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ABSTRACT: 
 
Despite its success and growing practitioner base, System Dynamics (SD) still lacks a 
strong and rich enough support toolbox, i.e. a set of formal mathematical tools that can 
support the modeler/practitioner in various stages including model identification, 
calibration, behavior analysis, policy design and sensitivity analysis. The study 
presented in this paper is an attempt towards developing such a support tool that can be 
used for pattern-based parameter search, which may be utilized in model identification, 
validation and policy analysis stages. The tool mainly incorporates a 2D pattern 
recognition algorithm and an optimization heuristic in order to search values for 
selected model parameters that yield a model behavior similar to the desired one in 
terms of pattern characteristics. The proposed tool is implemented, and a series of test 
experiments are conducted on three sample models in order to reveal the performance of 
it. Based on these experiments, the primary assessment about the proposed method is 
that its performance is quite satisfactory and it stands as a promising automated 
parameter search tool, which can be utilized even in the cases where data series 
representing the desired model behavior is missing.  
 
 



 2

INTRODUCTION: 
Despite its success and growing practitioner base, System Dynamics (SD) still lacks a 
strong and rich enough support toolbox, i.e. a set of formal mathematical tools that can 
support the modeler/practitioner in various stages including model identification, 
calibration, behavior analysis, policy design and sensitivity analysis. In that respect, 
integration of new optimization tools to SD method and software is one of the topics 
listed by several authors as one of the key future challenges of the field (Richardson 
1999; Coyle 2000). 
 
The study presented in this paper is an attempt towards closing the mentioned gap, by 
developing a pattern-based parameter search/optimization method that can be utilized 
in model identification, validation and policy analysis stages. The method mainly 
incorporates a 2D pattern recognition algorithm and an optimization heuristic in order to 
search values for selected model parameters that yield a model behavior similar to the 
desired one in terms of pattern characteristics. 
 
The overview of the paper is as follows; in the following section a brief discussion on 
the application of optimization in the context of SD will be provided. The section 
following that will discuss the pattern emphasis in SD and former research on pattern 
characterization. After these two sections, structure of the pattern-based parameter 
search method will be introduced. Before the conclusion section, results of the tests 
conducted with three different SD models are provided. 
 
OPTIMIZATION IN SYSTEM DYNAMICS: 
In several stages of a SD application, modeler faces the challenge of figuring out values 
of some model parameters in order to achieve a desired objective. Considering the 
number of parameters that can be manipulated in a modest SD model and non-linearity 
of the interactions, this may be a quite time consuming and inefficient search process. 
Researcher’s knowledge about the system structure may provide valuable guidance for 
manual search and generally satisfactory results can be obtained. However, it is also the 
case that such intuitive and limited search strategies may miss parameter combinations 
that are desirable with respect to the concerns of the researcher. Utilizing optimization 
algorithms for these kinds of parameter search is a very promising application in terms 
of providing an automated and more efficient option to the researcher. 
 
Due to the mathematical complexity of SD models, it is not possible to come up with a 
representation of these systems that allows the direct usage of non-linear optimization 
methods (e.g. representation as a constrained optimization problem to be used in 
constrained optimization approaches, or representation in terms of time functions to be 
used in unconstrained optimization heuristics). Hence a plausible way seems to be 
utilizing simulation-based optimization approaches, in which objective function being 
optimized is calculated via simulating the system. 
 
Though being limited in number, there are some studies conducted on simulation-based 
optimization in the SD literature, which aim to combine optimization and SD 
(Keloharju and Wolstenholme 1988; Graham, Morecroft et al. 1992; Miller 1998; 
Dangerfield and Roberts 1999; Coyle 2000). Additionally, some SD simulation 
packages like Vensim®, Powersim® and DYSMOD® incorporate a sort of search 
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heuristic in order to optimize/improve a given objective function based on a given SD 
model (Coyle 2000).  
 
A major reason why optimization is rarely applied in SD studies is directly related to 
one of the main characteristics of SD approach; importance of the dynamics pattern 
observed, rather than a value that a system variable takes at a point in time during 
simulation. However, in the current state of the field established knowledge base that 
can be used to formulate objective functions capturing behavior patterns is very limited. 
The objectives of plausible optimization applications are generally end value of a 
parameter, deviance between two variables or peak value of a variable during the 
simulation. All of the literature mentioned above as examples from SD literature, utilize 
optimization algorithms on objectives in one of these forms. However, these types of 
objectives generally have limited relevance in the SD context. This relevance argument 
may be much clearer on the following example. Assume that desired dynamic pattern 
that is sought via a search heuristic is the one given in Figure 1.  

 
This dynamic pattern (e.g. Base Pattern), known as S-shaped growth or logistics curve, 
can be characterized with an exponential growth phase followed by a goal-seeking 
phase leading to stabilization. Consider the two candidate patterns given in Figure 2 
(e.g. Candidate 1 and Candidate 2). Using a traditional evaluation criteria like 
‘proximity at time 30’ or ‘minimum squared difference’, Candidate 1 will perform much 
more better than Candidate 2. However, it is evident that in terms of pattern 
characteristics, Candidate 1 has nothing to do with S-shaped growth type pattern, so in 
a pattern-based comparison Candidate 2 is clearly superior to Candidate 1. Consider the 
case that researcher is seeking the policy that yields stabilizing growth, Desired Pattern. 
In that case, the optimization criteria should be able to detect the pattern-wise similarity 
between Desired Pattern and Candidate 2.  
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Figure 1: A desirable (objective) pattern that is 

S-shaped 
Figure 2: Two candidate patterns compared to 

the desirable one 
 
 
PATTERN CHARACTERIZATION IN SD: 
Despite the importance of characterizing the dynamic behavior generated by the model, 
research in this field is very limited. At the current state of the field, the only major 
attempt towards an automated and formal behavior characterization is the pattern 
classifying algorithm of Kanar and Barlas, which is a Hidden Markov Model-based 
pattern classifier (Barlas 1996; Kanar 1999; Kanar and Barlas Under revision). This 
pattern classifier is originally designed to be used for structure-oriented model 
validation purposes, in which model generated behavior pattern is evaluated against the 
modeler’s expectation under certain extreme conditions (Barlas 1996). Given an 
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expected dynamics pattern, algorithm is designed to return a likelihood value that 
represents the degree of model generated pattern’s fit to that expectation. A set of basic 
dynamic pattern classes covering the majority of plausible behaviors is embedded in the 
algorithm, and algorithm is trained with time-series data that fit into one of those 
classes.  

 
Despite the success of the algorithm and satisfactory coverage of the predefined pattern 
set, difficulty in integrating the algorithm with existing modeling platforms stands as an 
obstacle for widespread utilization. Recently, Boğ and Barlas developed a stand-alone 
software that can be integrated with Vensim modeling platform (Boğ and Barlas 2005), 
and Soylu (2006) made some improvements in the algorithm and its trained data base. 
 
