm is again run with simulation time set to 110, slightly better 
behaviors are observed (see Figure 4 and Table 3). This shows that simulation time is 
also a parameter that needs to be carefully chosen to avoid undesirable results. 
 
Table 3:  New best policy parameters and their fitness values, time horizon 110 
 

Best three individuals  1 2 3 

Fitness Value  0.0601 0.02866 0.1502 

L 2.249054747 2.186929453 2.098249255 

C 3.734942323 3.794276917 3.88143746 
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Figure 4: Runs of three new best parameter sets, time horizon 110 

 
Figure 5: Comparison of the best individuals, individual 1 from table 1, and individual 2 
from table 3 
 
 Although the time horizon affects the performance of the algorithm, the best set of 
parameters obtained by the algorithm run with 100unit time horizon, and the best set of 
parameters obtained by the algorithm run with 110unit time horizon do not have 
significant difference (see Figure 5). The best individual from the 100unit time horizon 
runs has a slightly larger period than the cosine function. In general, the algorithm finds 
good parameter values quickly. 
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4) Application to Stock Management Model with Second Order Supply Line 
 
The Model 
 
 The model is a generic System Dynamics model. It is known that ignoring Supply 
Line may cause the Stock to produce undesired behaviors in Stock Management Models 
(Sterman 2000). When Weight of Stock (WS) and Weight of Supply Line (WSL) are both 
equal to one, the Stock cannot oscillate (Ya�arcan 2003). The general aim in the model is 
for the Stock to reach the desired level fast and stably. The response time of the system 
decreases when the Stock Adjustment Time (TSA) is decreased. But this effect is not 
linear and after a point decreasing TSA does not cause the response time to quicken. 
Furthermore, very small TSA may cause stability problems (Ya�arcan 2003). The general 
conception in the literature for Stock Management is to decrease TSA till the system 
responds fast enough and set WS and WSL to one (Ya�arcan 2003).  
 
 In the model used, Loss Flow is constant and is exactly known by the decision 
maker. The specifications of the model are given in Appendix. The ordering decision 
includes the Supply Line Adjustment (SLA) and Stock Adjustment (SA) structures.  

 
 
 
  

 For our analysis, initial values of all stocks are four and the desired stock is set to 
five. Acquisition delay (TAD) and TSA are both equal to 4. The system is at equilibrium 
when the desired stock is four. We perturb the system at time zero with a sudden change 
at desired level. 
  

 
Figure 6: Stock-Flow diagram for Stock Management Model 
 
Fitness Function for the Stock Management Model 
  
 For this model, we have chosen WS and WSL as the search parameters for the 
algorithm. Generally, the desired behavior in any stock management model is for the 
stock to reach desired level quickly, without oscillation. In the fitness function, these 
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were defined as settling time (ts), overshoot, and steady state error (ess). Settling time is 
defined as the time the stock level goes into a band and never goes out. The band is an 
area defined between two points which are obtained by adding and subtracting a given 
percentage (p) of the settled level (Ss) from the Ss. Hence, the middle point is the Ss. The 
ts is divided by the time horizon to normalize its effect on fitness function to a number 
between zero and one. If the system fails to stabilize by the time horizon, the time 
horizon is taken as the ts. Overshoot is defined by subtracting Ss from the maximum level 
the Stock reaches. Steady state error is simply the difference between the last value 
obtained at the end of time horizon and desired level (S*). The fitness value returned by 
the function is defined as weighted sum of ts, overshoot, and ess. These weights define the 
importance of each variable for the policy maker. 
 
Results 
 The time horizon for the search is set to 100. The parameters, WS and WSL, are set 
to have boundaries between zero and one since setting a limit that is higher than one for 
both of them would also mean decreasing TSA. The percentage p of the band is set to 1%, 
meaning that the band is between 1.01* Ss and 0.99* Ss. Initially, the weights of ts (Pts), 
overshoot (Po), and ess (Pess) were all set to one. The algorithm is again run three times. 
The results of the algorithm do not give the value one for both WS and WSL. In all cases, 
while WS is very close to one, WSL is always smaller than WS. This outcome shows that 
improvement in settling time is greater than the increase in overshoot considering Pts, Po, 
and Pess.  
 