 
PATTERN-BASED PARAMETER SEARCH APPROACH: 
Overview of the Approach: 
As a first step towards an optimization-based support tool, a pattern-based parameter 
search approach is proposed and implemented. An overview of the implemented 
algorithm is provided in Figure 3. As seen in the figure, implementation stands on three 
pillars. The first one is the user, the modeler. Two basic inputs from the modeler are 
expected. The first input is the model structure, provided on a simulation platform. The 
second input is the parameter set for which values yielding desired model behavior will 
be sought, and the ranges for these parameters. Second pillar is the simulation platform. 
After each run, simulation platform will pass the simulation output in the form of a data 
series to the parameter search module for evaluation with respect to optimization 
objective, and then wait for another set of parameters in order to repeat the cycle. The 
third and final pillar is the pattern-based parameter search/optimization module. This 
module is mainly composed of two components. The first is the component that makes 
a pattern-based evaluation of the data series provided by the simulation platform after 
each simulation run. As a consequence of this evaluation, an output value is produced, 
which is utilized as the objective function value by the optimization component; the 
second part of this platform. After receiving this output value, optimization component 
generates another set of candidate parameter values by utilizing an optimization 
heuristic, and sends this new set to the simulation platform. 
 
In short, the approach proceeds as follows; the optimization module generates candidate 
parameter values, and these values are evaluated based on the degree of fit between the 
desired pattern and the pattern obtained by using these parameter values. In order to do 
so, model is run with a candidate set of values and degree of fit of the resultant behavior 
is calculated by the pattern recognition module. Output from this evaluation is used by 
the optimization module to generate a new set of candidate parameter values. This cycle 
continues until a stopping condition is met (e.g. time constraint, degree of fit, lack of 
improvement in the last n steps, etc.). 
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Figure 3: Overview of the proposed pattern-based parameter search/optimization approach 

 

Specifications of the Implementation: 
As seen in the overview, simulation platform should be capable of communicating with 
an external software or a computer code, or it should be capable of taking inputs from 
and passing outputs to a common platform with the optimization and pattern recognition 
modules. Most of the existing SD application software (e.g. Vensim®, Stella®, 
Powersim®, etc.) at least has the second capability; hence technically it is possible to 
implement this approach using any of these software. However, for the sake of focusing 
purely on the performance of the approach and avoiding complications related to 
communicating different software platforms, we conducted simulations in MATLAB®, 
which is also the platform utilized for optimization and pattern-recognition processes. 
Hence, all sample models to be discussed in the following section are constructed in 
MATLAB® . 
 
Basically, a pattern-recognition algorithm to characterize a 2D pattern (e.g. dynamic 
behavior of the model) is required for the implementation of the approach. In this 
experimental implementation, we decided to utilize the algorithm developed by Barlas 
and Kanar (Barlas 1996). One of the reasons of this choice was the fact that this 
algorithm was already been trained to recognize a set of patterns most relevant to SD 
models. Second reason was the availability of the code and documentation for the 
algorithm., We utilized the recently enhanced and improved version of this algorithm,  
discussed in (Soylu 2006). 
 
Final part of the implementation is the optimization module. A genetic algorithm 
implementation is used for this module. Genetic algorithm is an optimization heuristic, 
developed by John Holland (Goldberg 1989; Coveney and Highfield 1995; Holland 
1995) , that works according to evolutionary principles. Algorithm starts with an initial 
population, in which each individual corresponds to a candidate solution. In each 
iteration, individuals with high fitness values (e.g. a function value attributed to each 
individual based on the given objective) are chosen as parents and new individuals to 
generate the following generation are produced with these parents. In order to do so, 
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two basic mechanisms are used. First is mutation; a new candidate is created changing 
some part of an existing candidate. The second one is crossover; a new candidate is 
created by combining some parts of two existing candidates. In this way the population 
of candidate solutions is expected to evolve into a better state with respect to the 
objective. The algorithm iterates in this way in order to find a solution for the given 
problem. Reader may refer to (Keane 1996), (Raynard-Smith, Osman et al. 1996) and 
(Goldberg 1989) for a more comprehensive description of genetic algorithms. In our 
experimental study we utilized the “Genetic Algorithm and Direct Search Toolbox” of 
MATLAB®. 
 
Specifications of the Genetic Algorithm (GA) Used: 
As it is evident from the general description of the GA given above, there is a set of 
constructs that needs to be specified for an implementation. In this part, specifications 
of our GA implementation are provided. 
 
Coding the candidate solutions, and solution populations: 
Each individual in the population (e.g. each candidate solution) corresponds to a set of 
parameter values in our case. For example, in an optimization problem formulated in 
order to seek values for two model parameters, each individual in the population is a 2D 
vector, each dimension corresponding to one of the parameters. The size of the 
population is set to be 30. One important point about the initialization step is that 
genetic variety shall be maximal in the initial population. This is generally done via 
random initialization of the individuals. A similar approach is utilized in our case. Each 
dimension of the vector is initialized using a uniform distribution and feasible range 
given for the parameter represented by that dimension of the vector. 
 
Fitness function: 
Pattern recognition algorithm is utilized in order to calculate the fitness value of 
individuals in the population. For each parameter value vector in the population, model 
is run and the likelihood of the resultant pattern with respect to desired pattern is 
calculated. The likelihood value returned by the algorithm serves as the fitness value of 
the parameter value vector in the population. 
 
Generating New Individuals: 
In each iteration, 5 individuals (elites) from the existing population are selected in order 
to survive for the next generation. Then individuals are selected with respect to the 
fitness value in order to constitute the parents for the new 25 individuals to be created. 
The selection function used in this implementation is the ‘stochastic uniform selection’ 
option provided in the MATLAB. 20 of the new individuals are generated by the cross-
over operation. During the cross-over operation, two parents are selected. Then each 
dimension of the new individual is determined using the same dimension of the parents. 
For example, in a search with 2 parameters the value of first parameter of the new 
individual is determined using the values for the first parameters of the parents. In our 
case value for the children is determined as a weighted average of the parents’. The 
weight used in this operation is randomly determined in each case and lies in the range 
of [0, 1]. 5 of the new individuals are generated via mutating existing individuals. In 
this operation, an individual in the existing population is chosen and a random number 
is added to each vector entry of that individual. This operation is used in order to 
increase the genetic variety in the population and prevent lock-in to local optima. The 
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random number to be added in each mutation comes from a Normal distribution with 
mean 0 and variance 2. The combination of 5 elite individual, 20 individuals generated 
by cross-over and 5 generated by mutation constitutes the new population for the 
genetic algorithm. These individuals are evaluated with respect to the fitness function 
and the whole cycle for generating new individuals is repeated. 
 
Stopping Criteria: 
Two stopping conditions are utilized in our GA implementation. The first one is the 
number of generations. The algorithm is set to stop after 100 generations. The second 
condition is the number of consecutive generations by which best solution found does 
not improve (e.g. stall generations). This is set as 30 generations in our case. 
 
 
EXPERIMENTS WITH THE IMPLEMENTED ALGORITHM: 
In order to test the performance of the developed algorithm under different conditions, a 
series of experiments are conducted. At this initial stage of research, initial settings of 
the genetic algorithm are preserved throughout experimentation stage (e.g. no 
modification like increasing the population size or changing stopping criteria is done in 
order to compensate the performance change). Mainly three aspects of the 
model/problem are altered during the experimentation stage; 
 

1. Size of the model (e.g. second order linear, third order linear, third order non-
linear) 

2. Number of model parameters altered by optimization algorithm (e.g. 2, 3, 5 and 
7) 

3. Feasible ranges of parameters altered by optimization algorithm (e.g. narrow or 
wide) 

 
A set of experiments are conducted with different combinations of these three aspects. 
In each experiment, the algorithm is used to find a vector of parameter values that yield 
a specific desired pattern. For each specific pattern, 30 trials are performed1. Due to the 
stochastic initialization step of the optimization algorithm, it is possible to obtain 
different results in these 30 trials. Then, all 30 parameter value vectors are tested on the 
model for visual evaluation.  
 
In the following sections, the models used for experimentation are introduced and the 
results are summarized in the corresponding figures. Although all 30 vectors from each 
trial are evaluated visually, a sample set of 4 points are introduced with their 
corresponding model behavior instead of giving all 30 of them. There may be two 
exceptions for this. The first one is the case where algorithm returns a parameter set 
which is visually judged as unsuccessful with respect to the desired pattern. These cases 
are discussed individually. The second exception is cases where the parameter values 
returned by the algorithm cluster around less than 4 distinct points. In those cases, 
naturally less than 4 points will be provided. Apart from the summarized results given 
in the figures, brief discussions about the exceptional and problematic cases are also 
provided where necessary. 
 
                                                 
1 The number of replications/trials for each case, 30, is coincidentally equal to the population size of the 
genetic algorithm. They have no direct relation. 
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Finally, since pattern identification algorithm developed by Barlas and Kanar (Barlas 
1996; Kanar 1999) is utilized in this research, a subset of the pattern set defined by 
Barlas and Kanar is used as the set of plausible patterns. Reader may refer to Appendix 
A for the set of patterns used in this research. 

Thermostat Model: 
The first model used for experimentation is a simple second order linear stock 
adjustment structure, the thermostat model (Figure 4). The differential equations 
corresponding to this simple system and analytical solution for the parameter values that 
yield oscillations are provided in Appendix B. In the instance of the model used for test 
purposes, Perceived State and State variables are both set to -10, and Goal is set to 0 at 
t=0. Time horizon is set to be 150 time units and variable of interest is chosen to be the 
State variable. Only 2-parameter optimization experiments are conducted with this 
model. The two parameters, for which the pattern-based optimization algorithm is set to 
seek values, are the Perception Delay and the Adjustment Time. The feasible range for 
both of these parameters is set to be [0 , 20]. 
 
The results of the tests conducted on this model are summarized in Figure 5. In the 
negative exponential growth case only two different points are identified; (4.3, 1.0) and 
(6.9, 1.0). Among them the second point was the dominant one (22 of 30 results). The 
algorithm returned no other point in these 30 runs.  
 

State

State Adjustment

GoalAdjustment Time

Perceived State

Perception Adjustment

Perception Delay 
Figure 4: Stock-flow diagram for the thermostat model 

 
As mathematically demonstrated in Appendix B, this model can demonstrate only stable 
oscillations and oscillating behavior is obtained when the Adjustment Time is less than 
four times the Perception Delay. All the results provided by the algorithm clearly 
satisfy this relationship. The points returned by the algorithm clearly clustered around 
the edges of the end points of the ranges given for the parameters. The value of the 
Adjustment Time was 1.0 for all 30 runs. On the other hand, the values returned for the 
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Perception Delay were between 19 and 20 in 26 cases among 30. The model outputs 
generated with these points were quite satisfactory in terms of obtaining the desired 
behavior.  
 
In the growth-and-decline case, a similar clustering around the point (1.1 ; 1.2) is 
observed (23 of 30 results). Although corresponding model behavior demonstrates basic 
characteristics of the sought behavior (e.g. growth with decreasing rate of change 
followed by a decline to equilibrium; decline level less than growth level), visually they 
are not evaluated as pure growth and decline behaviors. 
 
 

Desired Behavior 
Pattern 

Parameter values returned by the 
algorithm 

(Adj. Time ; Perc. Del.) 
Behavior patterns obtained by using returned parameter values 

Negative 
Exponential 

Growth 

X1: (4.3 ; 1.0) (line 1)  
X2: (6.9 ; 1.0) (line 2) 
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Oscillations 

X1: (1.0 ; 17) (line 1) 
X2: (1.0 ; 18) (line 2) 
X3: (1.0 ; 19) (line 3) 
X4: (1.0 ; 20) (line 4) 
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Growth and 
Decline 

X1: (1.1 ; 1,2) (line 1)  
X2: (1.7 ; 2.0) (line 2) 
X3: (2.4 ; 3.3) (line 3) 
X4: (12.8 ; 16.0) (line 4) 
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S-shaped Growth 

X1: (3.3 ; 1) (line 1) 
X2: (3.7 ; 1.4) (line 2) 
X3: (19.5 ; 8.4) (line 3)  
X4: (19.9 ; 1.1) (line 4)  
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Figure 5: Results of the experiments with the thermostat model (Search with 2 parameters) 
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Finally we have conducted tests for two behavior patterns that are not possible to obtain 
just by modifying the Adjustment Time and the Perception Delay, given the particular 
initial conditions of the model. Since the Perceived State and the State variables are set 
to be equal to -10 and the Goal parameter is set to be 0, rate of change for the State will 
be decreasing during the initial phase of the model run, independent of the values of 
Adjustment Time and Perception Delay. Hence it is not possible to obtain pure S-shaped 
growth, for example. In order to test the behavior of the pattern recognition algorithm, 
S-shaped growth is also set as a goal and corresponding results can be seen Figure 5. As 
it can be seen, none of the patterns generated is an S-shaped growth pattern. The 
dominant result in this experiment (X3, found in 22 of 30 runs) yields a negative 
exponential growth pattern. It is seen that the pattern recognition algorithm evaluates 
negative exponential growth as the most proximate one to an S-shaped growth pattern, 
probably due to the fact that negative exponential growth is typically the second half of 
a pure S-shaped growth. To take the experiment further, a third parameter is allowed to 
the optimization algorithm, which makes it possible to produce an S-shaped growth 
pattern. In this additional experiment, a 3-parameter optimization is performed by 
adding the initial value of the Perceived State to the variables which can be altered by 
optimization algorithm. 10 runs are performed for this additional experiment, and a 
single point is obtained in these runs. The point and the resultant behavior pattern are 
given in Figure 6. As it can be seen, the pattern generated by the parameter values 
returned by the algorithm is an S-shaped growth pattern. 
 