Table 4: Summary of best policy parameters, their fitness values, fitness values of (WS, 

WSL) = (1, 1) 
 

 
Best three 
individuals 1 2 3 General policy 

Fitness 
Value  0.1444 0.1452 0.1443 0.17427 

(SA, SLA) 0.9963       0.7237 0.982964    0.68291       0.99586   0.7103 1       1 

(Pts, Po, 
Pess)= 
(1,1,1) 

 
ts = 

13.55 
O= 

0.0089 
ess = 

0 
ts = 

13.325 O= 0.012 
ess = 

0 ts = 13.4 O= 0.01 
ess = 

0 
ts = 

17.427 O= 0 
ess = 

0 

     
Fitness 
Value  0.15901 0.160242 0.158869 0.17427 

(SA, SLA) 0.9946         0.8552 0.976355625        0.83538       0.9882   0.851 1       1 

(Pts, Po, 
Pess)= 
(10,1,1) 

 
ts = 

15.36 
O= 

0.000538 
ess = 

0 
ts = 

15.497 
O = 

5.274*10-4 
ess = 

0 
ts = 

15.408 
O= 

0.000479 
ess = 

0 
ts = 

17.427 O= 0 
ess = 

0 

     
Fitness 
Value  0.1628 0.1659 0.1653 0.17427 

(SA, SLA) 0.9999          0.911522   0.9891   0.92157 0.975562         0.894278221 1       1 

(Pts, Po, 
Pess)= 

(100,1,1) 

 
ts = 

16.082 
O= 

0.00002 
ess = 

0 
ts = 

16.5846 
O = 

3.53x10-7 
ess = 

0 
ts = 

16.4837 
O =  

4.75x10-7 
ess = 

0 
ts = 

17.427 O= 0 
ess = 

0 
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Figure 7: Comparison of best set of parameters (run 3) and (WS, WSL) = (1, 1) with (Pts, 
Po, Pess)= (1,1,1). 
 
 Secondly, we consider a fitness function where the decision maker penalizes the 
overshoot ten times more than ts, and ess, meaning (Pts, Po, Pess)=(10, 1, 1). The results 
show that although the ratio between WS, and WSL decreased, it still does not equal to 
one. It can be speculated that as Pts is increased the optimal ratio of WS, and WSL 

approaches to one. However, when Pts is increased too much the simulation errors 
become important since a slight overshoot affects the fitness function when Pts is high. If 
the aim is to find the set of parameters which completely eliminate overshoot, the band 
for the settling time should also be made smaller so that even small overshoot values 
cause the system to trespass the boundaries of the band more than once. In this case, the 
overshoot also affects the settling time. Even then the Pts should also be considerably 
increased which can cause numeric errors. Table 4 also gives the results of the algorithm 
run with fitness weights (Pts, Po, Pess)=(100, 1, 1). The results coincide with the analysis 
made for the previous case. 

 
Figure 8: Comparison of best set of parameters (run 3) and (WS, WSL) = (1, 1) with (Pts, 
Po, Pess)= (10,1,1) 
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Further Analysis of the Stock Management Model 
 The parameter search indicates that it is possible to obtain improvements in 
settling time with allowing very small overshoot. In this section, the trade off between 
overshoot and settling time is analyzed. The effect of TSA on the system is included in the 
analysis.  
 
Table 5: Overshoot and settling time with different TSA values. 

WS WSL TSA ts Overshoot 

1 1 4 17.43 0 

1 1 4/3 11.3 0 

1 1 1/2 10.1 0 

1 1 1/10 9.94 0 

 
Figure 9: Behavior of Stock under the parameter values given on Table 5 
 
Table 6: Overshoot and settling time with different TSA values. 
 

WS WSL TSA ts Overshoot 
0.75 0.5 4 16.1 0.0043 

0.75 0.5 2 10.09 0.0365 

0.75 0.5 1 11.42 0.0523 

0.75 0.5 2/3 6.66 0.0479 

0.75 0.5 1/4 5.88 0.0256 

0.75 0.5 1/10 5.75 0.0164 
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Figure 10: Behavior of Stock under the parameter values given on Table 6. 
 
 The analysis shows that the increase in WS/WSL ratio causes quicker responses but 
higher overshoot. However, when the overshoot or the ratio is too high, the stock passes 
the boundary twice rather than once. In our case, when the overshoot is greater than 0.05, 
crosses the band more than once. Hence, the settling time is longer (see Table 7).   
 