 

Desired Behavior 
Pattern 

Parameter values returned by the 
algorithm 

(Adj. Time ; Perc. Del. ; Perc State) 
Behavior patterns obtained by using returned parameter values 

S-shaped Growth X1: (4.3 ; 1.5 ; 1.5) (line 1) 
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Figure 6: Search for S-shaped growth pattern with the thermostat model (Search with 3 parameters) 
 
 
Stock Management Model with Two Stage Supply Line: 
The second model used for experimentation is a third-order linear stock management 
model, given in Figure 7. Specifications of the model are provided in Appendix C. 
Basically, we have conducted experiments with different number of parameters to be 
altered by the optimization algorithm. 2-parameter, 3-parameter, 5-parameter and 7-
parameter search experiments are conducted. For each of these cases, we have searched 
for three different desired patterns; oscillations, negative exponential growth and S-
shaped growth. Our aim in this set of experiments was to observe the changes in the 
overall performance due to increased-decreased number of parameters. 
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Figure 7: Stock-flow diagram for stock adjustment model with two stage supply line 

 
 
The list of model parameters selected as the independent variables for the optimization 
algorithm in each of these experiment sets is provided in Figure 8. 
 
 

Experiment 
Set Independent Variables 

2-parameter 
case Acquisition Delay2, Stock Adjustment Time 

3-paramerer 
case Acquisition Delay 1, Acquisition Delay 2, Stock Adjustment Time 

5-parameter 
case 

Acquisition Delay 1, Acquisition Delay 2, Stock Adjustment Time, Desired Stock, Stock (initial 
value) 

7-parameter 
case 

Acquisition Delay 1, Acquisition Delay 2, Stock Adjustment Time, Desired Stock, Stock (initial 
value), Supply Line 1 (initial value), Supply Line 2 (initial value), 

Figure 8: Set of independent parameters used in different experiments 
 
 
The results obtained in the 2-parameter optimization case are summarized in Figure 9. 
In the oscillation case, the results are clustered around 3 points. It is possible to verify 
both by visual inspection and mathematical analysis (see Appendix C) that the patterns 
obtained by these points are oscillations. In the negative exponential case, very 
proximate parameter value vectors are found. Two of these vectors are also given in 
Figure 9. 
 
In the optimization runs for S-shaped growth pattern, obtained results seem to generate 
two different patterns. One of them is the pattern generated by using X1 or X4, which is 
evaluated to be a pure S-shaped growth pattern. The second pattern is the one generated 
by X2 or X3. This pattern seems very similar to an S-shaped growth pattern in the time 
horizon of the experiment (100 time units). However, it is evident that the Stock 
variable does not converge to an equilibrium level with a decreasing rate of change by 
the end of growth phase as it should be in a pure S-shaped growth pattern; a decline 
behavior can be detected close to the end of simulation time horizon. So, with a longer 
time horizon it can be seen that actual behavior of the Stock is either growth-and-decline 

                                                 
2 For the 2-parameter case, a single acquisition delay (Acquisition Delay) is used for the output flow of 
both supply line stocks (e.g. Acquisition Delay 1= Acquisition Delay 2= Acquisition Delay) 
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or oscillation. This observation points the sensitivity of the used algorithm to the time 
horizon chosen. 
 
 

Desired 
Behavior Pattern 

Parameter values returned by the 
algorithm 

(Acq. Del. ; Stock AdjT.) 
Behavior patterns obtained by using returned parameter values 

Oscillations 
X1: (1.6 ; 1.0) (line 1) 
X2: (1.8 ; 1.3) (line 2) 
X3: (1.9 ; 1.2) (line 3) 
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Exponential 

Growth 

X1: (1.0 ; 15.4) (line 1) 
X2: (1.0 ; 15.5) (line 2) 
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X1: (3.8 ; 16.8) (line 1) 
X2: (18.4 ; 18.4) (line 2) 
X3: (17.4 ; 19.5) (line 3) 
X4: (4.8 ; 20.0) (line 4) 
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Figure 9: Results of the experiments with the stock management model (Search with 2 parameters) 
 
 
The results obtained in 3-parameter, 5-parameter and 7-parameter search experiments 
are given in Figure 10, Figure 11 and Figure 12, respectively. Apart from a set of 
exceptions, the results obtained during these experiments were very promising.  
 



 13

 
Desired 

Behavior 
Pattern 

Parameter values returned by the algorithm 
(Acq. Del. 1 ; Acq. Del. 2 ; Stock AdjT.) 

Behavior patterns obtained by using returned parameter 
values 

Oscillations 

X1: (1.5 ; 1.0 ; 1.1) (line 1) 
X2: (4.9 ; 1.0 ; 1.2) (line 2) 
X3: (8.8 ; 1.0 ; 1.0) (line 3) 
X3: (2.8 ; 3.4 ; 2.0) (line 4) 
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X1: (1.0 ; 1.0 ; 15.5) (line 1) 
X2: (1.2 ; 1.1 ; 15.7) (line 2) 
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X1: (3.9 ; 3.8 ; 16.7) (line 1) 
X2: (18.3 ; 17.0 ; 19.1) (line 2) 
X3: (4.3 ; 3.4 ; 16.7) (line 3) 
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Figure 10: Results of the experiments with the stock management model (Search with 3 parameters) 
 
 
Two of the problematic cases are observed in S-shaped growth experiment in 5-
parameter search3; X3 and X4. X3 in that case yielded a decline-and-growth type of 
behavior, instead of the desired S-shaped growth behavior. In this case, it is seen that 
according to the likelihood value returned by the pattern recognition algorithm, 
observed decline-and-growth pattern is evaluated to be somehow similar to S-shaped 
growth. In fact, ignoring the initial 10 time periods, behavior is a perfect S-shaped 
growth. A similar shortcoming may be accepted as the underlying reason for the pattern 
caused by X4. First half of the pattern is an S-shaped growth pattern. Probably due to 
this part, pattern recognition algorithm attributes this pattern a high likelihood value. 
These two cases point out the necessity for improvement in the pattern recognition 
algorithm in order to increase its discriminative power.  
 

                                                 
3 Although it is not evident due to scaling problems, pattern generated by using X2 in this case is 
evaluated to be pure S-shaped growth.  
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Desired 

Behavior 
Pattern 

Parameter values returned by the 
algorithm 

(Acq. Del. 1 ; Acq. Del. 2 ; Stock 
AdjT. ; Des Stock ; Stock Ini) 

Behavior patterns obtained by using returned parameter values 

Oscillations 

X1: (1.1 ; 1.6 ; 1.0 ; 30.2 ; 1.5) 
(line 1) 
X2: (1.7 ; 1.0 ; 1.0 ; 45.0 ; 12.0) 
(line 2) 
X3: (3.4 ; 1.2 ; 1.3 ; 32.0 ; 20.6) 
(line 3) 
X3: (1.0 ; 4.3 ; 1.0 ; 41.3 ; 11.7) 
(line 4) 
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X1: (1.0 ; 1.0 ; 15.3 ; 30.6 ; 13.4) 
(line 1) 
X2: (1.0 ; 1.0 ; 15.6 ; 42.5 ; 10.0) 
(line 2) 
X3: (1.1 ; 1.0 ; 15.5 ; 46.0 ; 24.0) 
(line 3) 
X4: (1.0 ; 1.0 ; 15.4 ; 34.6 ; 28.0) 
(line 4) 
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X1: (3.9 ; 4.0 ; 17.3 ; 30.1 ; 27.7) 
(line 1) 
X2: (3.9 ; 3.9 ; 16.7 ; 45.7 ; 18.3) 
(line 2) 
X3: (5.6 ; 2.2 ; 16.6 ; 45.5 ; 28.7) 
(line 3) 
X4: (15.2 ; 19.5 ; 19.7 ; 35.6 ; 29.5) 
(line 4) 
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Figure 11: Results of the experiments with the stock management model (Search with 5 parameters) 
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Desired 
Behavior 
Pattern 

Parameter values returned by the 
algorithm 

(Acq. Del. 1 ; Acq. Del. 2 ; Stock 
AdjT. ; Des Stock ; Stock Ini ; 
SupLine1 Ini ; SupLine2 Ini) 

Behavior patterns obtained by using returned parameter values 

Oscillations 

X1: (1.0 ; 11.1 ; 1.0 ; 38.9 ; 26.0 ; 
35.3 : 52.8) (line 1) 
X2: (2.7 ; 2.6 ; 1.5 ; 35.2 ; 29.0 ; 
37.9 ; 43.6) (line 2) 
X3: (1.0 ; 5.0 ; 1.3 ; 30.0 ; 26.1 ; 
34.9 ; 30.0) (line 3) 
X4: (1.0 ; 5.0 ; 1.3 ; 30.0 ; 26.1 ; 
34.9 ; 30.0) (line 4) 
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Negative 
Exponential 

Growth 

X1: (2.0 ; 1.2 ; 9.5 ; 39.5 ; 10.0 ; 
24.0 : 20.1) (line 1) 
X2: (1.5 ; 1.5 ; 11.2 ; 47.5 ; 11.0 ; 
25.0 ; 22.5) (line 2) 
X3: (2.0 ; 1.5 ; 17.0 ; 30.3 ; 10.0 ; 
28.1 ; 20.0) (line 3) 
X4: (1.0 ; 1.4 ; 10.0 ; 48.5 ; 10.5 ; 
20.0 ; 20.3) (line 4) 
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X1: (2.7 ; 4.9 ; 16.9 ; 48.0 ; 10.1 ; 
36.7 : 38.0) (line 1) 
X2: (6.1 ; 2.6 ; 19.1 ; 47.0 ; 11.0 ; 
51.7 ; 30.0) (line 2) 
X3: (4.7 ; 2.7 ; 15.7 ; 41.2 ; 10.5 ; 
39.9 ; 32.8) (line 3) 
X4: (1.1 ; 8.3 ; 19.9 ; 46.6 ; 13.7 ; 
32.6 ; 58.9) (line 4) 
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Figure 12: Results of the experiments with the stock management model (Search with 7 parameters) 
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Market Growth Model: 
The third model used for experimentation purposes is a third-order non-linear market 
growth model, whose stock-flow diagram is given in Figure 13. As in the former case, 
this model is also capable of demonstrating various behavior patterns dependent on the 
initial conditions and parameter values. Differing from the former model, this model 
incorporates two non-linear effect functions (e.g. Deleffect and Backleffect). 
 

 
SalesForce

Hiring

OrdersBooked

SalesForceBudget

~
Deleffect

Salary

RevenuePerOrder

SF Adjustment Time

Backlog

New Orders Completed Orders

BacklRatio

DeliveryDelay

Perc DeliveryDelay
Perc Adjustment

Perception Delay

NormBacklog ~
BacklEffect

NormCompl

DelDelRatio

Min DeliveryDelay

SF Effectiveness

SF BaseEffectiveness

 
Figure 13: Stock-flow diagram for market growth model 

 
 
We basically conducted two sets of tests using this model. In the first set, we tried 2-
parameter search. Then, in the second set 3-parameter search with extended ranges is 
performed. In order to see the impact of the ranges on the algorithm’s performance, 
feasible ranges for the parameters are extended significantly. The parameters used as 
variables for optimization and their corresponding feasible ranges can be seen in Figure 
14. 
 
 

Experiment Set Parameters Used Feasible Ranges 
Perception Delay [0, 20] 1 SF Adjustment Delay [0, 20] 
Perception Delay [0, 80] 
SF Adjustment Delay [0, 80] 2 
Min DeliveryDelay [0, 40] 

Figure 14: Parameters used and their ranges in experiments with market growth model 
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The results of the first set of experiments, where search is performed over two 
parameters, are summarized in Figure 15 and Figure 16. Tests are conducted for five 
different patterns (negative exponential growth, oscillation, growth-and-decline, S-
shaped growth, and positive exponential growth). 
 
The results obtained for the first four patterns are presented in Figure 15. Among those 
four experiments, growth-and-decline case turned out to be the most unsuccessful 
performance of the algorithm in this experimental study. Among 30 trials, algorithm 
returned 10 parameter value vectors very close to X2, though behavior pattern obtained 
by X2 is clearly not a growth-and-decline one. It is concluded that further 
experimentation is required for deeper investigation for this type of lock-in of the 
optimization algorithm.  
 