Table 7: Overshoot and settling time with different TSA values. 
 

WS WSL TSA ts Overshoot 
1 0.5 4 11.4 0.0492 
1 0.5 2 14.93 0.1139 
1 0.5 1 11.6 0.139 
1 0.5 2/3 10.27 0.1317 
1 0.5 1/4 8.16 0.0855 
1 0.5 1/10 7.14 0.0587 
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Figure 11: Behavior of Stock under the parameter values given on Table 7 
 
 The results indicate that, decreasing TSA or increasing the weights WS, and WSL 
over one cause the system to respond faster (see Figures 9, 10, and 11). In cases with 
overshoot, decrease of TSA while keeping the weights same causes overshoot to increase 
until a certain value is reached. From that point on, the decrease of TSA causes overshoot 
to decrease together with settling time (see Figures 10, and 11).  
 
Table 8: Change in overshoot and ts with altering WS/WSL 
 

WS WSL ts Overshoot Change in ts w.r.t Ws, WsL=(1,1) 
1 1 17.43 0%  
1 0.8 14.46 0.29% -17.04% 
1 0.6666 12.95 1.65% -25.70% 
1 0.5 11.4 4.92% -34.60% 

 
 Table 8 displays that, without decreasing TSA substantial increase in settling time 
can be achieved with allowing very small overshoot by adjusting WS, and WSL.  
 
5) Conclusion 
 Policy parameter search is applied to an electric circuit model and a generic Stock 
Management model by using Genetic Algorithms. The search is simulation based. The 
paper points to the critical role of time horizon in simulation based search. The dynamic 
models are assumed to have multiple objectives. This paper emphasizes the weights of 
different goals on the objective function and shows that results may vary with respect to 
these weights. The algorithm simulates the models and evaluates the fitness function 
10000 times in less than five minutes and obtains satisfactory ‘optimal’ results.  
 The second part of the paper concentrates on the policy parameters of the generic 
Stock Management model. This part is a direct result of information obtained from 
parameter search and comparison of this information with existing suggested policies. 
The results show that there can be better policies in terms of decreasing settling time for a 
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small cost of overshoot. Another result shows that decreasing stock adjustment time may 
cause overshoot to increase in certain cases.  
 A natural extension of this paper is to test the genetic algorithm on several other 
types of dynamic models and suitable, fitness functions. It may be necessary to carry out 
further analysis on these models, similar to the Stock Management model. The ultimate 
aim is to build confidence in the search algorithm, and use it as a support tool to gain 
insight about the system during model building, sensitivity and policy analysis. 
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APPENDIX 
Model Equations from STELLA® 
 
Stock(t) = Stock(t - dt) + (Acquisition_Flow_2 - Loss_Flow) * dt 
INIT Stock = 4 
Acquisition_Flow_2 = Supply_Line_2*Order_of_Supply_Line/(Acquisition_delay_time) 
Loss_Flow = 2 
 
Supply_Line_1(t) = Supply_Line_1(t - dt) + (Control_Flow - Acquisition_Flow_1) * dt 
INIT Supply_Line_1 = 4 
Control_Flow = Loss_Flow+1*Stock_Adjustment+1*Supply_Line_Adjustment 
Acquisition_Flow_1 = Order_of_Supply_Line*Supply_Line_1/(Acquisition_delay_time) 
 
Supply_Line_2(t) = Supply_Line_2(t - dt) + (Acquisition_Flow_1 - Acquisition_Flow_2) * dt 
INIT Supply_Line_2 = 4 
Acquisition_Flow_1 = Order_of_Supply_Line*Supply_Line_1/(Acquisition_delay_time) 
Acquisition_Flow_2 = Supply_Line_2*Order_of_Supply_Line/(Acquisition_delay_time) 
 
Acquisition_delay_time = 4 
Desired_Stock = 5 
Desired_Supply_Line = Loss_Flow*Acquisition_delay_time 
Order_of_Supply_Line = 2 
Stock_Adjustment = (Desired_Stock-Stock)/Stock_Adjustment_time 
Stock_Adjustment_time = 4 
Supply_Line = Supply_Line_1+Supply_Line_2 
Supply_Line_Adjustment=Weight_of_Supply_Line*(Desired_Supply_Line-
Supply_Line)/Stock_Adjustment_time 
Weight_of_Supply_Line = 1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