Desired Behavior 
Pattern 

Parameter values returned by the 
algorithm 

(PercDel. ; SFAdjT.) 
Behavior patterns obtained by using returned parameter values 

Negative 
Exponential 

Growth 

X1: (1.0 ; 7.5) (line 1) 
X2: (1.0 ; 6.5) (line 2) 
X3: (1.0 ; 6.0) (line 3) 
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Oscillations 
X1: (1.3 ; 1.0) (line 1) 
X2: (2.0 ; 1.5) (line 2) 
X3: (2.9 ; 2.0) (line 3) 
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Growth and 
Decline (gr2db) 

X1: (40.0 ; 18.9) (line 1) 
X2: (35.0 ; 35.6) (line 2) 
X3: (1.0 ; 2.5) (line 3) 
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S-Shaped 
Growth 

X1: (1.9 ; 6.9) (line 1) 
X2: (1.9 ; 14.4) (line 2) 
X3: (2.9 ; 15.8) (line 3) 
X4: (3.5 ; 10.0) (line 4) 
X5: (5.8 ; 18.0) (line 5) 
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Figure 15: Results of the experiments with the market growth model (Search with 2 parameters) 
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The test conducted in order to obtain positive exponential growth also deserves some 
extra discussion. The algorithm returned a single value vector in all 30 trials; (20 ; 39). 
In a time horizon of 100 time periods, which is the horizon used in the experiments, the 
result seems to be quite satisfactory (see Figure 16). However, when the time horizon is 
increased to 150 time periods, it can be seen that model is demonstrating an S-shaped 
growth type of behavior and will be stabilizing in the steady state. This case stands as 
another instance of sensitivity of the results to the time horizon chosen, which is also 
discussed in some of the previous cases.  
 

Positive 
Exponential 
Growth 

X1: (20.0 ; 39.0) 
(line 1) 
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Figure 16: A Result of experiments with the market growth model (Search with 2 parameters) 

 
A more extended experimentation is conducted in the 3-parameter search setting with 
the same model. In this case optimization is performed over Perception Delay, SF 
Adjustment Time, and Min Delay parameters. The results of these experiments are 
summarized in Figure 17, Figure 18 and Figure 19.  
 
Results of the first three experiments are given in Figure 17. In the first two patterns 
tested (oscillations and growth-and-decline (gr1da)), all 30 solutions returned by the 
algorithm yield quite satisfactory results. It is worth mentioning that in the growth-and-
decline case, despite the characteristic similarities among 4 different growth-and-
decline patterns, all solutions yield patterns that satisfy the exact specifications of the 
desired pattern (see Appendix A for pattern codes and their specifications).  
 
The third pattern tested was another growth-and-decline pattern (gr1db). One of the 
points returned by the algorithm in this experiment was (1.1 ; 11.0 ; 1.0), which yields a 
sort of negative exponential growth type of behavior (see the bottom graph in the gr1db 
case in Figure 17). Among 30 trials, the algorithm returned this specific point twice. 
Analyzing the objective function values, it is concluded that pattern identification 
algorithm attributes a low objective value for this point, which indicates that the pattern 
is not similar to the desired one. Hence, it is concluded that failure is mainly due to the 
optimization heuristic utilized, not due to the pattern recognition algorithm.  
 
The experiments with two growth-and-decline patterns (gr2da and gr2db) and negative 
exponential pattern are summarized in Figure 18. In both of the growth-and-decline 
cases, all results returned by the algorithm are evaluated to be successful, except 1 point 
in growth-and-decline (gr2db) case returned by the algorithm once in 30 trials (see X4 
in gr2db case in Figure 18). Although that particular point yields a growth-and-decline 
behavior in general, the observed pattern does not perfectly match the gr2db type of   
growth-and-decline pattern.  

Time horizon of the experiment
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Desired 

Behavior 
Pattern 

Parameter values returned by 
the algorithm 

(PercDel. ; SFAdjT ;  
MinDelay) 

Sample Output with Found Parameter Values 

Oscillations 

X1: (2.7 ; 2.5 ; 1.3) (line 1) 
X2: (3.8 ; 3.5 ; 1.3) (line 2) 
X3: (7.2 ; 9.6 ; 1.8) (line 3) 
X4: (9.4 ; 13.8 ; 1.9) (line 4) 
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Growth and 
Decline 
(gr1da) 

X1: (5.7 ; 5.2 ; 10.0) (line 1) 
X2: (14.0 ; 5.0 ; 6.5) (line 2) 
X3: (39.8 ; 5.1 ; 2.9) (line 3) 
X4: (53.0 ; 5.0 ; 1.0) (line 4) 
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Growth and 
Decline 
(gr1db) 

Top Graph: 
X1: (2.2 ; 17.4 ; 6.6) (line 1) 
X2: (55.5 ; 24.6 ; 1.5) (line 2) 
X3: (64.5 ; 51.9 ; 1.4) (line 3) 
X4: (74.8 ; 23.2 ; 1.0) (line 4) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bottom Graph: 
X5: (1.1 ; 11.0 ; 1.0) (line 1) 

5:34 PM   Sun, Mar 11, 2007Page 1
0.00 20.00 40.00 60.00 80.00 100.00

Hours

1:

1:

1:

33

101

169

SalesForce: 1 - 2 - 3 - 4 - 

1

1

1

1 1

2

2

2

2

2

3

3

3

3
3

4

4

4

4
4

 

5:35 PM   Sun, Mar 11, 2007Page 1
0.00 20.00 40.00 60.00 80.00 100.00

Hours

1:

1:

1:

33

101

169

SalesForce: 1 - 

1

1 1 1 1

 
Figure 17: Results of the experiments with the market growth model (Search with 3 parameters) 
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Desired 

Behavior 
Pattern 

Parameter values returned by 
the algorithm 

(PercDel. ; SFAdjT ;  
MinDelay) 

Sample Output with Found Parameter Values 

Growth and 
Decline 
(gr2da) 

X1: (27.5 ; 3.7 ; 8.0) (line1) 
X2: (52.9 ; 3.1 ; 8.1) (line 2) 
X3: (62.6 ; 3.6 ; 4.5) (line 3) 
X4: (78.3 ; 5.7 ; 2.1) (line 4) 

5:57 PM   Sun, Mar 11, 2007Page 1
0.00 20.00 40.00 60.00 80.00 100.00

Hours

1:

1:

1:

0

3500

7000

SalesForce: 1 - 2 - 3 - 4 - 

1

1

1 1 1
2

2

2 2 2

3

3 3 3 3
4

4 4 4 4

 

Growth and 
Decline 
(gr2db) 

Top Graph: 
X1: (3.9 ; 22.9 ; 3.7) (line 1) 
X2: (5.1 ; 26.9 ; 4.1) (line 2) 
X3: (12.3 ; 35.7 ; 5.9) (line 3) 
 
 
 
 
 
 
 
 
 
 
 
 
Bottom Graph: 
X4: (71.3 ; 18.7 ; 8.8) (line 1) 
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Negative 
Exponential 

Growth 

X1: (1.0; 9.0 ; 1.0) (line 1) 
X2: (1.4 ; 17.8 ; 1.2) (line 2) 
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Figure 18: Results of the experiments with the market growth model (Search with 3 parameters) 

 
Final set of behavior patterns tested are given in Figure 19. First of the tested patterns is 
S-shaped growth, in which a couple of unsatisfactory points are returned by the 
algorithm. One of those point is (1.0 ; 18.0 ; 1.0) (see X1 in sshgr case in Figure 19). 
This point yields a pure negative exponential growth pattern. On the other hand, second 
unsatisfactory result was (3.3 ; 1.0 ; 2.8), which yielded two consecutive growth-and-
decline patterns. In the latter case, pattern identification algorithm captured the 
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mismatch between the desired and produced pattern, but optimization algorithm locks-
in to the point X5 in 1 of 30 experiments. This indicates the need for extended 
experimentation with differing settings of the optimization algorithm. On the other 
hand, algorithm returned X1 in 3 of 30 runs. This may also be partially attributed to 
optimization algorithm, but it is also seen that discriminative power of the pattern 
identification algorithm is low between S-shaped growth and negative exponential 
growth patterns. 
 

Desired 
Behavior 
Pattern 

Parameter values returned by 
the algorithm 

(PercDel. ; SFAdjT ;  
MinDelay) 

Sample Output with Found Parameter Values 

S-Shaped 
Growth 

Top Graph: 
X1: (1.0 ; 18.0 ; 1.0) (line 1) 
X2: (1.3 ; 55.0 ; 4.0) (line 2) 
X3: (3.5 ; 38.3 ; 3.3) (line 3) 
X4: (5.3 ; 65.0 ; 4.2) (line 4) 
 
 
 
 
 
 
 
 
 
 
 
 
Bottom Graph: 
X5: (3.3 ; 1.0 ; 2.8) (line 1) 
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Negative 
Exponential 

Decay 

Not possible. Closest is to 
increase and then decay 
X1: (8.8 ; 1.2 ; 2.6) (line 1) 
X2: (10.9 ; 1.9 ; 9.0) (line 2) 
X3: (34.1 ; 1.5 ; 6.8) (line 3) 
X4: (53.7 ; 1.8 ; 2.9) (line 4) 
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Positive 
Exponential 

Growth 
X1: (80 ; 50 ; 10) (line 1) 
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Figure 19: Results of the experiments with the market growth model (Search with 3 parameters) 
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CONCLUSIONS AND FURTHER RESEARCH: 
A pattern-based parameter search/optimization method and the results obtained from 
various test experiments are presented in this paper. The conducted experimental study 
provides an idea about usability of the approach, and insights about future work that 
should follow. Our primary assessment about the proposed method is that it stands as a 
promising modeling support tool. In the majority of the experiments conducted, 
obtained results were satisfactory. Average run-time of the algorithm, which was around 
4 minutes and the successful results support the method as an automated parameter 
search tool. Contrary to our expectations, time performance of the method was not 
influenced significantly by the number of model parameters used in the search process; 
there was only a slight increase in the run time of the algorithm. This observation 
indicates the viability of the proposed method as a support tool even for larger models. 
 
Another advantage of the proposed method is that no reference time series is needed in 
order run our parameter search algorithm. The existing optimization applications aiming 
to optimize the model output, require data series representing the desired pattern. 
However, such a reference data series is may not be available and is not necessary in 
our case. The user has the opportunity to choose the desired pattern characteristics from 
a  defined pattern template that covers most of the basic patterns that can be observed or 
targeted in SD modeling studies. 
 
The proposed method has some limitations that should be improved. One of them is the 
lack of numeric features of the desired pattern in the objective function of the search 
algorithm. While the method searches for parameter values that yield desired pattern 
characteristics (e.g. goal-seeking growth), it does not pay attention to numeric aspects 
(e.g. growth stabilizing around level 300). This is one of the future research directions 
we intend to focus on. 
 
Two basic future directions that will immediately follow this study are related to the 
optimization and pattern recognition algorithms. As discussed before GA has several 
design parameters (like population size, stopping criterion) that can influence the 
overall performance. Next phase of research focusing on these parameters is currently 
being designed.  In this process, it is hoped that further improvements in the 
performance of the algorithm will be obtained. 
 
Finally, another future work is to convert this method to a standalone support 
application that can work with a set of existing SD simulation software. Wide spread 
utilization of such a promising tool may be possible only in such a form. 
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APPENDIX A:  
Behavior patterns used in experiments (adopted from Bog and Barlas, 2005) 
 
Pattern 
Code Description Sample Pattern 

pexgr Positive exponential growth 

0.00 25.00 50.00 75.00 100.00
Time

nexgr Negative exponential growth 

0.00 25.00 50.00 75.00 100.00
Time

sshgr S-shaped growth 

0.00 25.00 50.00 75.00 100.00
Time  

pexdc Positive exponential decline 

0.00 25.00 50.00 75.00 100.00
Time  

nexdc Negative exponential decline 

0.00 25.00 50.00 75.00 100.00
Time  

gr1da 
 
Growth with decreasing rate followed by decline to 
equilibrium (growth level g is less than decline level d) 

0.00 25.00 50.00 75.00 100.00
Time  

g d 



  

gr1db Growth with decreasing rate followed by decline to 
equilibrium (growth level g is greater than decline level d ) 

0.00 25.00 50.00 75.00 100.00
Time  

gr2da S-shaped growth with decreasing rate followed by decline to 
equilibrium (growth level g is less than decline level d) 

0.00 25.00 50.00 75.00 100.00
Time  

gr2db S-shaped growth with decreasing rate followed by decline to 
equilibrium (growth level g is greater than decline level d) 

0.00 25.00 50.00 75.00 100.00
Time  

g1ped Growth with decreasing rate followed by positive exponential 
decline 

0.00 12.50 25.00 37.50 50.00
Time  

g2ped S-shaped growth followed by positive exponential decline 

0.00 18.75 37.50 56.25 75.00
Time  

oscct Oscillations around constant mean 

0.00 25.00 50.00 75.00 100.00
Time  

 
 

g 
d 

g 

d 

g 
d 



  

APPENDIX B:  
Supplementary Material for the Thermostat Model 
 
1. Differential Equation Set: 

Adj

Perc

S: State
PS: Perceived State
T : Adjusment Time

T : Perception Delay

1 ( )

1 ( )

;

Adj

Perc

dS Goal PS
dt T

dPS S PS
dt T

where

= × −

= × −

 

 
2. Analytical Solution for Characteristics Equation and Eigenvalues 
Since the model is simple, it is possible to check the analytical solution in order to have an idea 
about the type of behavior to expect under certain parameter conditions. When goal in the model 
is set to zero without losing generality, we get the following matrix representation for the system 
of differential equations; 
 

10
.

1 1
Adj

Perc Perc

TS S
PSPS

T T

•

•

−⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦ ⎢ ⎥

⎣ ⎦

 

 
Based on this matrix, roots of the characteristics equation are calculated as follows; 
 

2

1
1 1    .

.1 1
Adj

Perc Adj Perc

Perc Perc

T
A I A I

T T T
T T

λ
λ λ λ λ

λ

−⎡ ⎤−⎢ ⎥
⎢ ⎥− = ⎯⎯→ − = + +
⎢ ⎥−

−⎢ ⎥
⎣ ⎦
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1,2 1,2

1 1 14.
.4     

2 2
Adj Perc Adj PercT T T Tb b acr

a
λ

−
−

− −
= ⎯⎯→ =

∓
∓  

 
 



  

Since AdjT is positive by definition, this model cannot generate any unstable behavior patterns. 
Apart from that it can also be verified from the equation above that model will demonstrate stable 
oscillations when 4.Adj PercT T< .  
 
3. Model Equations from STELLA® 
Perceived_State(t) = Perceived_State(t - dt) + (Perception_Adjustment) * dt 
INIT Perceived_State = -10 
Perception_Adjustment = (-Perceived_State+State)/Perception_Delay 
State(t) = State(t - dt) + (State_Adjustment) * dt 
INIT State = -10 
State_Adjustment = (Goal-Perceived_State)/Adjustment_Time 
Adjustment_Time = 2 
Goal = 0 
Perception_Delay = 1 
 



  

 
APPENDIX C:  
Supplementary Material for the Stock Adjustment Model  
 
1. Differential Equation Set: 
 

( )1
1

2
1 2

2

1,2

:

1 1. .

1 1. .

1 .

;
:  Supply Line 1 and 2

:  Stock
:  Desired Stock
:  Acquisition Delay

 Adjustment Time

:  Loss

Adj Acq

Acq Acq

Acq

Acq

Adj

dSL DS S SL L
dt T T

dSL SL SL
dt T T

dS SL L
dt T

where
SL
S
DS
T

T

L

= − − +

= −

= −

 

 
2. Analytical Solution for Characteristics Equation and Eigenvalues 
When Loss and Desired Stock parameters in the model is set to zero without losing generality, we 
get the following matrix representation for the system of differential equations; 
 

1
1

2 2

1 10

1 1 0 .

10 0

Acq Adj

Acq Acq

Acq

T TSL SL
SL SL

T T
SS

T

•

•

•

⎡ ⎤− −
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥⎢ ⎥ − ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

 

 
Corresponding characteristics equation is as follows; 
 

3 2
2 2

2 1 1 0
.Acq Acq Adj AcqT T T T

λ λ λ+ + + =  

 
Without solving for exact roots of this equation, we can identify the relation between parameters 
that yield oscillatory behavior by using the ∆  given below; 



  

 
3 2 2 3 2 24 4 18 27b d b c ac abcd a d∆ = − + − +  

 
where a is the coefficient of the highest degree term, and d is the coefficient of lowest degree 
term in characteristics equation. For ∆>0, the characteristics equation will have one real and two 
complex conjugate roots. Then;  
 

4   One real and a pair of complex conjugate roots 
27

Acq

Adj

T
T

> ⇒  

 
 

3. Model Equations from STELLA® 
Stock(t) = Stock(t - dt) + (Acquisiton2 - Loss) * dt 
INIT Stock = 20 
Acquisiton2 = Supply_Line_2/Acquisition2_Delay 
Loss = 10 
Supply_Line_1(t) = Supply_Line_1(t - dt) + (Control - Acquisition_1) * dt 
INIT Supply_Line_1 = Acquisition2_Delay*Loss 
Control = Loss+Stock_Adjustment 
Acquisition_1 = Supply_Line_1/Acquisition1_Delay 
Supply_Line_2(t) = Supply_Line_2(t - dt) + (Acquisition_1 - Acquisiton2) * dt 
INIT Supply_Line_2 = Acquisition2_Delay*Loss 
Acquisition_1 = Supply_Line_1/Acquisition1_Delay 
Acquisiton2 = Supply_Line_2/Acquisition2_Delay 
Acquisition1_Delay = 5 
Acquisition2_Delay = 5 
Desired_Stock = 50 
Stock_Adjustment = (Desired_Stock-Stock)/Stock_Adjustment_Time 
Stock_Adjustment_Time = 5



  

 
APPENDIX D:  
Supplementary Material for the Market Growth Model 
 
1. Model Equations from STELLA® 
Backlog(t) = Backlog(t - dt) + (New_Orders - Completed_Orders) * dt 
INIT Backlog = 8000 
New_Orders = OrdersBooked 
Completed_Orders = BacklEffect*NormCompl 
Perc_DeliveryDelay(t) = Perc_DeliveryDelay(t - dt) + (Perc_Adjustment) * dt 
INIT Perc_DeliveryDelay = DeliveryDelay 
Perc_Adjustment = (DeliveryDelay-Perc_DeliveryDelay)/Perception_Delay 
SalesForce(t) = SalesForce(t - dt) + (Hiring) * dt 
INIT SalesForce = 10 
Hiring = (SalesForceBudget/Salary-SalesForce)/SF_Adjustment_Time 
BacklRatio = Backlog/NormBacklog 
DelDelRatio = Perc_DeliveryDelay/Min_DeliveryDelay 
DeliveryDelay = Backlog/Completed_Orders 
Min_DeliveryDelay = 1 
NormBacklog = 25000 
NormCompl = 10000 
OrdersBooked = SalesForce*SF_Effectiveness 
Perception_Delay = 8 
RevenuePerOrder = 10 
Salary = 2000 
SalesForceBudget = OrdersBooked*RevenuePerOrder 
SF_Adjustment_Time = 20 
SF_BaseEffectiveness = 100 
SF_Effectiveness = Deleffect*SF_BaseEffectiveness 
BacklEffect = GRAPH(BacklRatio) 
(0.00, 0.02), (0.333, 0.4), (0.667, 0.73), (1.00, 1.00), (1.33, 1.24), (1.67, 1.47), (2.00, 1.64), (2.33, 
1.75), (2.67, 1.85), (3.00, 1.92), (3.33, 1.96), (3.67, 1.98), (4.00, 2.00), (4.33, 2.00), (4.67, 2.00), 
(5.00, 2.00) 
Deleffect = GRAPH(DelDelRatio) 
(0.00, 4.00), (0.5, 4.00), (1.00, 3.98), (1.50, 3.88), (2.00, 3.70), (2.50, 3.44), (3.00, 3.02), (3.50, 
2.52), (4.00, 2.00), (4.50, 1.46), (5.00, 1.02), (5.50, 0.7), (6.00, 0.54), (6.50, 0.44), (7.00, 0.38) 


